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Abstract

Background: While a large body of work exists on comparing and benchmarking descriptors of molecular
structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino
acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The
descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM,
a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs
of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which
comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets,
namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities
against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of
HIV enzyme mutants.

Results: The amino acid descriptor sets compared here show similar performance (<0.1 log units RMSE difference
and <0.1 difference in MCC), while errors for individual proteins were in some cases found to be larger than those
resulting from descriptor set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining
different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best
performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale
value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last.

Conclusions: While amino acid descriptor sets capture different aspects of amino acids their ability to be used for
bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary
information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01
better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared
thereby underlining that choosing an appropriate descriptor set is of fundamental for bioactivity modeling, both
from the ligand- as well as the protein side.
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Background
Proteochemometric modeling
Proteochemometric (PCM) modeling uses statistical mo-
deling techniques to model the ligand–target interaction
space [1-4]. The technique is similar to Quantitative
Structure-Activity Relationship (QSAR) modeling but ex-
pands on its ligand-only nature in that it takes both
ligand- and target space into account when generating
bioactivity models. This enables PCM to explain bioactiv-
ity based on chemical properties (features of the ligand) in
combination with particular protein properties (features of
the target). Moreover, PCM models are able to extrapolate
in both the chemical (ligand) as well as the biological (tar-
get) domain (under the limitations of the data and the
models constructed), as shown in previous work [5-7].
Given that both ligand- and target descriptors are used for
PCM models, it follows that the target description is as
important as the ligand description. While several publi-
cations are available benchmarking ligand descriptors
[8-10], on the side of target descriptor sets there is sig-
nificantly less literature currently available. Generally
peptide descriptor sets obtained from the field of Quan-
titative Sequence-Activity Modeling (QSAM) are used
in PCM [1,11-15]. However descriptors taking three-
dimensional information into account have also been
used in previous studies [16-20]. Still, these descriptors
require structural information, which is not always
available. In order to have a method at hand that is ap-
plicable as widely as possible the performance of
Table 1 Amino acid descriptor sets compared in the current s

Descriptor set Type

BLOSUM Physicochemical and substitution matr

FASGAI Physicochemical

MSWHIM 3D electrostatic potential

ProtFP (PCA3) Physicochemical

ProtFP (PCA5) Physicochemical

ProtFP (PCA8) Physicochemical

ProtFP (Feature) Feature based

ST-scales Topological

T-scales Topological

VHSE Physicochemical

Z-scales (3) Physicochemical

Z-scales (5) Physicochemical

Z-scales (Binned) Physicochemical

ProtFP (Feature) and Z-Scales (3) Physicochemical and Feature Based

Z-Scales (3) and Z-Scales (Avg) Physicochemical

ProtFP (PCA3) and Z-Scales (Binned) Physicochemical

The first column contains the name of the descriptor set as used in the main text. F
and variance of the original matrix explained. The last column differentiates betwee
is abbreviated by n/a.
sequence-based descriptors is compared in the current
work. For a further rationale of the current work the
reader is referred to the companion paper [21].

Amino acid descriptor sets considered in this study
In the current work a total of 13 different individual de-
scriptor sets have been benchmarked which belong to
descriptor classes that are derived in conceptually differ-
ent ways (Table 1; descriptor set names are consistent
with our previous study) [21]. Firstly, three descriptor
sets, namely Z-scales (3 PCs, 5 PCs, or Binned) [6,7,14],
VHSE [22], and ProtFP PCA (3 PCs, 5 PCs, or 8 PCs),
are based on a PCA analysis of physicochemical proper-
ties. Secondly, ST-Scales and T-Scales consist of a princi-
pal component analysis of mostly topological properties
[23,24]. FASGAI, part of the third category of descriptor
sets tested, is based on a factor analysis of physicochemical
properties [25]. Furthermore, two descriptor sets were
tested that are calculated in a very different manner com-
pared to the first six, namely a descriptor set based on
three dimensional electrostatic properties calculated per
AA (MS-WHIM) [26]. Additionally, a descriptor set based
on a VARIMAX analysis of physicochemical properties
which were subsequently converted to indices based on
the BLOSUM62 substitution matrix (BLOSUM) [27].Fur-
thermore a descriptor set only describing each AA by a
single feature was tested ProtFP (Feature) [5,28]. Addition-
ally three different combinations of descriptor sets also
sampled individually were benchmarked. The paired sets
tudy

Derived by # of
components

Variance
explained

AAs covered

ix VARIMAX 10 n/a 20

Factor Analysis 6 84% 20

PCA 3 61% 20

PCA 3 75% 20

PCA 5 83% 20

PCA 8 92% 20

Hashing n/a n/a 20

PCA 5 91% 167

PCA 8 72% 135

PCA 8 77% 20

PCA 3 n/a 87

PCA 5 87% 87

PCA followed by binning n/a n/a 20

PCA and Hashing n/a n/a 20

PCA and target average n/a n/a 20

PCA and binning n/a n/a 20

urther listed are the type, dimensionality reduction, number of components
n descriptor sets only covering the natural amino acids or more. Not available
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were: ProtFP (Feature) and Z-Scales (3), ProtFP (PCA3)
and Z-Scales (Binned). The rationale for these two combi-
nations was that the information should be complemen-
tary and this would lead to better performance. Finally,
Z-Scales (3) was also combined with an average value and
standard deviation of all Z-scales for the amino acids of
the target in question; this was called Z-Scales (3) and
Z-Scales (Avg). The rationale here was that adding an
average value and standard deviation of for example Z1
would provide an average lipophilicity value for a binding
pocket (in case of the GPCRs for instance), which could
add information. Please see Table 1 and the first, related
study for details of the descriptor sets compared.

Summary of the benchmarking performed
In the current work all descriptor sets are used on four
different data sets by constructing structure-bioactivity
models and comparing their performance (see Table 2 for
details). The datasets are firstly a previously published set
of 58 dipeptides that have an inhibitory effect on the
angiotensin-converting enzyme (ACE) [29]; secondly, a
set of 32 GPCRs and approximately 100 active and 100 in-
active compounds per receptor obtained from ChEMBL-
16 [30]; a set of 451 non-nucleoside reverse transcriptase
inhibitors (NNRTIs) tested for activity against 14 HIV
mutants (used in a previous publication where the protein
descriptor set was kept constant throughout the study)
[28]; and finally a set of 9 clinically approved protease in-
hibitors (PIs) tested for activity against a panel of 1060
HIV mutants (used in a previous publication where the
protein descriptor was kept constant) [7].

Aim of the work
As outlined in the companion paper, several of the de-
scriptor sets compared here are derived from a large
number of (up to 147) non-natural amino acids, leading
to the hypothesis that for natural amino acid their reso-
lution might not be optimal [21]. Additionally, it was ob-
served that using more PCs from a descriptor set per
amino acid residue does change descriptor behavior
Table 2 Data sets used for the bioactivity benchmarks

ACE

Total size (data points)

Total compounds

Average compound tanimoto distance (ECFP_6)

Average euclidian distance compounds (physicochemical)

Total targets (peptides / proteins)

Average target tanimoto distance (ProtFP (Feature))

Average euclidian distance target (ProtFP (PCA3))

Completeness (% of total compound - target pairs)

The datasets were selected to obtain a diverse collection of sets amenable to PCM
sets representing initial hit discovery, lead optimization, and well-established struct
while adding typically less information than in the first
two or three PCs [21].
Building on the results from the other paper, the main

aim of the current work is twofold. Firstly, it stands to
reason if one should use all PCs form a descriptor set or
not (and to quantify the value there is to gain from using
more or less PCs). Secondly, the aim was to identify the
optimal descriptor for use in PCM based models (and if
one can better use a descriptor focused on natural
amino acids or not).

