
Younesi et al. Theoretical Biology and Medical Modelling  (2015) 12:20 
DOI 10.1186/s12976-015-0017-y
RESEARCH Open Access
PDON: Parkinson’s disease ontology for
representation and modeling of the
Parkinson’s disease knowledge domain

Erfan Younesi1* , Ashutosh Malhotra1,2, Michaela Gündel1,2, Phil Scordis4, Alpha Tom Kodamullil1,2, Matt Page4,
Bernd Müller1, Stephan Springstubbe1, Ullrich Wüllner3, Dieter Scheller5 and Martin Hofmann-Apitius1,2
* Correspondence:
erfan.younesi@scai.fraunhofer.de
1Department of Bionformatics,
Fraunhofer Institute for Algorithms
and Scientific Computing, 53754
Sankt Augustin, Germany
Full list of author information is
available at the end of the article
Abstract

Background: Despite the unprecedented and increasing amount of data, relatively
little progress has been made in molecular characterization of mechanisms underlying
Parkinson’s disease. In the area of Parkinson’s research, there is a pressing need to
integrate various pieces of information into a meaningful context of presumed disease
mechanism(s). Disease ontologies provide a novel means for organizing, integrating,
and standardizing the knowledge domains specific to disease in a compact, formalized
and computer-readable form and serve as a reference for knowledge exchange or
systems modeling of disease mechanism.

Methods: The Parkinson’s disease ontology was built according to the life cycle of
ontology building. Structural, functional, and expert evaluation of the ontology was
performed to ensure the quality and usability of the ontology. A novelty metric has
been introduced to measure the gain of new knowledge using the ontology. Finally, a
cause-and-effect model was built around PINK1 and two gene expression studies from
the Gene Expression Omnibus database were re-annotated to demonstrate the
usability of the ontology.

Results: The Parkinson’s disease ontology with a subclass-based taxonomic hierarchy
covers the broad spectrum of major biomedical concepts from molecular to clinical
features of the disease, and also reflects different views on disease features held by
molecular biologists, clinicians and drug developers. The current version of the
ontology contains 632 concepts, which are organized under nine views. The structural
evaluation showed the balanced dispersion of concept classes throughout the
ontology. The functional evaluation demonstrated that the ontology-driven literature
search could gain novel knowledge not present in the reference Parkinson’s knowledge
map. The ontology was able to answer specific questions related to Parkinson’s when
evaluated by experts. Finally, the added value of the Parkinson’s disease ontology is
demonstrated by ontology-driven modeling of PINK1 and re-annotation of gene
expression datasets relevant to Parkinson’s disease.
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Conclusions: Parkinson’s disease ontology delivers the knowledge domain of
Parkinson’s disease in a compact, computer-readable form, which can be further edited
and enriched by the scientific community and also to be used to construct, represent
and automatically extend Parkinson’s-related computable models. A practical version of
the Parkinson’s disease ontology for browsing and editing can be publicly accessed at
http://bioportal.bioontology.org/ontologies/PDON.
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Background
Parkinson’s disease (PD), a progressive movement disorder, is the second most common

neurodegenerative disease [1]. The molecular etiology of sporadic PD has not been resolved

yet and therefore PD is often called an “idiopathic” disease. In recent years, several attempts

at elucidating the molecular etiology of PD have generated large omics data sets [2]. The

emerging systems view on the pathology of neurodegenerative diseases (NDDs) requires an

efficient strategy to aggregate, standardize, represent, and communicate biomedical infor-

mation through controlled vocabularies and ontologies [3]. An ontology is defined as “an

explicit specification of a conceptualization”, which aims to facilitate knowledge sharing [4].

Ontologies are the basis for automated reasoning [5], for large-scale annotation of

entire genomes [6, 7], for data mining in microarray data [8], for prediction of biomo-

lecular interactions [9], and for semantic and ontological search in poorly structured

information sources [10, 11].

A large portfolio of widely accepted and widely used ontologies including Gene Ontology

[7], the Sequence Ontology [12] and the Microarray Gene Expression Database Ontology

[8] has evolved in the life sciences. Gene ontology (GO) is the most frequently used ontol-

ogy in biomedical sciences, which provides standard functional annotations for genes and

gene products. Although GO has facilitated understanding of high-throughput results by

means of enrichment analysis, one of its significant limitations is that it does not capture

domain-specific biological complexity [13]. For example, GO is devoid of any disease-

specific context. It can not be used for answering questions like “which disease subtypes

or syndromes are over-represented in my gene or protein set?” Hence, a more useful GO

ideally should contain: i. disease-specific annotations, ii. disease-specific categories, and iii.

semantics that cover disease knowledge domains.

