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Leaf rust, caused by Puccinia triticina (Pt), is one of the most devastating diseases of
wheat, affecting production in nearly all wheat-growing regions worldwide. Despite its
economic importance, genomic resources for Pt are very limited. In the present study,
we have used long-read sequencing (LRS) and the pipeline of FALCON and FALCON-
Unzip (v4.1.0) to carry out the first LRS-based de novo genome assembly for Pt. Using
22.4-Gb data with an average read length of 11.6 kb and average coverage of 150-fold,
we generated a genome assembly for Pt104 [strain 104-2,3,(6),(7),11; isolate S423],
considered to be the founding isolate of a clonal lineage of Pt in Australia. The Pt104
genome contains 162 contigs with a total length of 140.5 Mb and N50 of 2 Mb, with
the associated haplotigs providing haplotype information for 91% of the genome. This
represents the best quality of Pt genome assembly to date, which reduces the contig
number by 91-fold and improves the N50 by 4-fold as compared to the previous Pt race1
assembly. An annotation pipeline that combined multiple lines of evidence including
the transcriptome assemblies derived from RNA-Seq, previously identified expressed
sequence tags and Pt race 1 protein sequences predicted 29,043 genes for Pt104
genome. Based on the presence of a signal peptide, no transmembrane segment, and
no target location to mitochondria, 2,178 genes were identified as secreted proteins
(SPs). Whole-genome sequencing (Illumina paired-end) was performed for Pt104 and
six additional strains with differential virulence profile on the wheat leaf rust resistance
genes Lr26, Lr2a, and Lr3ka. To identify candidates for the corresponding avirulence
genes AvrLr26, AvrLr2a, and AvrLr3ka, genetic variation within each strain was first
identified by mapping to the Pt104 genome. Variants within predicted SP genes between
the strains were then correlated to the virulence profiles, identifying 38, 31, and 37
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candidates for AvrLr26, AvrLr2a, and AvrLr3ka, respectively. The identification of these
candidate genes lays a good foundation for future studies on isolating these avirulence
genes, investigating the molecular mechanisms underlying host–pathogen interactions,
and the development of new diagnostic tools for pathogen monitoring.

Keywords: wheat leaf rust, avirulence genes, secreted protein, long-read assembly, comparative genomics

INTRODUCTION

Leaf rust, caused by Puccinia triticina (Pt), is one of the most
devastating diseases of wheat, affecting production in nearly all
wheat-growing regions worldwide. A recent global survey of the
impact of pests and pathogens in wheat rated leaf rust as the
most damaging, causing losses of approximately 3.25% globally
(Savary et al., 2019). To control rust diseases, the most effective
and environmentally friendly approach is to grow wheat with
resistance (R) genes (Aktar-Uz-Zaman et al., 2017). The proteins
encoded by R genes in wheat can recognize effectors encoded by
avirulence (Avr) genes in rust pathogens, and upon recognition,
plant defense responses known as effector-triggered immunity
(ETI) are initiated (Chen et al., 2017). Compared to pathogen-
associated molecular pattern–triggered immunity (Jones and
Dangl, 2006), ETI is more rapid and robust and is frequently
associated with localized cell death known as hypersensitive
response. The specific recognition phenomenon between host
and pathogen during ETI was first described by Flor (1971) as the
gene-for-gene hypothesis. However, host recognition and the ETI
response can be evaded by pathogens through the modification of
Avr genes (e.g., mutation and deletion), driving host–pathogen
coevolution. To date, more than 79 leaf rust (Lr) resistance genes
have been cataloged in wheat (Mcintosh et al., 2017), many
of which including Lr9, Lr14a, Lr16, Lr17a, Lr24, Lr26, and
Lr39 have been overcome by newly detected Pt races (Huerta-
Espino et al., 2011). The identification of Avr genes and in-depth
understanding of host–pathogen interactions are fundamental
in developing strategies for durable resistance in wheat and the
sustainable control of rust diseases.

The inability to grow obligate biotrophs such as rust fungi
readily in vitro has hampered biological and genetic studies
of these organisms. Next-generation sequencing technology,
however, has greatly extended our understanding of rust fungal
biology, as demonstrated by the generation of more than 20 rust
genomes from 12 rust fungal species (Chen et al., 2019; Lorrain
et al., 2019). Following the initial sequencing and assembly of the
three rust fungi causing major diseases of wheat, viz. Puccinia
graminis f. sp. tritici (Pgt), Puccinia striiformis f. sp. tritici (Pst),
and Pt (Cuomo et al., 2016), different isolates of these species
were also sequenced and assembled with diverse sequencing
strategies mostly based on short-read sequencing, for example,
Pgt race 21-0 (Upadhyaya et al., 2014), Pst race 67S64 and 46S119
(Kiran et al., 2017), and Pt race 77 and 176 (Kiran et al., 2016).
While revealing that rust genomes are characterized by high levels
of heterozygosity, a high proportion of repeat elements (as high as
>50%), and large numbers of genes (14,000–28,000 per genome)
(Cuomo et al., 2016; Lorrain et al., 2019), most rust assemblies
published to date are highly fragmented, largely due to the

technical limitation of short-read sequencing and the repetitive
nature of rust genomes (Aime et al., 2017). To overcome these
limitations, long-read sequencing (LRS) has recently been used
for de novo genome assemblies of Pst (Pst104E) and Puccinia
coronata f. sp. avenae (Pca), which has generated high-quality
genomes with significantly improved contiguity (Miller et al.,
2018; Schwessinger et al., 2018). However, a high-quality genome
based on LRS is still lacking for Pt despite its fundamental
importance in comparative genomic studies.

With increasing genome resources becoming available, more
and more resequencing studies of wheat rust fungi have been
undertaken, enabling comparative genomics for effector mining.
For example, comparative studies of five Pgt isolates (Upadhyaya
et al., 2014), 10 Pst isolates (Cantu et al., 2013; Zheng et al., 2013),
and 20 Australian Pt isolates (Wu et al., 2017) have identified a
panel of promising effector candidates for functional validation.
Recently, two comparative studies on Pgt, one using an isolate of
Pgt (Pgt279) and a Sr50 virulent derivative (Pgt632) and the other
using ethylmethane sulfonate (EMS)–induced mutant strains,
successfully identified AvrSr50 and AvrSr35, respectively, which
are the first Avr genes biologically validated and characterized
in a wheat attacking rust (Chen et al., 2017; Salcedo et al.,
2017). As compared to studies of Pgt and Pst, comparative
studies of Pt to identify candidate Avr genes are limited, and
our previous study identifying candidates for AvrLr20 is the only
comparative study based on whole-genome sequencing of Pt
(Wu et al., 2017).