Results and discussion
70–30 validation on ACE inhibitors
The first benchmark performed on the dataset of dipep-
tides inhibiting ACE was a 70–30 validation experiment
where a random 70% of the data set was used for training
and 30% for testing. The results of this validation on the
test set are shown in Figure 1. The figure shows that all
descriptor sets capture the bioactivity space of the pep-
tides reasonably well, represented by RMSE values on the
test set of below 0.700 log units. The best performing de-
scriptor sets are Z-scales (Binned) (RMSE is 0.430 log
units and the R0

2 is 0.794), and ProtFP (PCA3) with
Z-Scales (Binned) (RMSE 0.431 log units and R0

2 0.806),
followed by Z-Scales (5) (RMSE 0.439 log units and
R0
2 0.790) and MS-WHIM (RMSE 0.442 log units and

R0
2 0.787). The worst performing descriptor set is ProtFP

(Feature) (RMSE 0.627 log units and R0
2 0.566). Given that

the ProtFP (Feature) descriptor set merely encodes for
presence or absence of features (amino acids) and that di-
peptides are modeled (hence only two features per
datapoint) a slightly lowered performance was expected.
The BLOSUM, ProtFP (PCA5) and ProtFP (PCA8) (RMSE
0.496 - 0.502 log units and R0

2 0.732 - 0.726) descriptor
sets are performing better than ProtFP (Feature), but are
still lagging compared to the above descriptor sets. This
was not expected as these descriptor sets provide a con-
tinuous value description like the others. The numerical
values for the RMSE, Q2 and R0

2 of the model fit are in-
cluded as Additional file 1: Table S1, which also includes
inhibitors GPCRs NNRTIs PIs

58 6,046 4,024 6,995

n/a 3,230 451 9

n/a 0.92 0.54 0.73

n/a 1.28 n/a 0.90

58 32 14 1060

0.83 0.22 0.14 0.03

1.35 0.93 0.44 0.26

n/a 0.06 0.64 0.73

modeling. To this extend both GPCRs and enzymes were included. Moreover
ure-activity space modeling were included.



Figure 1 Mean performance of the benchmarked descriptor sets in the ACE inhibitors 70–30 validation experiments. The mean is
calculated over ten different experiments and the error bars represent the standard deviation. Shown are the R0

2 (A) and the RMSE (B). It can be seen that
Z-scales (Binned), and ProtFP (PCA3) combined with Z-Scales (Binned) performed the best on this dataset, followed by Z-scales (5). The ProtFP (Feature)
descriptor set showed worst performance in this case.
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the training parameters Q2 and cross validated RMSE
(CV_RMSE) compared to previously published studies for
the same descriptor sets on the same data set. This table
shows that the current approach using random forest
models performs on par or better than previously pub-
lished models and hence demonstrates reproducibility of
published results. In order to gain further insight into de-
scriptor set performance, a PCA analysis was performed
of the similarity space formed by the dipeptides.

ACE inhibitor activity space
The first two principal components for each set are shown
in Figure 2, colored the points by their pIC50 values
(Figure 2, and Additional file 1: Figures S1, S2, S3). The
figure visually represents the degree to which descriptor
sets exhibit ‘Neighbourhood Behavior’ [31]. A direct cor-
relation is observed in the Z-scales (Binned) descriptor set
Figure 2 PCA plot of ACE inhibitor similarity. (A) Shown are the best pe
and (B) the worst performing descriptor set (ProtFP (Feature)). From the plot th
the figure shows a clear distribution in space correlating with the activity (indica
between location in PCA space and activity, high-affinity
peptides score negatively on PC2, whereas all marginally
active compounds score 0 or higher. It can be seen that
the way the descriptor set characterizes the peptides’ simi-
larity corresponds to their bioactivity, which is in accord-
ance with the ‘Similar Property Principle’ and in turn
results in better bioactivity models. Conversely, the pattern
obtained from the ProtFP (Feature) descriptor set does not
clearly separate actives and inactives, explaining the poor
performance of this descriptor set. The well-performing de-
scriptor sets ProtFP (PCA3), Z-scales (3) and MS-WHIM
also display a clustering similar to Z-scales (Binned). The
PCA shows the highly active peptides to cluster together
and the lesser actives are separated from these actives.
Hence, overall investigating the ‘Neighbourhood Behavior’
in the descriptor spaces considered rationalizes why
descriptor sets perform better or worse on this dataset.
rforming descriptor set in the ACE inhibitor experiment (Z-Scales (Binned)),
e reasons for their respective performance becomes apparent as part A of
ted by the color), which is less the case for (B).
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Conclusions ACE inhibitors
The random forest method allows recreation of models
based on the individual descriptor sets that are comparable
or better than the original publications for the descriptor
sets benchmarked here. Differences in performance are ra-
tionalized by the fact that each descriptor set describes the
AA space differently (as also shown in the companion
paper) [21]. Still, most of the descriptor sets were able
to generate reasonably well-performing models, which
are explored in the context of PCM modeling in the
following sections.

70–30 validation on GPCR ligands
In a similar spirit to the validation on ACE inhibitors, a
similar 70–30 validation was performed on the GPCR set.
In this case a classification model was employed and
performance was expressed as mean sensitivity and mean
Matthews correlation coefficient (MCC) for all descriptor
sets in the study (details are visualized in Figure 3, see also
Methods) [32]. Here the descriptor sets perform very
similar to each other with all MCC values between 0.412
and 0.432, and all sensitivity values between 0.771 and
0.786. The closer performance is likely due to the much
higher similarity of the targets as characterized by the
amino acids descriptor sets. Hence smaller differences
are present between targets and modeling performance
of descriptor sets will be closer together. Furthermore,
the descriptor sets on the protein side now describe a
smaller part of the entire data set as we also have the
presence of chemical descriptors, which are held
constant in the different models.
The best performance has been obtained in this case by

the Z-scales (3) and Z-Scales (3) combined with Z-Scales
Figure 3 Mean performance of the benchmarked descriptor sets in th
all 32 receptors (performed 10 times) and the error bar represents the standard
between individual descriptor sets are smaller (MCC difference < 0.030, sensitivit
fact that models are based on both chemical and protein similarity. For individu
0.712, mean sensitivity difference 0.231) (See Additional file 1: Figure S4 for deta
performs the worst.
(Avg) (MCC 0.432 and sensitivity 0.786), followed by Z-
Scales (Binned), FASGAI, and ProtFP (Feature) combined
with Z-Scales (3), (MCC 0.431 and sensitivity 0.786). On
the other hand, T-Scales, and ST-Scales (MCC 0.428 and
sensitivity of 0.783) followed by ProtFP (Feature) (MCC
0.412 and sensitivity of 0.771) perform the worst. Another
interesting observation is that all descriptor sets
performed the best on the Muscarinic Acetylcholine
receptor (ACM) 4 receptor and the worst on the hista-
mine H3 receptor (followed by the H4 receptor),
irrespective of the protein descriptor set selected
(Additional file 1: Figure S4; although absolute differ-
ences in performance could be observed). The ACM 4
receptor was also modeled best in the LOSO experi-
ments, where the related histamine H4 receptor was
modeled worst as discussed in the following.