To include disease-specific biological processes, functionalities, and categories, disease-

specific ontologies that cover a broad spectrum of relevant knowledge are required. Disease

ontologies may reference source terminologies and vocabularies with a hierarchical concept

classification such as the SNOMED CT nomenclature [14], the ICD ontology [15] and the

human disease ontology [16]. These ontologies contain human disease concepts but their

high-level, broad coverage and the lack of depth in these ontologies restrict their usage for

specific disease domains. Malhotra and colleagues addressed this issue in the area of NDDs

by construction of Alzheimer’s disease ontology (ADO) to cover clinical, etiological,

molecular and cellular mechanism aspects of AD [17]. The aim of developing ADO was to

enable semantic mining of patient records and literature for effective retrieval and extrac-

tion of accurate AD-related information, which could be used for modeling disease

processes.

http://bioportal.bioontology.org/ontologies/PDON
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Similarly, there is a need for organizing the knowledge domain of PD. In response to this

unmet need, we aimed at creating a disease ontology for PD (PDON) that spans from the

molecular biology of the disease to clinical readouts. PDON has been created with a

subclass-based hierarchy that – for the majority of concepts - uses subsumption relation

(i.e. is_a). However, based on demand from biomedical experts for richer relations, parton-

omy relation (i.e. part_of) was also introduced, as a concession to better usability of the

ontology by interdisciplinary experts. We demonstrate the ontology's usability through our

use cases, keeping in mind that, re-usability by other teams is an important aspect in ontol-

ogy construction and its adoption by the community. As a proof of concept, we performed

evaluation of PDON performance by measuring its ability to recover pre-existing, expert-

curated information from the knowledge space of PD in the literature with the aim of gen-

erating novel insights and hypotheses.

The power of the ontology can be applied to several scenarios, e.g. building recommen-

dation systems by mapping drug failure events to mechanisms and stages of disease/stages

of drug discovery, or distinguishing proven facts from hypotheses and speculations [18].

Furthermore, in the emerging era of systems analysis of NDDs, such a knowledge-driven

approach is expected to support the integration of multiscale and multilevel information

across different biological scales, from molecular networks to clinical readouts.

To this end, we have proposed a model-driven approach to integrating biomedical

knowledge and data into mechanistic models that represent cause-and-effect relationships

among molecular entities, biological processes and their corresponding clinical outcomes.

Using this strategy in the current study, we demonstrate how PDON can be utilized not

only to causally link molecular etiology of PD to impaired biological processes and their

corresponding disease outcome (Application scenario 1) but also to annotate experimen-

tal datasets with their corresponding knowledge description for further integration into

disease models (Application scenario 2).

Results
The purpose of the PDON is to communicate and share the PD knowledge in a standard

form and support text-mining and knowledge discovery. Furthermore, for the construction

of a large, integrative knowledge base on neurodegenerative diseases, PDON can be used

for metadata annotation of various omics data sets available in the public domain. The

PDON encompasses clinical and non-clinical aspects of PD and is expected to support

retrieval of information on syndromes, etiology, treatment, experimental models, diagnosis

and symptoms of PD (Fig. 1).

PDON represents a range of key concepts specific to the knowledge domain of

Parkinson’s disease through different views, which have been integrated in the ontol-

ogy. Views are root super-classes that organize concepts within a certain knowledge

domain, as they are realized and seen by experts in reality. PDON is represented by

nine views:

The view ‘Clinical aspects’ describes a broad range of motor and non-motor features

displayed by PD patients. These features have been classified into three upper-level cat-

egories that capture clinical concepts related to “diagnostics”, “symptomatology” and

“treatment” of PD.

The view ‘Etiology’ captures both genetic and environmental factors that are known to

cause familiar PD and Parkinsonism due to toxic dopaminergic cell death, respectively.



Fig. 1 Upper-level classes of PDON as represented in the Protégé ontology editor software. Super-classes
represent different biological views (perspectives) suggested by experts under which PD-specific knowledge
is modeled
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Toxic and infectious agents as well as genetic mutations are classified within this view; in

addition, epidemiologically confirmed factors such as smoking and pesticides have been

also included.

The view ‘Model of Parkinson’s disease’ contains various in-vivo and in-vitro disease

models that are in routine use in PD research.

The view ‘Neuropathology’ was included to highlight two prototypic hypotheses of PD-

related mechanisms, namely synucleopathy and the emerging tauopathy. It is expected

that this view is populated further and enriched with more neuropathological concepts by

the PD research community.

The view ‘Familial neurodegenerative disease’ includes those hereditary disorders that

are clinically associated with PD, such as Huntington’s and Wilson’s diseases.