Puccinia triticina is not known to undergo sexual
recombination in Australia, as the alternative host Thalictrum
is rare or absent (Park et al., 1995). Pathotype 104-2,3,(6),(7),11
(hereafter referred to as Pt104) was first detected in 1984 and
considered to be of exotic origin (Park et al., 1995). It is regarded
as the founding isolate of a clonal lineage of putative mutational
derivatives that dominated Pt populations in all mainland states
from 1989 to 2010 (Park et al., 1995, 2000; Park, unpublished
data). Following the detection of this founding isolate, a panel of
variant pathotypes presumably derived from it through simple
step mutation was detected. One of the derivative pathotypes,
104-1,2,3,(6),(7),9,11, carried added virulence for the resistance
gene Lr26 and rendered two cultivars possessing Lr26 susceptible
(Park et al., 2000). Within this lineage, isolates with virulences
for Lr2a and Lr3ka were also detected. While Lr26 has been
used widely in many winter and spring wheats and has had a
major impact on global wheat production, genes Lr3ka and Lr2a
have been utilized less commonly but have been important when
deployed in combination with other resistance genes to achieve
multiple gene resistances (Mcintosh et al., 1995).

In the present study, LRS-based de novo genome assembly
of the founding isolate Pt104 was carried out, generating the
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best-quality Pt genome assembly to date in terms of contiguity
and completeness. Transcript-based annotation identified 29,043
genes in the Pt104 genome, of which 2,178 genes were further
predicted as encoding secreted proteins (SPs). Six additional
isolates presumed to be mutant derivatives of Pt104, along
with Pt104, were subjected to Illumina sequencing, and the
resequencing data were mapped to the Pt104 assembly to
examine genetic variations that may account for the virulence
of derivative pathotypes for wheat resistance genes Lr26, Lr2a,
and Lr3ka. This approach successfully identified 38, 31, and 37
candidates for AvrLr26, AvrLr2a, and AvrLr3ka, respectively. This
study not only provides important new resources for comparative
studies of Pt in Australia and beyond, but also demonstrates a
practical framework of using field-evolved mutational derivatives
for Avr gene identification.

RESULTS

Long-Read–Based de novo Genome
Assembly of Pt104
For isolate Pt104, the founding “parental” isolate, LRS data were
obtained using three SMRT cells from the PacBio Sequel system.
A total of 22.4-Gb data with average read length of 11.6 kb
and average coverage of 150-fold were used to generate a de
novo genome assembly for Pt104 using Falcon and Falcon-Unzip
pipeline. After manual curation, the Pt104 genome contained
162 contigs with a total length of 140.5 Mb and N50 of 2 Mb
(Table 1), with the associated haplotigs providing additional
haplotype information for 91% of the genome (Supplementary
Table S1). As compared to the previously published Pt race1
assembly, our genome substantially improved contiguity as
demonstrated by the greatly reduced number of contigs (91-
fold; from >14,000 to <200) and the increase in N50 statistics
(4-fold; contig N50 2,073 kb vs. Scaffold N50 544 kb) (Cuomo
et al., 2016; Figure 1 and Table 1). Blastn searches against the
NCBI nucleotide reference database showed that none of the

TABLE 1 | Pt104 assembly statistics and completeness evaluation.

Assembly statistics Pt104 genome
assembly

Pt BBBD
race1

Total no. of contigs 162 14,818

No. of contigs with ≥50,000 bp 158 215

Total length (Mb) 140.5 135.3

Total length when ≥50,000 bp 140.3 103.0

Largest contig (Mb) 4.9 3.1

GC (%) 46.7 46.7

N50 (kb) 2,073.2 544.3

Complete BUSCOs (%) 92.2 92.6

Complete and single-copy BUSCOs (%) 80.2 89.6

Complete and duplicated BUSCOs (%) 12.0 3.0

Fragmented BUSCOs (%) 3.7 4.3

Missing BUSCOs (%) 4.1/2.6* 3.1

*When the associated haplotigs of Pt104 were combined, the percentage of the
missing BUSCO genes of Pt104 assembly was 2.6%.

contigs had non-eukaryotic sequences as best BLAST hits at any
given position.

The completeness of the Pt104 genome assembly was assessed
using BUSCO analysis, based on highly conserved fungal
genes (basidiomycota_odb9) comprising 1,335 basidiomycete
conserved orthologs, which revealed that 92.2% of the BUSCO
genes were present as complete sequences (Table 1). The
fragmented and missing BUSCO genes were 3.7 and 4.1%,
respectively. When the associated haplotigs were combined, the
percentage of the missing BUSCO genes was as low at 2.6% (3.1%
in Pt race1).

The repeat content in the Pt104 genome assembly was
evaluated using both de novo predicted repeats and fungal
elements from RepBase (Bao et al., 2015). The total interspersed
repeats of the Pt104 assembly covered 58.4% of the genome
(Table 2). Despite the presence of unclassified repeats, the most
prevalent repetitive elements were long terminal repeats (>16%).

Gene Prediction and Functional
Annotation
To capture all genes expressed in planta, RNA sequencing data
for total RNA extracted from wheat leaves 3, 5, and 7 days
after inoculation with Pt104 were obtained. After aligning to the
Pt104 genome, fungal specific reads were selected for Trinity
to generate both de novo and genome-guided transcriptome
assemblies (Haas et al., 2013). These mRNA assemblies and
the previously reported expressed sequence tags (ESTs) from
various stages of the Pt life cycle (Xu et al., 2011) as
transcript evidence and Pt race1 protein sequences as protein
evidence were put into the Funannotate v0.7.2 pipeline for gene
prediction. This comprehensive approach led to the annotation
of 29,043 genes for the Pt104 assembly (Figure 2, Table 3, and
Supplementary Table S2).