LOSO validation GPCRs
In order to benchmark the extrapolation capabilities of
the descriptor set a Leave-One-Sequence-Out experi-
ment was performed on the GPCR dataset, the results of
which are shown in Figure 4. The overall performance is
worse compared to the 70–30 benchmark (MCC values
between 0.367 and 0.400 and sensitivity between 0.669
and 0.695). This is to be expected as leaving out a GPCR
at the time leaves out a much larger and congeneric part
of the data set compared to leaving out a randomized
fraction. However there are still some differences that
can be observed between the descriptor sets, with the
best performance now being delivered by Z-Scales (3)
and Z-Scales (Avg) (MCC 0.400 and sensitivity 0.695),
followed by the ProtFP (PCA3) and Z-Scales (Binned)
(MCC 0.400 and sensitivity 0.689), and BLOSUM (MCC
e GPCR 70–30 validation experiments. The mean is calculated over
deviation. Shown are the MCC (A) and the sensitivity (B). The differences
y difference < 0.020) than in the ACE inhibitor experiments, likely due to the
al receptors larger performance differences occur (mean MCC difference
ils). Z-scales (3) perform the best on this dataset, while ProtFP (Feature)



Figure 4 Mean performance of the benchmarked descriptor sets in the GPCR LOSO validation experiments. The mean is calculated over
all 32 receptors and the error bar represents the standard deviation. Shown are the MCC (A) and the sensitivity (B). Note that error bars are large due
to different performance between models trained on different GPCRs, not between repeats of the individual models. Here extrapolation takes place on
the target side as the test set contains unseen targets. The differences between individual descriptor sets are small. Again for individual receptors larger
performance differences occur (see main text and Additional file 1: Figure S11 for details). In this case, Z-Scales (3) and Z-Scales (Avg) is the descriptor
set exhibiting best performance while ProtFP (Feature) performs the worst.
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0.400 and sensitivity 0.686). The worst performance in
this experiment is observed for ProtFP (Feature) (MCC
0.367 and sensitivity 0.669); yet it should be noted that
the differences are overall relatively small.
Interestingly, the receptor that is modeled the best is

again the ACM 4 receptor and the worst is now the hista-
mine H4 receptor (followed by the H3 receptor), irrespect-
ive of the protein descriptor set selected (Additional file 1:
Figure S5). To gain a further understanding of this
constant good performance for the ACM 4 receptor and
bad performance of the two Histamine receptors, a PCA
analysis was performed analogously to the ACE inhibitors,
but then applied to the GPCR binding site sequences.
Figure 5 PCA plot of GPCR data set target space. (A) Shown are the be
worst performing descriptor (ProtFP (Feature)). The (A) panel shows are more
indicate the histamine receptors and the black circles the muscarinic acetylch
can be rationalized in both cases, as no clear clustering is apparent for this fam
which might explain the good performance.
Analysis of GPCR target space
From the PCA analysis of target space we can rationalize
the poor performance on the histamine receptors (Figure 5,
and Additional file 1: Figures S6, S7, S8). In the PCA of all
GPCR targets used in this dataset, and employing the
different descriptor sets, the histamine receptors are not
clustering. The distance between the receptors is rather
large, in particular when comparing these distances with
the distances between the other receptor families. In
literature it has been shown that the chemical space for
the ligands of the H1, H3, and H4 receptors actually over-
laps (where the similarity between H3 and H4 is higher
than with H1) [33,34]. This is only partially reproduced in
st performing descriptor (Z-Scales (3) and Z-Scales (Avg)), and (B) the
explicit clustering compared to ProtFP (Feature) in (B). The red circles
oline receptors. The lower performance of the histamine receptor family
ily. Conversely, both plots demonstrate clustering for the ACM receptors,
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our target similarity. It is therefore likely that the models
are unable to reliably extrapolate for this receptor based
on the H1 receptor. Leaving out one receptor removes
crucial information that cannot be compensated for by the
other two histamine receptors using the current protein
description. Therefore the current binding site selection is
likely insufficient to accurately model the full target space
as was selected here. It is likely that the removal of gapped
positions in the alignment at least partially contributes to
the observed lack of clustering in the histamine receptor
family, in particular as the histamine H1 receptor crystal
structure was also used to select the binding site residues
(see Methods). While outside the scope of the current
paper, an interesting follow up study can be the recursive
residue addition / elimination from the binding site selec-
tion. This way it can be studied when histamine receptor
clustering does appear and to what extend the current
selection is insufficient. Additionally this follow up experi-
ment can serve to study possible methods to include
gapped amino acid positions. In the current study these
were not considered to keep the benchmark fair and level
and avoid the introduction of another point of variability
(see Methods for further information).
Conversely, other receptor subtypes (5HT, alpha-

adrenergic, beta-adrenergic, and dopamine receptors) cluster
together, which hence allow leaving one receptor out while
still retaining much information about the receptor space of
that particular protein family. The well-performing ACM 4
receptor is located in a clear muscarinic acetylcholine recep-
tor subfamily cluster. Leaving this receptor out can therefore
be considered straightforward as the target space is well
covered. Hence, by analyzing distances of receptors to their
nearest neighbors in target space allows rationalization
(and also prospective anticipation) of the performance of
PCM models based on a set of related receptors.
Figure 6 Mean performance of the benchmarked descriptor sets in th
over all 14 mutants (performed 10 times) and the error bar represents the
(See Additional file 1: Figure S15 for details.) Slightly more variance is seen
the worst among all descriptor sets considered, while ProtFP (Feature) perf
Conclusions for GPCRs and ligands
It can be concluded that all different descriptor sets can
be used to create predictive PCM models on this set while
showing an order of descending performance as follows:
Z-Scales (3) and Z-Scales (Avg), ProtFP (Feature) and
Z-Scales (3), Z-scales (3), ProtFP (PCA5), Z-Scales
(Binned), BLOSUM, and ProtFP (PCA8). The worst 3
are (in again descending order) T-Scales, ST-scales, and
ProtFP (Feature). It is striking to see that the combin-
ation of Z-Scales (3) with another type of descriptor set
(Z-Scales (Avg) or ProtFP (Feature)) actually has a syn-
ergistic effect where the combination performs better
than the individual sets. However this is not the case for
the combination ProtFP (PCA3) and Z-Scales (Binned),
which is perhaps caused by the fact that these two sets
are very similar.
Furthermore it can be concluded that the binding site

definition used for the GPCR descriptors is not optimal
for all receptors. While the dopamine, 5HT, muscarinic
acetylcholine, alpha adrenergic, and beta adrenergic recep-
tors are modeled very well (and interpolation between re-
ceptors works relatively well), the histamine receptors
clearly show less ideal performance. It would therefore
be advisable to model these receptors with a different
binding site definition, a starting point could be the
work by Surgand et al. [35].