‘Idiopathic Parkinson’s disease’, ‘Primary parkinsonism’, ‘Secondary parkinsonism’, and

‘Parkinson-plus Syndrome’ represent four separate views as per recommendation of the

clinical expert panel. These views provide a categorized overview on distinct syndromes

associated with PD based on their origin of cause. For example, the primary parkinson-

ism class represents parkinsonian syndromes for which a definite cause has been identi-

fied (e.g. mutations in PARK genes), whereas secondary parkinsonism syndromes are

induced by a hypothetical cause that is potentially identifiable. Those syndromes with

unknown causative factor have been clinically assigned to the Parkinson-plus view.

In PDON, each concept class is supported by a scientific definition, a valid scientific

reference (if available) and existing synonyms (Fig. 2). Definitions have been selected from

review papers, journal articles and handbooks with consideration of the consensus defini-

tions accepted in the PD research community. It is noteworthy that the PDON is expected

to grow over time by inclusion of missing or emerging concepts. Due to dynamic research

in the PD field, the structure of ontology is subject to change. We do explicitly invite

experts in the field to critically review, revise and optimize the draft ontology presented in

this manuscript. The ontology will be updated based on the feedback collected from

experts, which includes concept edition, re-defining concepts with missing or insufficient

explanation, or new relationship proposal. This is accomplished through the possibility of

adding comments or proposals to the ontology’s webpage on the BioPortal repository. The

Bioinformatics group at Fraunhofer Institute SCAI that owns the ontology collects these

feedbacks and manages the updated releases. The ontology can be freely accessed and

downloaded at http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/

downloads.html.

http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html


Fig. 2 A snapshot of the annotation field for PDON concepts as presented in the Protégé ontology editor.
Each PDON concept has been annotated with definition, reference, and synonyms
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Structural evaluation:

PDON was evaluated for structural features reflecting its topology and logical proper-

ties. The high-level semantic framework of PDON contains nine super-classes, followed

by sub-classes that specifically capture the sub-domain knowledge of PD. PDON was

characterized for its structural features using parameters that have been summarized in

Table 1. As shown in Table 1, PDON covers the knowledge domain of PD using 632

concept classes for which a high number of synonyms has been collected. The depth

and width of the ontology reflect sufficient coverage of the PD knowledge domain with

a reasonable distribution of concepts at various levels. The so-called Fanout-ness factor

represents distribution of concepts over the entire ontology structure; its comparably

high value is indicative of the balanced dispersion of concept classes throughout the

ontology with consistent, broad representation of the knowledge domain across ontol-

ogy branches.

Functional evaluation and gain of knowledge measurement:

The model-based evaluation approach proposed in this work requires that a list of

genes and proteins associated to all aspects of PD is being captured by PDON and

assessed against the PD disease map as a widely accepted reference (see Evaluation

section). Obviously, there is the need to expand the PDON to both coding and

non-coding RNA, lipids and eventually to non-coding DNA and modification

thereof as well. Since the knowledge space of PD is vast, PDON-driven faceted

search enables us to distinguish between the core knowledge directly linked to PD

pathophysiology and the emerging novel knowledge surrounding PD pathophysi-

ology (e.g. observations through animal models or epidemiological data). For this

purpose, separate queries were performed in the SCAIView environment (accessed

on 28.04.2014):

1. a query with all the PDON concepts, which resulted in a list of 16333 human

genes/proteins; and



Table 1 Summary of the structural parameters and their corresponding values measured for PDON

Features No. of classes No. of synonyms Max. depth Depth variance Avg. width Fanout-ness

PDON 631 505 8 1.74 78.8 0.81
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2. PDON branch queries were formulated as ([PDON Node: “<THE BRANCH

CONCEPT>”]) AND [MeSH Disease:”Parkinson Disease”] AND [Free Text:” < THE

BRANCH NAME>”]

661 human-specific genes/proteins could be extracted from the PD map (i.e. gold stand-

ard), which were used for benchmarking the functional performance of the PDON. For

this purpose, three branches of the PDON (Etiology, Clinical aspects, Neuropathology)

were used to query PubMed abstracts in SCAIView as formulated above (see Methods).