As compared to the previous study on Pt race1 focusing
largely on core protein comparisons between the three rust
pathogens of wheat (Cuomo et al., 2016), our study extended
the functional annotation using a range of databases including
GO (Gene Ontology), PFAM domains (a large collection of
protein families with annotations), interproscan (a database
of protein families, domains and functional sites), CAZymes
(carbohydrate active enzymes), MEROPS (peptidase database),
and transcription factor (TF) families for the Pt104 assembly
(Figure 3 and Table 3). Gene Ontology enrichment analysis of
the annotated genes revealed no significant overrepresentations
or underrepresentations, implicating similar abundances of
GO terms. Using the CAZymes database, we detected 420
CAZymes in the Pt104 genome, and the most populated
subclass of CAZymes was glycoside hydrolase (GH) enzyme
(>200 members; Table 3), with GH5 (cellulases/hemicellulase)
and GH18 (chitinase) families being the most abundant ones
(Figure 3). Using the MEROPS database, 290 proteases were
identified belonging to five classes including serine (S), cysteine
(C), metallo (M), threonine (T), and aspartic proteases (A), as
well as one protease inhibitor class (I51) (Table 3). As for the
TF families, the two top ranked families were zinc finger proteins
(Figure 3) including the zinc knuckle CCHC class (IPR001878)
and fungal Zn(2)-Cys(6) binuclear cluster domain (IPR001138).
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FIGURE 1 | The Pt104 genome assembly with significantly reduced total contig number and improved N50 as compared to Pt race1 genome. The log10 counts of
contigs within each size bin are shown by histograms with the left y-axis. Each dot represents a single contig of a given size corresponding to the x-axis. The
cumulative sizes of contig lengths sorted from small to large are shown by the dots with the right y-axis. The number of contigs or scaffolds, total assembly size, and
N50 of the assembly are also shown within each plot.

Secretome Prediction
Proteins possessing a signal peptide, lacking a transmembrane
segment, and with no target location to mitochondria were
predicted as SPs. We predicted 2,178 SPs on the Pt104 assembly
(Figure 2, Table 3, and Supplementary Table S3), comprising
approximately 8% of the total proteins, in line with the SP
percentages (8–9%) reported for the total predicted proteins
in Pt race1, Pst, and Pca (Cuomo et al., 2016; Miller et al.,
2018; Schwessinger et al., 2018). Of the 2,178 predicted SPs,
1,530 SP genes had detectable expression levels by Pt RNA-
sequencing analysis, which was used for Avr gene mining in
the subsequent investigation. Of the total CAZymes members,
approximately 20% were predicted as SPs and more than 50%
of these CAZyme SPs belonged to the GH subclass (Table 3).
For the total proteases identified, 15.5% were predicted as SPs.
Of these protease SPs, aspartic proteases A01A family and serine

TABLE 2 | The repeat contents identified in the Pt104 genome assembly.

Interspersed repeats (%) Pt104 genome assembly

Long interspersed nuclear elements (LINES) 0.67

Long terminal repeats (LTR) elements 16.86

DNA elements 5.29

Unclassified 35.57

Total interspersed repeats 58.39

Non-element repeats (%)

Simple repeats 1.05

Low complexity 0.07

peptidases families (S08A of subtilisin-like serine proteases and
S10 of carboxypeptidases) were the major types expanded in the
Pt104 assembly (Figure 3 and Table 3). All detected protease
inhibitors belonged to the I51 family (an inhibitor of serine
carboxypeptidase Y that inhibits various kinases), and 25% were
predicted as SPs.

The Mapping of Whole-Genome
Sequencing Data of Seven Pt Isolates
The Pt104 assembly was used as the reference genome for the
mapping of the resequencing data to examine genetic variations
that could account for added virulence for resistance genes Lr26,
Lr2a, and Lr3ka in the putative derivative mutants of Pt104.
Whole-genome sequencing data as 150 base-paired reads from
an Illumina HiSeqX platform were generated for the founding
isolate Pt104 and six additional strains. Of the six additional
isolates, two (S459 and S477) had the same virulence/avirulence
as Pt104 but were collected from the field in subsequent years
(1988 and 1991, respectively), and four were presumed to be
simple mutational derivatives of Pt104, viz. S472 with added
virulence on Lr3ka, S521 with added virulence on Lr26 and Lr20,
S474 with added virulence on Lr2a and Lr20, and S467 with
added virulence on Lr20. Genomic DNA was extracted from
urediniospores of these seven Pt isolates, each established from
single pustules and characterized for purity and pathogenicity
using standard and additional differential wheat lines. Overall,
65 million to 82 million paired-end reads per sample (Table 4)
were obtained after quality trimming, which were mapped to the
Pt104 genome. The average aligned read depth was 60.6-fold,
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FIGURE 2 | Genomic landscape of predicted gene and secreted protein in Pt104 and genetic variations of the Pt isolates represented by the Circos plot of the top 42
contigs ranked by contig length (71% of the Pt104 genome). Tracks from outside to inside are as follows: (1) contig name; (2–5) density of gene; SP, secreted protein
SP; SNP, single-nucleotide polymorphism; InDel, insertion or deletion; in non-overlapping 100-kb windows. Each major tick on the contig track is for 1-Mb length.

and the minimum and maximum depths were 53.6 and 72.8-fold,
respectively (Table 4). The average mapping rate of these isolates
was 90.1%, which covered between 99.2 and 99.4% of the Pt104
reference genome bases.

Genome-Wide Polymorphism and
Phylogenetic Analysis
To compare genotypes across the seven strains, genome-wide
polymorphisms including single-nucleotide polymorphisms
(SNPs) and insertion/deletion (InDel) between individual

pathotypes were detected using GATK HaplotypeCaller based on
the reads mapped to the Pt104 genome (Figure 2). The average
number of total variants identified was 533,799 and the average
number of SNP and InDel variants were 454,642 and 79,157,
respectively. The average ratio of SNP/InDels was 5.7:1 (Table 5),
and the average rates of heterozygous variants (SNP and InDel)
and SNPs were 3.5 variants/kb and 3.2 SNPs/kb, respectively.
Based on the genome-wide SNPs identified, a phylogenetic
tree was inferred (Figure 4), which showed that the six isolates
formed two clades along with S423 forming a separate branch.
This phylogeny indicated that S423 and the common ancestries
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TABLE 3 | Gene prediction and functional annotation for the Pt104 assembly.

Pt104 genome

Gene prediction

Total number of genes 29,043

Mean gene length (bp) 1,378

genome % covered by genes 28.5

Total number of proteins 28,008

Secretome prediction

Secreted proteins 2,178

Functional annotation

CAZy enzymes total number 420

CAZy enzymes GHa number 216

CAZy SP 87

CAZy GHa SP 51

Proteases total number 290

Ab 21

Cb 69

Mb 68

Sb 98

Tb 26

Ib 8

Protease SP 45

A01A 9

S 23

S08Ac 9

S10c 6

C 5

M 6

I51 2

aGH, glycoside hydrolase. b5 classes of peptidases including S, serine; C, cysteine;
M, metallo; T, threonine; A, aspartic proteases as well as one protease inhibitors
class (I). cS08A contains the serine endopeptidase subtilisin and its homologs and
S10 contains only carboxypeptidases.

of the two clades were closely related. Given that S423 was the
first isolate collected and a less developed virulence profile as
compared to all of the remaining isolates (Park et al., 1995,
2000), it was plausible to postulate that these six isolates were
likely members of a clonal lineage derived from S423 or certain
progenitors closely associated with S423 lineage.