70–30 validation on NNRTIs
While the above GPCR ligand dataset was based on rather
diverse ligands, the NNRTI dataset employed in this study
covers a more neatly defined area of both chemical (lig-
and) space as well as biological (target) space and hence
we also included the set. Moreover, this set has been very
difficult to model with QSAR approaches (leaving out the
target information, see methods for further details) and is
e NNRTIs 70–30 validation experiments. The mean is calculated
standard deviation. Shown are the R0

2 (A) and the RMSE (B).
compared to the GPCR experiments. In this case BLOSUM performs
orms the best.
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hence a very good example of cases where PCM can add
value [28]. The first step to evaluate descriptor set per-
formance on this set was again a 70–30 validation ex-
periment to assess the ability of the different descriptor
sets to capture the ligand–target interaction space, the
results of which are shown in Figure 6. Similar to previ-
ous experiments on the GPCR set, the performance of the
descriptor sets is closely together, with RMSEs in the
range 0.464 – 0.476 and R0

2 in the range 0.789 – 0.799.
However, in this set the ProtFP (Feature) performs the
best (RMSE 0.464 and R0

2 0.799), followed by MSWHIM
(RMSE 0.469 and R0

2 0.795) and Z-Scales (3) combined
with Z-Scales (Avg) (RMSE 0.470 and R0

2 0.795). The
worst performance comes from (descending) ProtFP
(PCA3) combined with Z-Scales (Binned) (RMSE 0.475
and R0

2 0.790), VHSE (RMSE 0.475 and R0
2 0.789), and

BLOSUM (RMSE 0.476 and R0
2 0.789).

When focusing on the individual mutants (Additional
file 1: Figure S9), the best performing mutants are either
sequence 12 (K101E and K103N) and 9 (K103N), both
covered well in the remaining training set. Most descriptor
sets are able to model the fraction of the compounds left
out with an RMSE of <0.3 log units on these mutants. The
mutants that are modeled the worst are surprisingly not
the heavy mutant sequence 7 (which contains a number of
13 total mutations), but rather sequence 2, and 6. Se-
quence 2 is carrying only two mutations (V179F and
Y181C), where V179F is known to have a high impact on
the class of compounds modeled here and the mutation it-
self (from valine to phenylalanine) is also a large change
with respect to the physicochemical properties of the resi-
dues involved [36]. Furthermore, this mutation was identi-
fied as having the most effect on binding in previous
Figure 7 Mean performance of the benchmarked descriptor sets in th
over all 14 mutants and the error bar represents the standard deviation. Sh
due to different performance between models trained on different mutant
place on the target side as the test set contains unseen targets. The differe
of the standard deviation increases. Again for individual receptors larger pe
Figure S10 for details). In this part of the study ProtFP (Feature) shows very
on the protein side is favorable for this data set.
work, which is consistent with the current observations
[28]. Sequence 6 is the only sequence containing the
E138G mutation and can be considered a singleton (also
modeled badly in previous work) [28]. Still it should be
noted that even in the case of the poorly modeled mutant,
there are individual differences between descriptor sets
(with the RMSE ranging between 0.575 and 0.644, and the
R0
2 ranging from 0.314 to 0.404). Subsequently it was in-

vestigated whether results were transferable to the LOSO
experiment, when extrapolation abilities to entirely novel
sequences were required.

LOSO validation on NNRTIs
The LOSO validation was performed in a similar manner
to the GPCR LOSO validation, leaving out one sequence
at a time from model training, and predicting the activity
of compounds on the sequence that was left out. The re-
sults are shown in Figure 7. The best performance can be
observed for ProtFP (PCA5) (RMSE 0.736 and R0

2 0.662)
followed by ProtFP (PCA3) (RMSE 0.747 and R0

2 0.668),
BLOSUM (RMSE 0.741 and R0

2 0.659), and ProtFP
(Feature) (RMSE 0.736 and R0

2 0.662). The worst perform-
ance is obtained by (in descending order) Z-Scales (3) and
Z-Scales (Avg) (RMSE 0.771 and R0

2 0.646), MS-WHIM
(RMSE 0.760 and R0

2 0.645), and Z-Scales (5) (RMSE 0.779
and R0

2 0.644). Noteworthy is that, while the mean RMSE
rises to 0.779 log units (calculated over all sets), the mean
R0
2 (calculated over all sets) remains relatively high

(at values larger than 0.64). This indicates that the descrip-
tor sets are introducing a consistent offset in the pre-
dictions, while still in most cases being able to accurately
rank the compounds relative to each other. Indeed it could
be considered logical that compound ranking depends
e NNRTIs LOSO validation experiments. The mean is calculated
own are the R0

2 (A) and the RMSE (B). Note that error bars are large
s, not between repeats of the individual models. Extrapolation takes
nces between individual descriptor sets are still small but the spread
rformance differences occur (see main text and Additional file 1:
good performance, which indicates that a simplified representation



Figure 8 PCA plots of the best and worst performing descriptor sets on the NNRTI benchmark. (A) The simplified representation of ProtFP
(Feature) proves to be an advantage on this congeneric data set as the distance in PCA space better correlates to the distance in bioactivity space. (B) The
ST-Scales on the other hand perform the least well, and it can be hypothesized that the tight clustering in one part of the plot does not correlate to
bioactivity space.
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more on compound descriptors (where in this case
ECFP_6 fingerprints were employed), which were kept
constant In PCM modeling predictions are always
dependent on both descriptors types.
The mutants that performed the best in the models

were again sequence 12 (carrying solely the K101E and
K103N mutation) as well as sequence 3, (carrying solely
the Y181C mutation). Both are very well covered in the
training set. The sequence modeled the worst was again
sequence 6 (carrying the E138G mutation). This se-
quence was also most difficult to model in LOSO in pre-
vious work [22], and as mentioned above the cause is
likely that this sequence forms a singleton as it is the
only sequence carrying mutation E138G. It is striking
that ProtFP (Feature) performs significantly better on
this data set than the other two sets. On the NNRTI set,
ProtFP (Feature) ranks 1st in the 70–30 validation and
4th in the LOSO validation, in the ACE inhibitor set it
ranks 16th and also in the GPCR set the descriptor
ranks 16th. A PCA analysis was again performed to con-
nect these observations of descriptor set performance to
the similarity of the sequences and the way the descrip-
tor sets characterize the space.

Analysis of NNRTI target space
The PCA analysis can explain the better performance of
ProtFP (Feature) (Figure 8, Additional file 1: Figures S11,
S12, S13) given the following findings. Due to the fact
that the mutants only differ by point mutations and one
of the sequences caries 13 mutations (sequence 7), this
sequence is set far apart from the other sequences by
most descriptor sets. This effect is much less pro-
nounced in ProtFP (Feature) as it does not differentiate
between the type of mutations (all AAs are encoded as
features so every amino acid difference is equal). At the
same time, a number of sequences only differ by a single
amino acid that can be very similar (e.g. leucine to iso-
leucine). These differences are maximal in the case of
ProtFP (Feature) whereas they are relatively small in the
case of Z-Scales (5). The combined effect is that all se-
quences cluster much more evenly distributed through-
out the PCA space using ProtFP (Feature) compared to
the other descriptor sets, leading to a better performance
on this particular set. While this effect proves beneficial
in this particular case where chemical and target space
are closely defined, it should be noted that this is no
guarantee to be a general effect, as can be seen on the
other bioactivity benchmarks where ProtFP (Feature)
performs below average. Another cause for the observed
effect could be the following. By leaving out the residues
that did not mutate in any of the sequences, the focus
was on the sequence dissimilarities. Hence the descriptor
representation of the target similarity does not accurately
represent the overall still quite large similarities in bio-
activity space. As the ProtFP (Feature) descriptor set leads
to relatively small distances by merely encoding the pres-
ence or absence of a feature, it partially compensates for
the distorted representation of target similarities.