Manual curation of the total number of retrieved documents per branch (NTM) led to the

identification of those genes/proteins that are relevant to the context of the searched

branch (TM). Table 2 summarizes these results and shows calculation of the knowledge

gain (i.e. the information gained with the support of ontology from text mining in addition

to the information already existed in the gold standard, based on the formula described in

the Methods section for the knowledge gain calculation) as well as enriched pathways for

the gained knowledge to represent the content of this new knowledge. Accordingly, these

results demonstrate that PDON-assisted search not only retrieved the majority of proteins

already embedded in the PD map gold standard but also captured a large portion of the

PD knowledge domain, which has not been represented in the PD disease map so far (gain

of novel knowledge from the literature). The rest of genes/proteins that were retrieved by

these PDON-driven queries but not found in the PD model represents additional

potential knowledge gained from the literature relevant to PD. This new knowledge can

be used after expert curation to extend or enrich the current PD disease map and thus, it

is important to measure the added value of the potentially novel gained knowledge

through the metric that was introduced in the Methods section.

Table 2 lists parameters of the knowledge gain metric and corresponding novel pathways

for selected views of the PDON. The highest percentage of new knowledge by PDON is

gained in the branches representing neuropathology, etiology and clinical concepts, respect-

ively. Functional analysis of these additionally identified genes/proteins shows that a couple
Table 2 Parameter values and the final value of the knowledge gain calculated for three major
branches of PDON. TM: number of relevant genes/proteins to the branch by PDON; GS: number of
genes/proteins extracted from the PD map as gold standard; N: total number of genes/proteins for
each branch retrieved by PDON. The queries were performed on Human Genes/Proteins and
SCAIView returned lists of unique genes specific to each branch. Numbers represent counts of
retrieved genes by SCAIView using PDON

Knowledge
domain
branches

TM TM ∩ GS NTM Gain of novel
knowledge

Enriched pathways in the content of new
knowledge

Etiology of PD 173 82 273 33 % MAPK, Chemokine, Adipocytokine, Neurotrophin,
Insulin signaling

Clinical aspects
of PD

286 97 683 27 % GPCR signaling, Neuroactive ligand-receptor
interactions, Rhodopsin-like receptors, Peptide
ligand-binding receptors, Gastrin-CREB signaling

Neuropathology
of PD

252 91 471 34 % Immune system, Signaling by GPCR, Endocytosis,
Toll-like receptor signaling, Hemostasis
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of statistically significant pathways (in terms of both member proteins and p-values) could

be added to the existing PD map.
Expert evaluation:

PDON-driven information retrieval and extraction can guide analysis of literature in

answering complex scientific questions. Experts in the knowledge domain of PD were

asked to design complex questions highly relevant for their research work to be posed to

the ontology. We selected 2 of these questions that contained concepts specific to the

PDON and benchmarked the performance of PDON against PubMed by retrieving litera-

ture abstracts that contained hypotheses answering these competency questions. Table 3

provides an overview on the number of total hits as well as the number of relevant docu-

ments that were manually verified to contain a hypothetical answer to the corresponding

question. Analyses were performed using both SCAIView and PubMed (see Table 3). The

following queries were formulated based on the competency questions and were posed to

SCAIView and PubMed retrieval systems:
Competency question 1. Return all literature references mentioning drugs used to treat

'freezing' in PD.

Query in SCAIView: [MeSH Disease:"Parkinson Disease"] AND [Parkinson

Ontology:"Freezing"] AND [Parkinson Ontology:“Gait disturbance“]) AND

[ATC:"ANTI-PARKINSON DRUGS"]) AND [Free Text:“therapy“]

Query in PubMed: (("parkinson disease"[MeSH Terms] AND gait[Text Word]) AND

freezing[Text Word]) AND drug[Text Word])) AND therapy[Text Word]
Competency question 2. Return literature references containing genes that provide

resistance to PD in the animal model MPTP.

Query in SCAIView: [MeSH Disease:"Parkinson Disease"] AND [Full Text:"resistance"]

AND [Parkinson Ontology:"MPTP model"]) AND [Mouse Genes/Proteins]

Query in PubMed: (((parkinson disease[MeSH Terms]) AND mptp[MeSH Terms])

AND resistance[Text Word]) AND animal model[MeSH Terms]

The PDON-driven semantic search in SCAIView was also able to provide the precise

answer to all competency questions by listing drug names (competency question 1),
Table 3 Results of PDON evaluation based on expert questions. For both competency questions,
PDON-driven search in SCAIView retrieved less number of abstracts than simple queries in PubMed
but more relevant to the questions (i.e. less noise). This performance efficiency for the PDON-driven
search has been calculated in percent as shown in the last column

Competency
question
number

Total no.
of abstracts
retrieved by
PDON in
SCAIView

No. of PDON-
derived abstracts
answering the
questions

Total no.
of abstracts
retrieved by
PubMed

No. of PubMed-
derived abstracts
answering the
questions

PDON-driven retrieval
efficiency (% PDON
retrieval - % PubMed
retrieval)

1 70 20 95 20 28.7 %-21 %: 7.7 %

2 6 5 3 1 83.3 %-33.3 %: 50 %
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and gene names (competency question 2), as summarized in Table 4. As Medline quer-

ies do not return lists of named entities, we could not compare the performance at the

entity level.