Functional Impact of the Genomic
Variants
Of the total genomic variants identified, 91,363 (ca. 15%) were
located within a coding region, covering 16,486 genes in total.
The functional impact of these coding variants was further
annotated by the Bioconductor package variant Annotation
(Obenchain et al., 2014). Amino acid (aa) changes were predicted,
and functional consequences were classified into four categories
including synonymous (SY), non-synonymous (NSY), frame shift
(the variants resulting in sequence length not in a multiple
of three), and nonsense (premature stop codons). The average
counts in the seven Pt strains for each category as aforementioned
were 25,648, 45,189, 7,597, and 1,197, respectively (Table 6).
Excluding SY mutations, which did not result in an aa

change, all remaining categories may have a direct functional
impact on Pt pathogenicity and hence were included in the
subsequent analysis.

Secretome Genes Associated With
Virulence by Differential Genomic
Variants
Based on previous studies, we assumed that effectors were most
likely encoded by SPs and focused on searching for genomic
variants with functional impact located within these genes. For
the seven isolates, we identified 2,269 variants with functional
impact distributed in 694 SP genes. The variants in these
694 SP genes were inspected manually for read count support
and the alignment status, confirming 1,957 variants in 591
SP genes harboring genomic variants with functional impact
(Supplementary Table S4). To identify the variations that may
account for Avr on Lr26, Lr2a, and Lr3ka, pairwise comparisons
were constructed, which included (1) S467 (Lr26 avirulent) versus
S521 (Lr26 virulent) and S474 (Lr26 avirulent) versus S521 with
both contrasting for AvrLr26; (2) S467 (Lr2a avirulent) versus
S474 (Lr2a virulent) and S521 (Lr2a avirulent) versus S474 with
both contrasting for AvrLr2a; and (3) S423 (Lr3ka avirulent)
versus S472 (Lr3ka virulent), S459 (Lr3ka avirulent) versus S472,
and S477 (Lr3ka avirulent) versus S472 with all contrasting for
AvrLr3ka.

For each Avr gene, the SP genes with differential variants
within each pair were first selected, and those present across
pairwise comparisons were considered as potential candidates.
For AvrLr26, S521 and S467 showed 121 differential variants
distributed in 46 SP genes, whereas S521 and S474 showed
98 differential variants distributed in 50 SP genes. Intersecting
the two sets led to a common panel of 38 SP genes as the
final candidates of AvrLr26 (Figure 5 and Supplementary
Tables S5, S6). Similarly, for AvrLr2a, the comparison of S467
versus S474 and S521 versus S474 identified two candidate gene
sets with 39 and 50 SP genes, respectively. Intersection of the
two sets led to a common panel of 31 SP genes as AvrLr2a
candidates (Figure 5 and Supplementary Tables S5, S6). For
AvrLr3ka, the three pair comparisons S423, S459, and S477 versus
S472 individually yielded three candidate gene sets comprising
47, 52, and 55 SP genes, respectively. The overlapping of these
gene sets identified 37 SP genes as AvrLr3ka candidates (Figure 5
and Supplementary Tables S5, S6). As for the variation types
of the differential variations leading to the identification of the
candidates of AvrLr26, AvrLr2a, and AvrLr3ka, NSY mutations
contributed 42% to 50% of the differential variations; frameshifts
contributed 8% to 23%; and combinations (e.g., combinations
of NSY and frameshift) contributed 32% to 43%; and nonsense
was found to contribute only to the identification of AvrLr3ka
candidates, with a 3% contribution (Supplementary Table S4).

Biological Functions of Avr Candidate
Genes in Pt
The Avr candidate genes were further inspected in relation
to biological functions and pathogenicity mechanisms.
In the aspect of CAZyme activity, two candidates of
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FIGURE 3 | Functional annotation of transcription factors, CAZymes, and Merops proteases for the Pt104 genome. (A) Percentages of genes predicted to encode
proteins of transcription factor families based on InterProScan annotation. (B) Heatmap showing percentages of genes annotated as members of CAZyme families
including: AA, auxiliary activities; CBM, carbohydrate-binding modules; CE, carbohydrate esterases; GH, glycoside hydrolases; GTs, glycosyltransferases; PL,
polysaccharide lyases. Expanded families GH5 and GH18 are indicated. (C) Heatmap showing the percentages of genes annotated as members of the Merops
families including: A, aspartic acid; C, cysteine; M, metallo protease; S, serine protease; T, threonine protease; I, peptidase inhibitors. Expanded families A01A and
S08A are indicated.

TABLE 4 | Mapping information for the seven Pt isolates.

Isolate Total reads (quality
trimmed)

Reads mapped to
reference

Percentage mapped
reads

Average coverage
fold

Percentage coverage
of reference

S423 81,880,910 76,525,128 93.5 72.8 99.4

S459 64,885,508 60,248,508 92.9 56.9 99.3

S467 71,203,482 66,285,859 93.1 62 99.4

S472 74,627,128 69,765,844 93.5 65.1 99.2

S474 66,019,622 57,035,893 86.4 53.6 99.3

S477 65,750,836 59,783,590 90.9 56 99.3

S521 75,056,408 62,273,511 83.0 58.2 99.3

AvrLr26 (GN104ID162_008434 from GH5 family and
GN104ID162_021096 from GH7 family) and one candidate
of AvrLr2a (GN104ID162_001475 from GH65 family)

belonged to the GH family, and one candidate of AvrLr3ka
GN104ID162_021071 belonged to the carbohydrate esterase
family (CE5) consisting of cutinases, all of which were impacted
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TABLE 5 | Statistics of the genomic variants in the seven Pt isolates.

Isolate Total variants SNP InDel Insertion Deletion Heterozygous SNP Heterozygous InDel

S423 537,561 457,689 79,872 47,613 32,259 453,574 43,838

S459 532,992 454,024 78,968 47,078 31,890 449,609 43,289

S467 534,485 455,196 79,289 47,377 31,912 450,945 43,311

S472 532,048 453,037 79,011 47,189 31,822 447,107 42,999

S474 531,481 452,743 78,738 46,955 31,783 448,199 42,970

S477 532,609 453,671 78,938 47,165 31,773 449,333 43,177

S521 535,415 456,135 79,280 47,246 32,034 451,665 43,406

FIGURE 4 | Dendrogram of seven Pt strains based on the identified SNPs. The numbers shown on the dendrogram branches are the percentage of bootstrap
replicates (1,000) supporting the cluster.