Conclusions for NNRTIs and mutants
The NNRTI set represented a different data set com-
pared to the GPCR ligand dataset evaluated above, as it



Figure 9 Mean performance of the benchmarked descriptor sets in the PIs 70–30 validation experiments. The mean is calculated over all
repeats (performed 10 times) and the error bar represents the standard deviation. Shown are the R0

2 (A) and the RMSE (B). Slightly more variance
between descriptor sets is seen compared to the GPCR experiments and NNRTI experiments. In this case ProtFP (Feature) performs the worst
among all descriptor sets considered, while BLOSUM performs the best.
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consists of a number of highly similar sequences and
compounds and, hence, resembles a typical data set one
might encounter in lead optimization. It is concluded
that in these cases the feature-based descriptor set per-
forms very well; however its good performance can also
be caused by our binding site definition. Therefore this
type of descriptor set should be included as a possible
candidate when working on a data set consisting of sev-
eral highly related targets. However, as shown in the
other benchmarks this is not an observation that can be
generalized to all datasets.
The final ranking for this dataset is as follows: The best

performing feature set was ProtFP (Feature), followed by,
ProtFP (PCA3), ProtFP (PCA5) (both of which exhibit
similar performance), MS-WHIM, ProtFP (Feature) and
Z-Scales (3). The worst performing descriptor sets were
Figure 10 Mean performance of the benchmarked descriptor sets in
all mutants (leaving out 10% at a time) and the error bar represents the sta
individual targets larger performance differences occur (see main text for d
it performs very well when paired with Z-Scales (3). The best performance
found to be (in descending order) ProtFP (PCA3) and
Z-Scales (Binned), Z-Scales (5) and ST-Scales.

70–30 validation on PIs
The last benchmark data set was a set consisting of clinic-
ally approved inhibitors of HIV Protease and a very large
set of mutants (1060 full sequences). Again the perform-
ance of the protein descriptor sets is compared in both a
70–30% validation and LOSO approach. The results are
shown in Figure 9 and again differences are negligible.
The best performing descriptor is BLOSUM (RMSE 0.293
and R0

2 0.863), followed by ProtFP (Feature) combined
with Z-Scales (3) (RMSE 0.301 and R0

2 0.860), and MS-
WHIM (RMSE 0.301 and R0

2 0.859). The worst performing
are in descending order: ProtFP (PCA8) (RMSE 0.308 and
R0
2 0.852), ST-Scales (RMSE 0.308 and R0

2 0.852), and
the PIs LOSO validation experiments. The mean is calculated over
ndard deviation. Shown are the R0

2 (A) and the RMSE (B). Again for
etails). In this part of the study ProtFP (Feature) performs poorly, while
is by Z-Scales (3).



Figure 11 PCA plots of target similarity of the protease mutants. Shown are (A) the best and (B) worst performing descriptor sets. The
feature based descriptor only codes for presence or absence of features. This leads to points scattered over a smaller area in PCA space and could
explain the decreased performance (B). However, the information is shown to have a synergistic effect when combined with a physicochemical
property based descriptor (A).
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ProtFP (Feature) (RMSE 0.404 and R0
2 0.748). It is note-

worthy to see here that the combination of the worst
performing ProtFP (Feature) combined with Z-Scales (3)
again has a synergistic effect. The combined descriptor
sets perform better than only the Z-Scales (3). It could be
Table 3 Overall descriptor set ranking

Type Final rank (MAD) R

ProtFP (Feature) and Z-Scales (3) 4 (±2.0)

Z-Scales (3) and Z-Scales (Avg) 4 (±2.5)

Z-Scales (3) 4.5 (±1.5)

MS-WHIM 5.5 (±2.5)

Z-Scales (5) 6.5 (±3.5)

ProtFP (PCA3) 7 (±2.0)

Z-Scales (Binned) 7.5 (±2.5)

ProtFP (PCA5) 9 (±2.0)

FASGAI 9.5 (±2.5)

ProtFP (PCA3) and Z-Scales (Binned) 10 (±3.0)

T_Scales 10 (±2.0)

VHSE 10 (4.0)

BLOSUM 11.5 (±4.5)

ProtFP (PCA8) 12 (±2.0)

ST_Scales 13 (±1.0)

ProtFP (Feature) 16 (±0.0)

The descriptor sets are sorted based on their median (final) rank calculated over all
rank each descriptor set receives in each individual data set (calculated over the fou
the Z-scales (3) with complementary descriptor types (ProtFP (Feature) or Z-scales (
caused by ProtFP (Feature)’s abilities to pick up point
mutations (as shown in the NNRTI section), however
containing too little information to accurately describe the
bioactivity space (as shown by the bad performance of
ProtFP (Feature) alone).
ank ACE Rank GPCR Rank NNRTI Rank PI

8.5 4 7.5 2

11 1 8.5 4.5

6 5 8.5 2.5

4 8.5 7 4

3 12.5 11.5 4.5

10 9 5 7.5

1.5 6.5 10 7.5

15 5.5 5 9.5

6.5 9.5 11 9.5

1.5 8 11 12.5

8.5 13 9 9

5.5 9 10.5 10.5

13.5 8 10 7.5

13.5 8 10.5 13.5

12 13.5 13 14.5

16 16 1 16

14 benchmarks and the MAD associated with this value. Also shown is the
r benchmarks per data set). The best performance is achieved by combining
Avg)), closely followed by Z-Scales (3), MS-WHIM, and Z-Scales (5).



Figure 12 Median rank of the descriptor sets in the bioactivity benchmarks. The median is calculated over all 14 ranks (1 rank per dataset, per
experiment, per validation type), also shown the median average deviation (MAD). The best three descriptor sets have a median rank < 5 among which
the combinations of Z-scales (3) with other descriptors perform the best. The worst performance is by BLOSUM, ProtFP (PCA8), ST-scales and ProtFP
(Feature) with a mean rank > 11. BLOSUM has a large standard deviation due to its inconsistent performance.
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LOSO validation on PIs
The LOSO experiment was performed slightly different
on this dataset. Given the very large size and the compu-
tational infeasibility to repeat this for 16 descriptor sets,
not a single target was left out but 10% at a time. From
earlier work it was known that this can indeed be done
and that the results are still comparable; the key issue is
to leave out a full section of the target space with all
bioactivity annotations. [7] Still, this corresponds
roughly to leaving out a single target out of 14 in the
NNRTI set (+/− 10% of target variation).
The results of this experiment are shown in Figure 10.

Best performing was now the Z-Scales (3) set (RMSE 0.329
and R0

2 0.800), followed by ProtFP (Feature) combined
with Z-Scales (3) (RMSE 0.330 and R0

2 0.799), and the
Z-Scales (5) set (RMSE 0.331 and R0

2 0.798). Worst
performing were ST-Scales (RMSE 0.336 and R0

2 0.790),
BLOSUM (RMSE 0.337 and R0

2 0.790), and ProtFP (Fea-
ture) (RMSE 0.492 and R0

2 0.558). However, all descrip-
tors perform very well on this high quality set with very
little difference. In order to rationalize performance dif-
ferences a PCA was performed.

Analysis of PI target space
In order to get an insight into the descriptor perform-
ance we performed a PCA analysis on target space again
(Figure 11, Additional file 1: Figures S14, S15, S16). The
points were colored by average resistance to visualize
the bioactivity space as the number of sequences was
too large for individual coloring. The PCA plots confirm
the results seen in both 70–30 validation and LOSO
validation. Most descriptors are able to separate the
mutants in a way that correlates to their activity. The
exception is ProtFP (Feature) where the spread of the
sequences in PCA spaces seems clustered over a smaller
space and there is overlap between mutants with low
resistance (green) and higher resistance (red). This could
be caused by the fact that this descriptor merely
considers the amount of point mutations (were the
distance between two diverse amino acids is identical to
the distance between two similar amino acids). However,
when this is combined with the similarity-based amino
acid distance provided by the Z-Scales (3), both descrip-
tor sets appear to be synergistic, leading to a slight
performance improvement.