As the results of benchmarking indicate in Table 3 as well, PDON-driven search outper-

forms PubMed when it comes to specificity (i.e. less noise in terms of the number of

retrieved documents) and coverage (i.e. higher number of relevant documents). For less

specific queries, PDON performs at the level of PubMed baseline or better. When com-

pared to PubMed, PDON showed higher performance (greater specificity) in retrieving

relevant document, i.e. documents containing appropriate answers in the form of hypoth-

eses related to the expert question.
Application scenario 1: linking etiology view of the PDON to cause-and-effect mechanistic

models

One of the biggest scientific challenges we face in the area of NDDs such as AD or PD is

the lack of a clear understanding of the alterations at the molecular level that leads to

disease manifestation and the very cause of those alterations. As a consequence, the

molecular etiology of neither AD nor PD can be described in a formal knowledge repre-

sentation. In a recent “comment” in Nature Reviews Drug Discovery, Ismael Kola and

John Bell called for a new approach towards classifying diseases [19]. They proposed a

new taxonomy of disease based on the (presumed) underlying mechanisms. The under-

lying fundamental notion is that any personalization of treatment requires a deep under-

standing of the pathophysiological mechanisms and - as a consequence – should be based

on a mechanistic understanding of disease etiology.
Table 4 Results of PDON-driven search in response to expert competency questions. In contrast to
PubMed queries, PDON-driven search in SCAIView generated a list of entities that precisely answer
the competency questions

Competency question Entities PubMed ID

Return all literature references mentioning drugs used
to treat 'freezing' in PD.

Levodopa 6858781, 16222436,
12217618, 15262734

Selegiline 12112107, 22324564,
18937611

Amantadine 23185280, 24057149

Atomoxetine 19361809

L-threo-DOPS 6337612, 8174332

Droxidopa 23242741, 7834960

Manganese 8351000

Galantamanie 23130517, 18427456

Methylphenidate 23076544

Deprenyl 11425939

Rasagiline 21389939

Return literature references containing genes that provide resistance
to PD in the animal model MPTP.

Nos1 12490535, 8643444

Nos2 10581083

Sod1 1578260

Ccl2 17258864

Mcpt1 17258864
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In the work presented here, we undertake a first attempt at including etiological

knowledge in the knowledge representation describing PD. Although this is not yet

the “mechanism-based taxonomy” that Kola and Bell called for, it may represent a

first step towards integrating mechanistic information on PD – as far as this informa-

tion can be represented by means of causal and correlative relationships. A dedicated

modeling syntax for the representation of causal and correlative relationships is pro-

vided by the Biological Language Expression, OpenBEL [20]. OpenBEL is ideally

suited to capture knowledge on causal and correlative relationships that may exist at

any level of biomedicine. The OpenBEL language can be used for multi-scale and

multi-level modeling of any chain of events that may underlie disease.

In the “etiology” section of the PDON, we have encoded those PD-specific disease pro-

cesses that are comparably well understood in OpenBEL and included these representations

directly as “small models” in the PDON. These models can be easily extended, automatically

enriched and extracted from the PDON. To exemplify this approach, we have chosen

“inherited familial case of PD”, which provides a straightforward scenario for “cause-effect”

relationships.

A substantial amount of information on the cause (the mutation) and the conse-

quences (at cellular or organ level) is available for parkinsonism. To demonstrate

how this information can be transformed into a cause-and-effect model, we used

PDON to retrieve mutation information of PINK1. PTEN-induced putative kinase 1

(PINK1) is a mitochondrial serine/threonine-protein kinase encoded by the PINK1

gene and is thought to protect cells from stress-induced mitochondrial dysfunction.

Fig. 3 illustrates such a model for pathologic mechanism associated to mutations in

PINK1. This model explains how a number of polymorphisms in PINK1 gene antagonize

the protective effects of PINK1 by exerting a causal effect on downstream biological

processes such as increased response to oxidative stress leading to increased apoptosis,

increased molecular activity of CASP3, and negative effect on cellular respiration and

bioenergetics in mitochondria. The CASP3 protein is a member of the cysteine-aspartic

acid protease (caspase) family and its activation leads to the execution of cell apoptosis.

Moreover, the model uncovers the causal effect of PINK1 variants on increased transloca-

tion of the CYC1 protein to mitochondrial membranes, which has been shown to result

in cell death in neurons [21].