TABLE 6 | Statistics of the functional impacts of the genomic variants in the seven Pt isolates.

Isolate Coding variants Synonymous variants Non-synonymous variants Frameshift variants Nonsense (premature
stop codon) variants

S423 80,039 25,738 45,433 7,648 1,220

S459 79,720 25,690 45,246 7,578 1,206

S467 79,872 25,661 45,388 7,630 1,193

S472 79,211 25,550 44,916 7,562 1,183

S474 79,332 25,604 44,992 7,530 1,206

S477 79,277 25,494 45,021 7,578 1,184

S521 79,966 25,798 45,326 7,652 1,190

by NSY mutations (Supplementary Tables S4, S5). For
example, the candidate GN104ID162_008434 harbored an
NSY mutation at the aa position 369 bearing a change from
a charged residue lysine to an uncharged residue glutamine
(Supplementary Table S4), which may introduce significant
changes in the protein function. The candidates from both GH
and CE families have biological functions involved in degrading
and loosening plant cell walls, which may enable them to
penetrate the protective outer layer of plant tissues (Nakamura
et al., 2017). Furthermore, three candidates were predicted
to have protease function, including GN104ID162_006831
(metallopeptidase) of AvrLr26, GN104ID162_005829 (ubiquitin
carboxyl-terminal hydrolase) of AvrLr2a, and GN104ID162
_019986 (aspartic peptidase) of AvrLr3ka, all of which harbored
NSY mutations (Supplementary Tables S4, S5). While several

studies have suggested aspartic proteases may act as effectors
in rust fungi (Cooper et al., 2016; Jing et al., 2017; Li et al.,
2017), a study on Magnaporthe oryzae has found that one of
the ubiquitin-specific proteases is essential for pathogenicity
(Wang et al., 2018). Based on the annotation with InterPro
domain as aforementioned (Supplementary Table 5), five of
the candidates may be involved in TF-mediated gene regulation,
which includes GN104ID162_006801 (IPR001841, zinc finger,
RING-type) and GN104ID162_009770 (IPR008917, Skn-1-
like TF) of AvrLr26, GN104ID162_005718 (IPR001841) and
GN104ID162_006814 (IPR001781, zinc finger, LIM type) of
AvrLr2a, and GN104ID162_006800 (IPR001841) of AvrLr3ka.
Whereas GN104ID162_006800 had NSY mutations, the
remaining four candidates experienced frameshift mutations
(Supplementary Table S4).
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FIGURE 5 | Venn diagrams for the intersection of the candidate genes derived from multiple pair comparisons. (A–C) demonstrate the candidates for AvrLr26 (38),
AvrLr2a (31), and AvrLr3ka (37), respectively.

Orthologs of the Candidate Avirulence
Genes in Pt Race1
To inspect our results in the context of previous studies
that were based largely on the Pt race1 genome, ortholog
analyses were carried out for the Pt104 (29,043 genes) and
Pt race1 genomes (∼15,000 genes), which identified 10,511
entries showing corresponding orthologs between these two
genomes (Supplementary Table S7). The orthologs consist
of more than 70% of the total genes of Pt race1, which
reflects a good consistency in gene annotation between the two
assemblies. For the AvrLr26, AvrLr2a, and AvrLr3ka candidates
identified in the Pt104 genome, 20, 15, and 19 orthologs
were found in the Pt race1 genome, respectively. Of these
orthologs, the AvrLr2a candidate GN104ID162_007386, the
AvrLr3ka candidate GN104ID162_024924, and the AvrLr26
candidate GN104ID162_020918 had corresponding orthologs
of PTTG_07365, PTTG_28070, and PTTG_11943 in the race1
genome, respectively (Supplementary Table S6). In agreement
with these findings, these orthologs from Pt race1 were also
predicted as candidate effectors based on a proteomics study of
haustoria isolated from Pt race1 (Rampitsch et al., 2015).

DISCUSSION

The wheat leaf rust fungus Pt causes one of the most common
diseases of wheat worldwide and is considered to be the
most damaging wheat disease globally. Despite its economic
significance, genomic resources for this pathogen are relatively
limited as compared to the other two wheat rust pathogens Pgt
and Pst (Kiran et al., 2016). In the present study, we generated the
first long-read based genome assembly with unprecedented high
quality. The assembly is based on the Australian Pt pathotype,
Pt104, which is the presumed founding isolate of pathotypes
that dominated the Australian Pt population from 1989 to 2010
(Park et al., 1995, 2000; Park, unpublished data). This LRS-based
Pt assembly with greatly improved contiguity provides more
accurate and richer resources to address central comparative
genomics questions such as the identification of Avr genes in Pt.

In addition to Pt104, we also used Illumina short-read sequencing
to generate whole-genome sequencing data for six additional
field-collected Pt pathotypes presumed to be simple mutational
derivatives of Pt104 with stepwise additions of virulence for
three resistance genes. The sequencing data of these pathotypes
were mapped to the Pt104 genome assembly to identify potential
candidates for AvrLr26, AvrLr2a, and AvrLr3ka.

To date, the genomic resources of genome assembly and
resequencing that are available for Pt remains limited. There
are only two studies that document Pt genome assemblies and
two studies that report whole-genome resequencing of various
Pt strains including our recent study on AvrLr20 (Cuomo et al.,
2016; Kiran et al., 2016; Wu et al., 2017). For the previous Pt
assembly, one study used a combination of Sanger sequencing
and next-generation pyrosequencing to build draft genome
assemblies for races 77 and 106 from India, which were highly
fragmented even after scaffolding as exemplified by the small N50
of 102.4 kb for race 77 and 20.7 kb for race106 (Kiran et al.,
2016). The other study was for the American Pt BBD race1, which
used various DNA libraries (e.g., fosmid and BAC libraries) and
sequencing platforms (e.g., Roche 454 and Sanger sequencing)
to build an assembly comprising 14,818 scaffolds with an N50
length of 544 kb (Cuomo et al., 2016). Although this assembly
has better quality and has been used as a reference genome by
a couple of transcriptome and proteome studies as well as our
study on AvrLr20 identification (Song et al., 2011; Bruce et al.,
2014; Rampitsch et al., 2015; Wu et al., 2017), the major issue
of high fragmentation largely due to the limitation of short-read
sequencing and repetitive nature of rust genomes remains to be
resolved (Aime et al., 2017). While our LRS-based Pt104 assembly
has a genome length close to 135.3 Mb as previously reported
for Pt race1, our assembly is significantly improved in terms of
contiguity and completeness as exemplified by 91-fold reduction
in the number of contigs, 4-fold improvement in N50 statistics
(contigs N50 versus scaffolds N50; Figure 1 and Table 1), and
no missing data represented by Ns (Cuomo et al., 2016). When
compared with the recently developed LRS-based rust genomes
of Pst and Pca, with N50 length of 1.3 Mb and 268 kb, respectively,
our Pt104 assembly has high quality similar to the former, and
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better than the latter (Miller et al., 2018; Schwessinger et al.,
2018). This high-quality Pt104 assembly provides invaluable new
resources for comparative genomics and effector identification
for the destructive wheat pathogen Pt.