Final descriptor set ranking
The final ranking of the individual descriptor sets is given
in Table 3 and Figure 12. The table included the individual
ranks of all descriptor set in each experiment (on a scale
of 1 to 16) and a final overall ranking (which is calculated
as the median of the individual rankings). Also included is
the median average deviation of the median (MAD) of the
median rank in this representation (Figure 12). In the



Table 4 Overview of significance of differences between descriptor ranks

Descriptor ProtFP (Feature)
and Z-Scales (3)

Z-Scales (3)
Z-Scales (Avg)

Z-
Scales
(3)

MS-
WHIM

Z-
Scales
(5)

ProtFP
PCA (3)

Z-Scales
(Binned)

ProtFP
PCA (5)

FASGAI ProtFP PCA (3) and
Z_scales (Binned)

VHSE T-
Scales

BLOSUM ProtFP
PCA (8)

ST-
Scales

Z-Scales (3) and Z-Scales
AVG

1.00

Z-Scales (3) 0.78 0.64

MS-WHIM 0.27 0.34 0.56

Z-Scales (5) 0.05 0.10 0.17 0.47

ProtFP PCA (3) 0.09 0.18 0.15 0.50 0.78

Z-Scales (Binned) 0.26 0.38 0.29 0.89 0.63 0.78

ProtFP PCA (5) 0.02 0.15 0.17 0.30 0.80 0.78 0.37

FASGAI 0.01 0.03 0.03 0.15 0.56 0.13 0.10 0.46

ProtFP PCA (3) and
Z_scales (Binned)

0.05 0.17 0.17 0.42 0.82 0.23 0.15 0.78 0.98

VHSE 0.01 0.02 0.02 0.08 0.49 0.15 0.09 0.31 0.95 0.82

T-Scales 0.00 0.01 0.01 0.03 0.13 0.02 0.01 0.15 0.56 0.80 0.58

BLOSUM 0.10 0.14 0.19 0.35 0.71 0.34 0.27 0.56 0.87 0.61 1.00 0.98

ProtFP PCA (8) 0.00 0.01 0.00 0.01 0.09 0.00 0.00 0.04 0.16 0.25 0.22 0.26 0.75

ST-Scales 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.24 0.08

ProtFP (Feature) 0.01 0.01 0.01 0.02 0.05 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.04 0.04 0.05

Calculated over all 14 ranks using a Wilcoxon signed rank test., given is the p-value for a paired comparison.
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discussion of the following it should be kept in mind that
differences in performance were on most datasets rather
small, so that differences in ranks usually translate to small
quantitative differences in performance.
The best performing descriptor sets overall are, ProtFP

(Feature) combined with Z-Scales (3) (median rank 4.0
(±2.0)), Z-Scales (3) combined with Z-Scales (Avg)
(median rank 4.0 (±2.5)), Z-Scales (3) (median rank 4.5
(±1.5)), MSWHIM (median rank 5.5 (±2.5)), Z-Scales (5)
(median rank 6.5 (±3.5)), and ProtFP (PCA3) (median
rank 7 (±2.0)). Following from the results it is apparent
that combining Z-Scales (a physicochemical descriptor)
with complementary information leads to synergy, see
below for a further discussion on this observation.
The worst performing descriptor sets are ProtFP

(PCA8) (median rank 12 (±2.0)), ST-scales (median rank
13 (±1.0)), and ProtFP (Feature) (median rank 16 (±0.0)).
While their performance was sometimes close to the other
descriptor sets, they were found among the lower
performing ranks in 80% of the experiments. Therefore it
might be wise to avoid these descriptor sets on bioactivity
modeling in setups such as the PCM modeling employed
here; but this again will surely depend on the particular
dataset at hand as well (for example a data set similar to
the NNRTI set in the case of ProtFP (Feature)).

Usage of more than 3 principal components per amino
acid
In the companion publication of this work it was observed
that using or more principal components per amino acid
leads to a large shift in descriptor set behavior (character-
ized as the way in which a descriptor set perceives amino
acid similarity) [21]. Yet including the 4th or even 8th prin-
cipal component only leads to a marginal increase in per-
centage explained of the variance from the original matrix.
Here it is observed that in the cases where multiple
components are included (e.g. Z-Scales (5) as opposed to
Z-Scales (3)), the performance decreases and in most cases
using fewer components leads to better performance. In-
deed the top 6 performing descriptor sets only contain
1 set with more than 3 components whereas the lowest
performing 6 contain no set with less than 5 components.
Hence we would conclude that using more that 3 PCs per
amino acids leads to overtraining in the case of PCM
models, corroborated by descriptor sets performing well in
the 70–30 validation and then poorly in LOSO. It would
be advised to use less information per amino acids.

Statistical significance of descriptor differences
In order to support these observations we have per-
formed a statistical test on all pairs of descriptor sets to
investigate whether differences in performance were
significant. As a T-test assumes a normal distribution of
the data we could not apply it here, instead we applied a
Wilcoxon signed rank test [37]. Table 4 lists the complete
matrix of p values when the descriptors are compared.
The most important observation is that ProtFP (Feature)
is significantly worse than all others (p < 0.05) with the
exception of Z-Scales (5). Moreover while combining
Z-Scales (3) with other descriptor types proves to be
better, this difference is not significant (p = 0.78 for the
combination with ProtFP (Feature) and p = 0.64 for the
combination with Z-Scales (Avg)).

Complementary protein descriptors
Most descriptor sets have been found to perform very
similar (no statistical differences), yet this not very
surprising as the majority of the descriptors used here
have previously been published and hence been vali-
dated. Moreover, in literature other studies have
appeared applying PCM (although named differently) on
GPCR data sets similar to our set here. This includes
both the use of feature based descriptor sets [38] and
physicochemical descriptor sets [9,18,39]. Performance is
similar to the performance found here on the GPCR
data set. From literature it can be concluded that using
physicochemical properties leads to better performance
than feature based descriptors (at least on GPCRs),
which is in line with the results of this work. However, it
is striking to see that in the current work, in both cases
where Z-Scales (3) was combined with another descrip-
tor set (namely the average sequence values (AVG) and
ProtFP (Feature)), this combination performed better
than only Z-Scales (3). Even the last scoring ProtFP
(Feature) appears to add complementary information.
While we did not find these results to be significant, the
results were consistent. Therefore it could also be the
case that just coding for amino acid similarity, as is
common in literature, while predictive ignores relevant
information that is present in the protein structure.
Perhaps other sources of information should be included
and one start could be the incorporation of protein
flexibility or secondary structure that could be retrieved
from nearest neighbor crystal structures or homology
models [40,41].
Another cause for this observed close performance

could be, as we mentioned in the GPCR section, that the
binding site selection used here is not optimal, yet in lit-
erature with different binding site selections similar per-
formance is reached [9,18,39]. In this respect it would be
interesting to investigate the use of non-alignment
dependent descriptors such as PROFEAT [42], CTD
[43], or descriptors from the PROPY package [44].
A final option could be the usage of chemogenomics

based descriptors. These can consist of phylogenetic
trees which are generated based on the tanimoto similar-
ity of ligands known for each protein (via the Similarity
Ensemble Approach) [45,46].
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Training times
One final property of the descriptor sets has not been
highlighted yet. On a workstation with a core i7 860 CPU
and 16 GB memory, considerable differences in training
times were found for the individual descriptor sets. On the
datasets used in this work, as a rule of thumb ProtFP
(Feature) showed the fastest model training while
BLOSUM required most time (on average 191% of the
training time required for ProtFP (Feature). The reason
for this large difference is likely that the feature based
descriptor set uses a single variable per amino acid, where
the numerical descriptor sets use 3 (ProtFP (PCA3), Z-
scales (3) and MS-WHIM) to 10 values (BLOSUM).