Altogether, this model illustrates the chain of cause-and-effect events (“chain of caus-

ation”) starting from the causal effect of defined mutations on cellular processes and ending

in clinical manifestations of disease outcomes.
Application scenario 2: Re-annotation of gene expression data sets with the PDON

concept classes

One of the obvious benefits of disease ontologies is their ability to harmonise the annota-

tion of data sets with well-curated terms in their controlled vocabularies. Consistently

annotated gene expression data sets will facilitate the automated identification of compar-

able studies in systematic meta-analyses that aim to identify patterns of expression or

interesting relationships between expressed genes that may come to light in the context of

multiple studies. Gene expression studies can be found in the GEO (Gene Expression

Omnibus) database, which is publicly available [22]. To demonstrate the use of PDON for



Fig. 3 Network visualization of the BEL mechanistic model for causal mutations in PINK1. The model
represents the causal association of upstream variants of PINK1 (highlighted in yellow) with downstream
pathways and biological processes (highlighted in red). Genes are shown in cyan, intermediary processes in
blue, translocation in grey, and reactive oxygen species in green. Relationships have been represented as
increase (delta-shaped arrows), decrease (T-shaped arrows), association (diamond-shaped arrows) or
variation (circle-shaped arrows). Direct effects have been shown by ‘increase’ or ‘decrease’ annotations on
edges whereas indirect effects with unknown intermediate steps are represented by ‘association’ and
‘positive/negative correlation’ relations. Moreover, activation effect of one molecule on another is shown
with ‘acts in’, translocation process is annotated with ‘translocates’, and phosphorylation processes have
been represented by ‘has_Modification’

Younesi et al. Theoretical Biology and Medical Modelling  (2015) 12:20 Page 10 of 17
the re-annotation of gene expression data sets we have selected from the GEO database

two examples for gene expression data sets with rather heterogeneous annotations:

GSE 16658 ; as an example of a data set with rather limited annotation

GSE 32037 ; as an example of a GEO data set with comparably rich annotation

The rich annotation of GSE 32037 becomes obvious, when the “description field” of this

GEO entry is subjected to a text-mining pipeline that identifies PDON terms in text

(Fig. 4). In contrast, the description field of the GSE 16658 data set is rather limited with

respect to information content (Fig. 5).

The observed lack of detail in the description of gene expression data fields is a common

phenomenon with many primary data repositories; ArrayExpress – a database for functional

genomics experiments including gene expression studies [23]- therefore is systematically re-

annotating all data sets, but that is a manual process done by expert curators who usually

follow annotation guidelines that are valid for a broad spectrum of indication areas and thus

do not represent specific information at great detail.

More detailed information about the cohort of patients is, however, often available

from the primary publication describing the data set. In our example, the respective

data set has been described in a publication that is available as open access. The terms

and conditions of the journal do allow automated analysis of the full text. Therefore,

the complete full text publication describing GSE 16658 was subjected to automated

analysis with PDON terms [24].

The complete full text publication describing GSE 16658 was subjected to automated

analysis with terms from the PDON terminology using a UIMA-based annotation workflow.

Unstructured Information Management Architecture (UIMA) is content analytics software,



Fig. 4 Rich annotation of the description field for the GSE 32037 entry in the GEO database using PDON
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which is used for natural language processing in large sets of unstructured text such as

biomedical publications [25]. Detailed information on the patient cohort underlying the

study is tagged and indicated by mark-ups (Additional file 1). Moreover, the ubiquitin path-

way, which has been identified as a pathogenic pathway in this publication, was highlighted

by PDON repeatedly. As demonstrated in this example, curation teams can readily make

use of automatically pre-annotated text to enrich the annotation of GSE 16658 with the

PDON terminology.
Discussion
Disease-specific ontologies are emerging as powerful semantic tools, which go

beyond the scope of GO and offer high semantic specificity and sensitivity by placing

the disease context at the center. This trend is indicative of the fact that successful

development of novel biomarkers and drugs requires an integrated systems view of

the pathophysiological mechanisms that underlie disease, which is highly geared

towards understanding connections across multiple biological scales, from molecular

interactions to disease phenotypes. Among chronic and complex diseases, NDDs are

the most challenging diseases to deal with and present a high level of heterogeneity

ranging from diverse molecular mechanisms, various cell types and anatomical

regions to different levels of clinical manifestation. Thus, harmonization of such high
Fig. 5 Limited annotation information in a relevant gene expression data set. The description of GSE 16658
states the purpose of the study and provides some information on the type of cells (PBMCs) used for the
isolation of patient samples



Younesi et al. Theoretical Biology and Medical Modelling  (2015) 12:20 Page 12 of 17
diversity at the data level and enormous heterogeneity at the clinical level needs

high-resolution representation of the knowledge domains specific to NDDs.