Characteristic of the rust fungi genome enriched in repetitive
elements, 58.4% of the Pt104 assembly was covered by
interspersed repeats (Table 2), higher than the previous report
of 51% repeat coverage in Pt race1 (Cuomo et al., 2016). Previous
studies also noted that the genome expansion in Pt was mainly
due to repetitive elements and that Pt has higher repeat contents
than Pst (31.5%) and Pgt (36.5%) (Fellers et al., 2013; Cuomo
et al., 2016). Compared with the new LRS-based Pst assembly
reporting 54% repeat coverage (Schwessinger et al., 2018), the
estimated repeat content of Pt remains higher than in Pst.
While our results confirmed the highly repetitive nature of the
Pt genome, our LRS-based assembly of Pt104 overcame many
of the difficulties caused by such repetition that have led to
fragmentation in previously published assemblies of Pt.

Our transcript-based annotation of the Pt104 genome
identified 29,043 genes (Figure 2, Table 3, and Supplementary
Table S2), which is close to the number of genes predicted from Pt
races 77 and 106 (26,000–27,000) (Kiran et al., 2016), but higher
than Pt race1 (∼15,000) (Cuomo et al., 2016). The predicted gene
number for the Pt104 genome is also in the range of the gene
numbers predicted for other rust fungal genomes, such as Pgt
(22,391) (Upadhyaya et al., 2014), Pst (20,000–25,000) (Cantu
et al., 2013; Zheng et al., 2013), and Pca (26,000–28,801) (Miller
et al., 2018). The differences between Pt104 and race1 could be
attributed to a number of reasons, such as improved contiguity
of the assembly, different gene annotation and filtering methods,
and differences between isolates within a species. Nevertheless,
keeping a comprehensive set of predicted genes is beneficial for
the purpose of Avr gene mining.

Functional annotation of the genes in the Pt104 assembly
revealed that a significant portion of the genes annotated in
the families of CAZymes, MEROPS, and TF were implicated
in the pathogenicity of Pt, supporting findings in other rust
genome studies (Duplessis et al., 2011; Cooper et al., 2016;
Jing et al., 2017; Li et al., 2017). Of the predicted effectors
within CAZymes families, 51 (59%) belonged to the GH family
(Table 3). Similar to Pgt and Melampsora larici-populina (Mlp)
(Duplessis et al., 2011), the GH5 (cellulases/hemicellulase) and
GH18 (chitinase) families were most abundant in the Pt104
genome (Figure 3 and Table 3). For the Avr candidates
identified, four belonged to the GH families including one from
GH5, and these candidates may be related to pathogenicity
mechanism involved in degrading and loosening plant cell walls
for penetrating host tissues. For the protease effectors, both
the aspartic proteases and serine peptidase families were the
major types expanded in the Pt104 assembly (Figure 3 and
Table 3), which was also seen in Pgt and Mlp (Duplessis
et al., 2011). Notably, 43% of aspartic proteases and 23% of
serine proteases were predicted as potential effectors, respectively
(Table 3). Previously, serine and aspartic proteases have been
suggested to act as effectors in rust fungi (Cooper et al., 2016;
Jing et al., 2017; Li et al., 2017), and it has been argued that, in
addition to playing a major role in nutrient acquisition, proteases

may determine the outcome of plant–pathogen interactions via
alternative mechanisms (Lowe et al., 2015). Consistent with
these studies, three candidates identified here were predicted as
proteases, and the candidate GN104ID162 _019986 of AvrLr3ka
was the aspartic peptidase, a class that has been implicated
in the pathogenicity of rust fungi (Cooper et al., 2016; Jing
et al., 2017). For the TF families, two zinc finger protein
families were prominent, with the zinc knuckle (CCHC) class
containing more than 100 members and fungal Zn (2)-Cys (6)
binuclear cluster domain containing more than 30 members
(Figure 3). Consistent with previous studies, the CCHC class
was also found to be expanded in Pgt, Mlp, and Pca as
compared to other fungi (Duplessis et al., 2011; Miller et al.,
2018). For the Avr candidates we identified here, four were
predicted to belong to zinc finger TF families, which, along
with previous studies, highlighted a potentially important role
of zinc TFs in rust fungal physiology, possibly involved in
the process of effector regulation (Macpherson et al., 2006;
Tan and Oliver, 2017).

As for the identification of the candidates for AvrLr26,
AvrLr2a, and AvrLr3ka, genome-wide comparisons were made
for the seven Pt isolates including the founding isolate Pt104
and six presumed mutational derivatives contrasting in virulence
profile as described previously. The Illumina sequencing reads
of these pathotypes were mapped to the Pt104 genome, and
the mapping reads ranged from 83 to 94% with an average
rate of 90% (Table 4). Compared to our previously reported
74% to 81% mapping rates of 20 Pt isolates to the race1
genome, the current study had approximately 10% improvement
in the mapping rate, implying that the Pt104 assembly is a
better reference genome for studying Australian Pt isolates
(Wu et al., 2017). This improvement in mapping rate could
be largely attributed to both improved quality of the LRS-
based Pt104 assembly and differences between Australian and
American isolates within the Pt species. Along with the improved
mapping rate, we detected an average of 454,642 SNPs per
isolate (Table 5), which is approximately 12% higher than the
average of 404,690 SNPs identified in our previous study of
AvrLr20. This improved detection of genomic variants could
also be largely related to the improved assembly quality.
Based on the genome-wide SNPs identified, a phylogenetic
tree was inferred (Figure 4), which was consistent with these
isolates being most likely derived from isolates within the S423
lineage or progenitors closely associated with S423 lineage. By
including both homozygous and heterozygous polymorphisms,
the functional impact of the genomic variants was annotated
(Table 6), and the subsequent analysis then focused on the
1,957 variants in 591 SP genes harboring genomic variants
with functional impact (Supplementary Table S4). Differential
variants derived from the pairwise comparisons set up with
contrasting virulence profiles (Supplementary Tables S3, S4) led
to the identification of 38, 31, and 37 Avr genes as candidates
for AvrLr26, AvrLr2a, and AvrLr3ka, respectively (Figure 5 and
Supplementary Table S6). Interestingly, three of the candidate
genes had orthologs in Pt race1 as aforementioned, which
were also predicted as potential effectors in a proteomic study
of haustoria isolated from race1 (Rampitsch et al., 2015).
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This consistency provided further support for our candidate
genes at the level of haustorial proteomes. No functional
annotation information is available for these three candidates,
except that GN104ID162_007386 with ortholog PTTG_07365
was annotated with an InterPro domain of IPR006740, which
included a conserved region found in several uncharacterized
plant proteins1.