Experimental
All models, with the exception of the timed runs, were
trained and validated on the EBI cluster, for further de-
tails please see Methods section below. Included in the
supporting information (Additional file 2) is a pipeline
pilot protocol that allows the transfer of single letter
amino acids sequences into the here benchmarked de-
scriptor sets.

Conclusions
Overall performance differences between amino acid de-
scriptor sets used in this study were rather small, with
differences in the order of RMSE differences between
0.01 – 0.1 log units. Hence, as a first approximation – and
with some differences between datasets - all descriptor
sets considered in this study can be used to train predict-
ive PCM models. Yet, a number of descriptor sets were
observed to consistently score good, namely Z-Scales (3)
combined with Z-Scales (Avg), ProtFP (Feature) combined
with Z-Scales (3), Z-Scales (3), MS-WHIM, Z-Scales (5),
and ProtFP (PCA3).
Performance on different targets exhibits significantly

larger differences in performance than differences be-
tween descriptor sets; for example the RMSE difference
between the HIV mutant modeled best and worst was
1.2 log units. Hence, attention still needs to be paid to
the question of whether a particular descriptor set is
suitable for the protein target to be included in a par-
ticular model.
Combining descriptor sets, such as the feature-based

ProtFP (Fature) with the physicochemical property-
based descriptor set Z-Scales (3), small but consistently
improved model performance, which is likely due to the
different way these descriptor sets characterize amino
acids. This observed effect is conceptually similar to cir-
cular fingerprints (also feature based) being complemen-
tary to physicochemical small molecule descriptors as
we observed in the ligand descriptors.
Hence we would recommend the use of the Z-Scales

(3) (possibly combined with a feature based fingerprint)
for applications in proteochemometric models. On the
other hand there are 3 descriptor sets that consistently
score less well on the datasets used here, namely ProtFP
(PCA8), ProtFP (Feature), and ST-Scales. Based on the
information available, these would be less ideal for use
in PCM models.

Methods
For a more detailed description of each descriptor set,
both the way they are derived and the extent to which
they behave similarly and differently, the reader is re-
ferred to the previous work. [21]. This methods section
will be limited to the methods relevant for obtaining the
result described later in the current study.

Benchmark datasets for the descriptor sets
Analyzing similar and different behavior of AA descrip-
tor sets is relevant to judge how similarly two descriptor
sets behave as shown previously [21]. However, this ana-
lysis does not yet give any information how relevant the
information captured by a particular descriptor would
be for the generation of bioactivity models. Hence, in
order to assess the performance of each descriptor set,
four different data sets were used to perform a number
of benchmark experiments.

ACE inhibitor data set
The first set consisted of 58 dipeptides with a measured
ACE inhibiting effect (pIC50) and was obtained from lit-
erature [29]. The set serves as a benchmark as several of
the descriptor sets analyzed here were applied to this set
in their original publication. Hence, it is demonstrated
that the method used (Random Forest) performs on par
or better than the PLS which is conventionally used in
QSAM publications (see Additional file 1: Table S1 for
the comparison). See Table 2 for further details about
the data set.

GPCR data set
The second bioactivity data set employed for bench-
marking different amino acid descriptor sets comprised
a subset of 32 human monoamine receptors (class A
GPCRs listed in Additional file 1: Table S2; see also
Additional file 1: Figure S17 regarding the subset of
receptors used) obtained from ChEMBL version 16 [21].
Receptors were selected only if more than 120 unique
ligands (and optimally 200) with annotated activity were
present in ChEMBL. A binding site residue selection
was obtained using the program JOY [47]. All known
GPCR structures in the pdb up to December 2012 were
superposed and residues in contact with the ligand were
selected. Subsequently residues were translated to the
aminergic GPCRs counterpart using the alignment from
GPCRdb [48]. Residue positions that were gapped in any
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of the aminergic GPCRs or positions for which no
GPCRdb alignment number was available were discarded.
These positions were discarded to keep the benchmark
fair and level as different methods to incorporate gapped
positions might benefit one descriptor set over the others
(for instance usage of ‘0’ descriptors might benefit those
descriptor sets with a smaller range of continuous values).
The alignment is provided as Additional file 3 and the data
set can be downloaded from http://www.gjpvanwesten.nl/
proteindescriptors. Residues selected were subsequently
subject to conversion into numerical values using all
protein descriptor sets listed above.
For each of the 32 receptors included in this study all

small molecules with an affinity on this receptor avail-
able in ChEMBL were selected and further narrowed
down to only include Ki annotations with a protein con-
fidence score of 9. Compounds were then classified as
‘active’ (pKi > 7) or ‘inactive’ (pKi = < 7). Finally com-
pounds were clustered (using the ECFP_6 fingerprint,
also used to train the models) to obtain a total of 100
chemically diverse ‘actives’ and 75 chemically diverse
‘inactives’ per receptor, in addition a random 25 com-
pound from ChEMBL were included as presumed in-
actives (based on the work of Heikamp and Bajorath)
[49]. Compounds were standardized, salts were removed,
and ionized at pH 7.4 in Pipeline Pilot 8.5 [50]. In total
3,230 distinct compounds were selected to generate a
bioactivity model, the final dataset comprising 6,046
ligand-protein data points. This corresponds to 6% of
the total of 103,360 possible compound–receptor combi-
nations in the full matrix of 3,230 compounds and 32
targets; see Table 2 for further details.

NNRTI data set
The second bioactivity data set subjected to PCM mod-
eling comprised 14 mutants of HIV Reverse Transcript-
ase and 451 Non-Nucleotide Reverse Transcriptase
Inhibitors (NNRTIs), and hence a total of 6,314 possible
compound–receptor combinations out of which for
4,024 a pEC50 value was available (66% of the total) [28].
The compounds in this case were structural analogues,
and hence (as opposed to the GPCR case) the average
similarity between the compounds was higher, as was
the similarity between the protein targets (which were
mutants carrying between a single and 13 point muta-
tions). Like in previous work, the binding site was de-
fined as those AAs that differed between the different
mutants (a total of 24 residues) [28]. The HXB2 / IIIB
reference strain was defined as the wild type [51]; see
Table 2 for further details.

PI data set
The third and final PCM set comprised of 1060 HIV
protease mutants and 9 clinical protease inhibitors (PIs)
[7]. HIV proteases and proteases in general have previ-
ously been shown to be amenable to PCM modeling
[52-54]. The set consisted of a total of 6,995 bioactivity
points, in the form of a pIC50 fold change (difference be-
tween mutated protein pIC50 and wild type pIC50), and
was hence 73% complete. The compounds were not as
similar as in the NNRTI set but at the same time not as
diverse as the GPCR set. The full sequence of the pro-
tein was used (99 amino acids as it is a dimer) as was
done in earlier work [7], hence the target space was con-
siderably more diverse but the average similarity was
high. The HXB2 / IIIB reference strain was defined as
the wild type [51]; see Table 2 for further details.