In the field of NDDs disease-specific ontologies such as epilepsy ontology [26] and

Alzheimer’s disease ontology [17] have been recently introduced. However, most potential

users of such ontologies including molecular biologists and clinicians find the notations of

such formal representations counter-intuitive and non-reusable. PDON not only provides

a standard terminology and platform for interoperability of the PD knowledge domain

among research groups, but also supports users via literature search through its lexica-

lized form. The broad coverage of PD-specific concepts at various granularity levels

ensures that PDON enables users to capture and integrate PD-related information for

systems analysis purposes. In terms of specificity of the PDON search, we found that the

maximum overlap of the PDON-derived gene list with the PD map-derived genes is

reached in each query within the top 50 genes returned by SCAIView and the most inter-

esting genes missing in the PD model were then identified after this rank position. The

PDON search covered more than 90 % of the gold standard entity list from the PD map

reference when the entire knowledge domain of PD was queried, which shows the high

sensitivity of the PDON. However, the low gene overlap between the gold standard (the

reference PD map) and the PDON-derived list of genes (Table 2) is indicative of the large

amount of peripheral information that has been used in the construction of the PD dis-

ease map complementary to the core pathology. For instance, among the novel knowledge

gained by PDON is ATP5I protein, which is a part of the ATP synthase complex in the

mitochondrial ROS cascade and complements the core cascades involved in mitochon-

drial dysfunction under PD condition. In the reference PD map, however, this protein has

not been shown and only complex V has been presented. On the other hand, this com-

parison suggests that PDON-derived results contain rich information content relevant to

the core pathophysiology of PD, which is still absent in the PD disease map and can be

potentially included in the next version. Introduction of the gain of knowledge measure-

ment metric made it possible to quantitatively measure the gain of novel information con-

tent captured by PDON. Moreover, representation of the gained knowledge by enriched

pathways confirms the novelty of the gained knowledge in comparison to the reference

PD map, as these pathways are not present in the current reference PD map.

An important feature of the PDON is its capacity to project multiple perspectives of the

PD knowledge domain among stakeholders in both academia and industry from molecu-

lar biology to epidemiological and clinical studies. For instance, during the construction

and separate rounds of curation with both clinicians and molecular biologists, special

attention was paid to bridging the gap between two higher-level perspectives, namely the

perspective of clinicians and the perspective of drug developers. Due to the representation

of different perspectives in the domain of PD research, we do hope that the PDON will be

broadly adopted and used for the exchange of data, annotation of existing data sets and

the communication of knowledge.

The unique value that application of PDON can provide to the PD research community

was demonstrated by using PDON for the rapid construction of mechanistic BEL models.

This ability can be used for representation as well as visualization of the PD knowledge

subdomains in the form of cause-and-effect systems models. As demonstrated in the ap-

plication scenario, mutations in the PINK1 gene is well known for their causal association

to familial early onset PD but their mechanistic model reveals their potential involvement
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in the etiology of sporadic late onset PD as well. This feature of the PDON, therefore, can

be used for investigating associations between familial and sporadic PD in general, and

associations between parkinsonism syndromes in particular at the mechanism level. To

this end, the authors foresee that one potential application of PDON could be revision of

the current classification of PD syndromes based on etiological mechanism underlying

each syndrome.
Conclusions
In the times of re-orientating PD research towards systems modeling and analysis, the

Parkinson’s disease ontology serves as a semantic framework for standardization and

harmonization of a large amount of heterogeneous data and knowledge in the field of PD.

Indeed, PDON delivers the knowledge domain of PD in a compact, computer-readable

form, which can be further used to construct, represent and automatically extend PD-

related computable models. Beside advantages, PDON has its own limitations such as

missing concepts, lack of standard definitions, or incompleteness of synonym list.

Addressing these shortcomings requires constant contribution of the PD research com-

munity to the betterment of the current version of PDON.
Methods
The PDON has been constructed in accordance to the ontology-building life cycle [27].

Such a methodology – compared to other methods - offers a set of defined stages when

building ontologies to assist identifying construction principles for each stage as well as

relationships among stages.
Knowledge acquisition and conceptualization

A first collection of terms and concepts related to PD was generated by scanning various

knowledge sources. Initially we used a list of sources recommended by Parkinson’s experts

(i.e. neuroscientists and clinicians) including medical text books such as Parkinson’s Disease

and Movement Disorders [28] and encyclopedias like Encyclopedia of Parkinson’s Disease

[29]. After extracting the key concepts manually, we then used the search functionality of

Google (such as Books and Scholar) to find online resources that contain additional

concepts describing the knowledge domain of PD (e.g. www.parkinsons.org). Other

resources including review articles and content of online books were used in this way and

any available hierarchical organization (structure) of the concepts was extracted along with

the concepts themselves. Corresponding definitions and references were also included.