Recently, the utility of mutational derivatives in effector
mining has been highlighted by two comparative studies that
successfully identified two Avr genes in Pgt, AvrSr35 and AvrSr50
(Chen et al., 2017; Salcedo et al., 2017). Besides the broad
criteria of effector prediction including presence of signal peptide,
absence of transmembrane segment, and protein localization
(Sperschneider et al., 2015), both studies integrated additional
criteria to further narrow down the range of the predicted SPs.
The AvrSr50 study focused on the subset of the SP encoding genes
(592 haustorial SP) (Chen et al., 2017), whereas the AvrSr35 study
targeted specific CG to TA mutations induced by EMS (Salcedo
et al., 2017). In addition to this method, genome-wide association
(GWA) mapping has been attempted by several fungal studies to
identify pathogenic genetic determinants, including our study on
AvrLr20 (Bartoli and Roux, 2017; Wu et al., 2017). Recently, both
GWA and variant comparisons using mutant derivatives have
been used in combination to achieve the successful identification
of AvrPm3 effectors (Bourras et al., 2019). This approach
demonstrated the potential power of the integrated approach
for effector mining in fungal pathogens. Similarly, with more
and more sequencing data of Pt isolates becoming available, the
comparisons of mutant derivatives demonstrated in this study
combined with association analysis for the Pt population could
be attempted in the future.

While whole-genome sequencing techniques have facilitated
efficient mining of candidate effectors in rust pathogens,
the biological characterization of these candidates remains
challenging. Given that Lr26, Lr2a, and Lr3ka have not yet
been cloned from wheat, feasible techniques of biological
characterization of the corresponding Avr genes include in planta
expression systems to express the Avr genes in wheat lines
containing Lr26, Lr2a, and Lr3ka; RNA interference–based host-
induced gene silencing (HIGS) of Avr genes (Lee et al., 2012);
and transient expression of the Avr genes in protoplasts (Lu
et al., 2016). Although these approaches may allow functional
characterization of Avr genes, strong efforts are still needed to
improve their accuracy and efficiency. Once high-throughput
approaches for functional characterization of candidate Avr genes
are established, the identification of Avr genes is expected to
accelerate, which will substantially expedite our understanding of
the wheat−rust interactions.

In summary, our study has reported the first LRS-based
genome assembly of Pt with dramatically improved quality,
representing the highest-quality and most complete reference
genome to date in this species. The in-depth analysis of this
genome assembly and resequencing of the derivative pathotypes
not only improved our knowledge of genomic variation and gene
content in Pt, but also led to the successful identification of

1https://www.ebi.ac.uk/interpro/entry/InterPro/IPR006740/

candidate genes for AvrLr26, AvrLr2a, and AvrLr3ka. The high-
quality reference genome and the whole-genome sequencing data
of multiple pathotypes provided important new resources for
comparative genomics studies of Pt in Australia and beyond. In
the future, Hi-C sequencing will be obtained to further improve
the accuracy of the Pt104 assembly. By mapping Hi-C data to
the contigs of the genome assembly, the frequency of contact
between pairs of loci can be obtained indicating one-dimensional
distance between loci within the genome, which can be exploited
to associate and order contigs to large scaffolds (Lajoie et al.,
2015; Dudchenko et al., 2017). Integrating the Hi-C approach
will yield a more complete assembly at chromosome-scale, which
shall further facilitate comparative analysis within and between
rust species. With the continuous accumulation of the resources
of sequencing data for Pt, the approaches of GWA mapping and
direct comparisons between derivative strains could be effectively
integrated. With the establishment of high-throughput functional
characterization of candidate Avr genes, accelerated identification
of Avr genes is expected, which will undoubtfully enable a better
understanding of the interactions in the Pt–wheat pathosystem
and expedite the development of durable resistance in wheat and
sustainable control of rust disease.

MATERIALS AND METHODS

Puccinia triticina Isolates and Plant
Inoculation
The Pt pathotypes used in this study were identified in
nationwide race surveys of pathogenicity in Pt in Australia and
are curated in the Plant Breeding Institute Rust Collection, The
University of Sydney, Australia. To ensure the purity of each
isolate for sequencing, a single pustule was selected from a region
of low-density infection and propagated on wheat plants of
the susceptible variety Morocco prior to DNA preparation. The
identity and purity of each isolate were checked by pathogenicity
tests with a set of host differentials at each cycle of inoculum
increase and also using urediniospores subsampled from those
used for DNA extraction. For rust infection, plants were grown
at high density (∼25 seeds per 12-cm pot with compost as
growth media) to the one leaf stage (∼7 days) in a greenhouse
microclimate set at 18◦C to 25◦C temperature and with natural
day light. Plants were inoculated as previously described. For
DNA isolation, mature spores were collected, dried, and stored
at −80◦C.

DNA Extraction and Genomic DNA
Sequencing
DNA was extracted from urediniospores as previously described
(Schwessinger and Rathjen, 2017), and PacBio sequencing was
performed at the Australian Genome Research Facility Ltd.
(Adelaide, Australia). For library preparation, the SMRT cell
Template Prep Kit 1.0-SPv3 with BluePippin size-selection with
15- to 20-kb cutoff (PacBio) was used and DNA libraries were
sequenced on a PacBio Sequel System with Sequel Sequencing
chemistry 2.1. For Pt104, three SMRT cells were used, and each
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SMRT cell had a 5- to 10-Gb capacity. For Illumina short-read
sequencing, TruSeq library of DNA samples for the seven Pt races
was constructed with a 150-bp paired-end and sequenced on a
HiSeqX instrument at Novogene (Hong Kong, China).