Concept enrichment was assisted by n-gram analysis so that publication abstracts were

scanned for 2-grams to 5-grams, describing meaningful terms with 2 to 5 words, by using a

java program written for this purpose. These n-grams underwent manual inspection and

relevant terms were added to the ontology.
Formal representation

The Protégé OWL editor was used as a tool for building the PDON in Web Ontology

Language (OWL) format [30]. Concept classes were further annotated with synonyms.

http://www.parkinsons.org
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Structural evaluation

Structural features of the ontology were computed using an existing java script [31]. These

features include topological and logic properties such as: depth and breadth (related to

the cardinality of paths in a graph), tangledness (related to multi-hierarchical nodes), and

fan-outness (related to the dispersion of nodes).
Functional evaluation

Functional performance of the ontology was measured through a novel model-based

evaluation approach. In this approach, the assumption is that the expert-curated molecular

map of PD, which has been recently published by Fujita et al. (2013), represents a good

part of the current knowledge about molecular processes related to PD and is considered

as the gold standard [32]. A list of genes and proteins in this map was used for bench-

marking the list of genes and proteins that had been retrieved from the literature through

PDON-supported literature mining.
Expert evaluation

The expert panel’s revision of the ontological structure is considered as a genuine evalu-

ation for disease ontologies [33]. Revisions of the PDON drafts were initially performed in

the presence of an expert panel of 6 experts in PD from UCB Pharma, composed of

molecular biologists, clinicians and physicians, who generated the “pharma view” of the

ontology. In order to generate the “clinical view” of the ontology, the PDON underwent a

manual curation by clinician experts in the field of PD (UW and DS).
Ontology-driven information retrieval and extraction

Transformation of the ontology OWL format into a dictionary file was achieved using a

Java program that extracts the concept names and the corresponding synonyms from the

ontology OWL structure and assigns unique identifiers to each concept which can be

stored in form of a dictionary. This dictionary was incorporated into the text-mining tool

ProMiner [34] and results were deployed in the semantic search engine SCAIView for

context-sensitive visualization of query results. SCAIView is a semantic search engine that

provides a text mining-based environment for information retrieval and extraction from

PubMed publications using various terminologies and ontologies [35]. SCAIView environ-

ment can be freely accessed under http://www.scaiview.com/scaiview-academia.html;

PubMed portal can be accessed through http://www.ncbi.nlm.nih.gov/pubmed.
Fig. 6 Overview of the overall workflow used for construction of mechanistic BEL models

http://www.scaiview.com/scaiview-academia.html
http://www.ncbi.nlm.nih.gov/pubmed
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Novelty analysis

Current disease models often suffer from the limited information content and are usually

representative of the well-established knowledge at the core of disease knowledge domain.

Application of ontology-driven information retrieval technology helps to extend the core

knowledge domain to its boundaries by automated capturing of novel biological entities

(here: genes/proteins) that represent the less established or emerging knowledge (gain of

novel knowledge). We introduce a metric for the measurement of novel complementary

knowledge using the following formula:

Novelty LTM׀LGSð Þ ¼ TMj j − TM ∩ GSj jð Þ =NTM

Where:
LTM = the “curated” result list from text-mining (TM) algorithm

LGS = the result list from the reference gold standard

NTM = the total number of entities retrieved from TM

TM: Relevant (true positive) entities (i.e. genes/proteins)

GS: Gold standard list of entities

TM ∩ GS: Overlap between entities retrieved by TM and entities extracted from GS

To show the biological content of the novel knowledge gain by this approach, the list

of novel genes/proteins retrieved by PDON (i.e. |TM| - |TM ∩ GS|) was subjected to

the pathway enrichment analysis using MsigDB [36].

Mechanistic model building

Around PINK1 gene, which is involved in the pathology of familial PD, a “pathophysiology

mechanism” model was built based on OpenBEL, a modeling language ideally suited to rep-

resent causal and correlative relationships. PDON was used in the SCAIView environment

to formulate the following query for PINK1 mutations:

(([SNPs]) AND [Human Genes/Proteins:”PINK1”]) AND [PDON]

Retrieved abstracts were checked manually for the relevance of their information

content and then subjected to the process of BEL coding by manual extraction of the <

subject – relationship – object > predicates and converting them into the BEL script in

the BEL-editor software [37]. These scripts were converted into network models with

functionality of the BEL-editor and visualized by the Cytoscape software [38]. The over-

all workflow of mechanistic model building has been illustrated in Fig. 6.
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