Genome Assembly and Curation
The integrated pipeline of FALCON and FALCON-Unzip
(v4.1.0) was used for genome assembly (Chin et al., 2016).
Read length cutoffs were computed by FALCON based on
the seed coverage and expected genome size. After assembly
by Falcon, FALCON-Unzip was used to phase haplotypes and
to generate consensus sequences for primary contigs and the
associated haplotigs. The generated assembly was subjected to
error correction using the final consensus-calling algorithm
Quiver implemented in SMRT (v4.0.0), an algorithm for calling
highly accurate consensus from PacBio reads using a hidden
Markov model exploiting both the base calls and QV metrics
to infer the true underlying DNA sequence (Chin et al., 2013).
Blastn searches against the NCBI nucleotide reference database
were used to check potential non-eukaryotic contamination,
and none of the contigs were found to have predominant
non-eukaryotic sequences as best BLAST hits at any given
position. These assemblies were further curated and polished by
removing low quality contigs and reassigning primary contigs
without haplotigs showing a significant match with another
primary contig. Three manual curation steps were performed
using the following criteria for removing low quality contigs or
reassigning primary contigs: (1) contigs with extreme low or
high coverage (coverage <10- or >2,000-fold) were removed; (2)
contigs smaller than 100 kb and >20% of the contigs showing
no consensus call marked by Quiver (lowercase) were removed;
and (3) primary contigs without haplotigs showing significant
match (>85% best match coverage) with another primary contig
were reassigned to haplotigs (Roach et al., 2018). To evaluate
assembly completeness, the software BUSCO (v3.0) (Simao et al.,
2015) was used for comparison with the fungal lineage set
of orthologs (basidiomycota_odb9), which consisted of 1,335
conserved orthologs of basidiomycete.

RNA Isolation and Sequencing
Infected leaves were collected at 3, 5, and 7 days after inoculation
with Pt104 and immediately frozen in liquid nitrogen. Samples
were ground to a fine powder in liquid nitrogen and total RNA
was isolated with the isolate II RNA Mini Kit (Bioline, NSW,
Australia). After DNase treatment (Promega, NSW, Australia),
RNA was further purified by on-column DNase treatment, and
the quality was assessed using the Bioanalyzer 2100. For library
preparation, approximately 10 µg of total RNA was processed
with the mRNA-Seq Sample Preparation kit (Illumina), which
was then sequenced on the Illumina HiSeq2500 platform (125 bp
paired-end reads).

Transcriptome Assembly and Genome
Annotation
Quality trimmed RNA-seq reads were first aligned to the Pt104
genome by using the CLC module large gap read mapping

(default parameters), and mapped reads were extracted as
fungal specific reads. The extracted reads were then used as
input to build de novo transcriptome assembly using Trinity
(v2.1.1) (Haas et al., 2013). Separately, Trinity was also used
to build genome-guided transcriptome assembly with the RNA
sequencing bam file generated from the CLC. These transcript
models along with EST sequences from various life cycle
stage of Pt (Xu et al., 2011) were then used as transcript
evidence, and Pt race 1 protein sequences were used as protein
evidence for a comprehensive annotation of Pt104 assembly
using the Funannotate pipeline (https://github.com/nextgenusfs/
funannotate). Funannotate (v0.7.2) is a pipeline specifically
developed for fungi genome annotation with an integrated
workflow, including repeat identification with RepeatModeler
(v1.0.8) and soft masking with RepeatMasker (v4.0.62), alignment
of protein evidence to the genomes with TBLASTN and
exoneratet (v2.2.0) (Slater and Birney, 2005), alignment of
transcript evidence with GMAP (Wu and Watanabe, 2005), ab
initio gene prediction with AUGUSTUS (v3.2.1) and GeneMark-
ET (v4.33) trained by BRAKER1 (Hoff et al., 2016), tRNAs
prediction with tRNAscan-SE (v1.3.1) (Lowe and Chan, 2016),
generating gene models using EVidenceModeler (v1.1.1) (Haas
et al., 2008), and final clean by removing low-quality gene models.
After genome annotation, the orthologs between Pt104 and Pt
race 1 genomes were identified by Proteinortho v5.16 (synteny
mode) (Lechner et al., 2011).

Secretome Prediction and Functional
Annotation
Proteins predicted to have a signal peptide with no
transmembrane segment and no target location to mitochondria
were identified as effector candidates. SignalP v4.1 (Dyrløv
Bendtsen et al., 2004), TMHMM v2.0 (Krogh et al., 2001),
and TargetP v1.1 (Emanuelsson et al., 2000) were used for
the prediction of signal peptide, transmembrane domain,
and subcellular location, respectively. Following the gene
prediction module as aforementioned, functional annotation to
the protein-coding genes was carried out by Funannotate using
curated databases including UniProt (Apweiler et al., 2004), Pfam
domains (Finn et al., 2014), CAZymes (Yin et al., 2012), MEROPS
for proteases (Rawlings et al., 2016), and InterProScan (Jones
et al., 2014). The Bioconductor package ComplexHeatmap was
used for the plots of the functional annotation (Gu et al., 2016).

Read Mapping, Variant Calling, and
Annotation
After trimming, paired-end Illumina reads of the seven
pathotypes were independently mapped to the Pt104 genome
using BWA mem v0.7.17 (Li and Durbin, 2009). High-quality
alignments (with the mapping quality cutoff of 30) were
selected using the SAMTools view command and the generated
BAM files were used for SNP calling with GATK v3.8.1. To
minimize false positives around InDels, regions around InDels
were identified using the GATK RealignerTargetCreator. With
the InDel intervals defined, the GATK IndelRealigner was

2http://www.repeatmasker.org/
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implemented on the BAM alignment files. The re-aligned BAM
generated was then used as input to call SNPs and InDels
using GATK HaplotypeCaller (Mckenna et al., 2010). Based on
the genome-wide SNPs identified, the evolutionary relationships
of the strains were inferred using SNPhylo (https://github.
com/thlee/SNPhylo) with the performance of 1,000 bootstrap
replicates and visualized by Ggtree (Yu et al., 2018). The identified
SNPs and InDels were visualized by the R package Circlize
(Krzywinski et al., 2009) and annotated with the Bioconductor
package variantAnnotation (Obenchain et al., 2014), which
predicted and classified the functional impact of the variants into
different categories such as SY, NSY, and frame shift. To manually
check the variant calls produced by GATK, reads were mapped
to the reference genome using bowtie2 v2.2.5 (Langmead and
Salzberg, 2012) with parameters “-sensitive-local.” The resulting
bam files of read alignments were visualized in IGV for the
confirmation of the GATK variant calls of the SP genes.
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