Amino acid descriptor set benchmarking
Two different approaches were pursued to benchmark
AA descriptor sets with respect to their ability to gener-
ate bioactivity models (and hence, to capture protein in-
formation relevant to bioactivity and ligand binding),
namely 70–30 validation and Leave-One-Sequence-Out
(LOSO) which are described in the following.

70–30 validation
The first benchmark employed in this study was a ‘70-30’
validation experiment. Each descriptor set was used in
turn in combination with each of the datasets, and a
model was trained on a random 70% of the data available
and used to predict the bioactivities of the remaining 30%
of the data. This procedure was repeated ten times with
different random splits and from the resulting validation
parameters the mean and standard deviation were calcu-
lated. For the ACE inhibitors this represented a particu-
larly challenging benchmark as this set only includes
peptides and no small molecules. Hence only the amino
acid descriptor sets could be used to characterize similar-
ity for unknown data points whereas in the PCM sets the
distance is characterized by the combination of amino acid
descriptor similarity and ligand descriptor similarity. For
the bioactivity datasets employed for PCM modeling
(which takes both ligand-side and protein-side descriptors
into account) this benchmark provides an answer to two
different questions. Firstly, the model was asked to make
bioactivity predictions for those compounds that are not
present in the training set and hence to extrapolate in the
chemical domain. This part of the validation was particu-
larly emphasized in case of the GPCR and PI data sets set
due to the relatively lower average compound similarity.
Hence the model is asked to extrapolate the activity of
known compounds and targets to unknown compounds.
Secondly, a compound can be present in the training set

as annotated on one target, and also be present in the test
set as annotated on target 2. This part of the validation
was hence emphasized in case of the NNRTI data set due
to the high average compound similarity. In this case the

http://www.gjpvanwesten.nl/proteindescriptors
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model is asked to extrapolate the activity of known com-
pounds and targets to unknown combinations of the two,
while, individually, each chemical structure and sequence
have been seen by the model before, but just not in this
particular combination.

Leave-one-sequence-out validation
This validation experiment was performed for each target
in order to assess extrapolation abilities of the PCM
models in the biological / target domain. Hence this valid-
ation was only applied to the datasets containing targets
(GPCR set, NNRTI set, and PI set). In this part of the
work, in turn a single target is left out of the training set
and subsequently a model is trained on all remaining bio-
activity data points. Afterwards activity values of all com-
pounds on the target left out of the initial training
procedure are predicted and compared to the experimen-
tal values. These steps are repeated for all targets in the
data set in turn. The exception was the PI set, here not a
single target but 10% of the targets was left out. The rea-
son for this was that performing a 1060-fold LOSO expe-
riment for each descriptor was computationally very
demanding. While we have done so successfully in the
past, we have learned that for this particular set, compar-
able results (stressing the descriptors better) could be
achieved leaving out 10% rather than one sequence [7].
The important distinction between this set up and the
70–30 models is that sequences and all their annotated
bioactivities are left out of the training set.
This type of validation is a specialty of PCM modeling

since it takes advantage of its ability to extrapolate also in
target space. It resembles the real-world situation of deor-
phanizing receptors where information from related pro-
teins of the ‘orphan receptor’ is taken into account to
identify bioactive chemical matter for a receptor for which
no ligands have been identified yet [55,56]. Moreover, this
concept is applicable to predict which drug to use against
a particular receptor mutant in case of e.g. personalized
medicines, such as in case of the question which drug to
use against a particular HIV genotype [7]. Since the ACE
inhibitor set consisted of bioactive compounds only,
LOSO could not be performed on this set.

Compound descriptors
Ligands were described using ECFP_6 circular finger-
prints calculated in Pipeline Pilot 8.5 [57], which take
into account the number of connections to an atom, the
element type, the charge, and the atomic mass. These
descriptors have previously been shown to perform well
in comparative virtual screening studies [58].This ligand
side descriptor was employed for all studies presented in
this work when encoding small molecule information.
Here an array size of 512 bits (each bit corresponding to
a chemical substructure) was used.
In addition, in the GPCR, and PI data set compounds
were described by their physicochemical properties. The
reason for this was that, while the NNRTI set was a con-
generic series, the GPCR and PI sets were diverse. Initial
trials showed that only ECFP_6 descriptors performed
worse than a combination of ECFP_6 and physicochemi-
cal properties. This effect was absent in the NNRTI set.
Physicochemical properties included logP, log solubility,
atom properties (number of atoms, positive and negative
atoms, hydrogen bond donors and acceptors), size re-
lated properties (Volume, Molecular weight, Polar Sur-
face area), properties characterizing bonds (number of
bonds, number of aromatic bonds, number of rotatable
bonds), and properties describing ring and chain systems
as was done previously [6]. For a full list see Supporting
Additional file 1: Table S3.

PCM modeling method
Both regression and classification models were generated
in Pipeline Pilot Version 8.5 using the R-statistics model-
ing package version 2.12.1[50,59]. Modeling was perfor-
med using the ‘randomForest’ package in R Statistics [60].
The size of the forest was experimentally determined to be
optimal at 1500 trees (1000 in the case of the ACE inhibi-
tors), the maximum number of descriptors to be sampled
at each node was set at a fraction 0.5 of the total number.
Class size equalization was turned on and a performance
estimate during training was obtained using out-of-bag
validation. Furthermore data points were fed into the
model in a randomized order (differing between repeats of
an experiment). Moreover, in the 70–30 experiments
models were trained in ten fold with different randomized
splits to get a more reliable performance estimate.

Model validation
In regression models both the Root-Mean-Square Error
(RMSE) and the correlation coefficient intersecting the
origin (R0

2) were employed [61]. For the classification
models the Matthews correlation coefficient (MCC) was
used to estimate model performance as it incorporates
both correct and false predictions [62]. However, be-
cause of the importance of models to actually retrieve
active compounds, sensitivity was employed as a second
performance measure.

Comparison to QSAR models
For the PCM datasets (GPCR, NNRTI, and PI) also dedi-
cated QSAR models were trained per target using a 70% -
30% approach. Of these models the average RMSE / MCC
and R0

2 / sensitivity were calculated along with the stand-
ard deviation. The results of these models are shown in
Additional file 1: Figure S18. The PCM models outper-
form the QSAR models (on all datasets and with all de-
scriptors). Only in the case of the PIs the RMSE of the



van Westen et al. Journal of Cheminformatics 2013, 5:42 Page 18 of 20
http://www.jcheminf.com/content/5/1/42
QSARs is slightly lower (0.23 (±0.22) log units versus 0.31
(± 0.03) log units), however the R0

2 is considerably worse
(0.13 (±0.28) versus 0.85 (±0.03)).

Y-Scrambling
To make sure that the models created were not based
on chance correlations, 10 fold Y-scrambling or permu-
tation testing was performed. These studies were per-
formed using the same setup as the benchmark
experiments (also in ten fold), however the output vari-
able (pIC50, pEC50, fold change, or activity class) was
randomized over the data points. Hence no correlation
should exist between the descriptors (ligand and target)
and the activity when attempting to derive ‘models’. The
results are shown in Additional file 1: Figures S19, S20,
S21, S22 and confirm that no predictive models can be
trained on this randomized set.

Descriptor set ranking
Finally, to obtain a broadly derived performance meas-
ure all 16 amino acid descriptor sets were ranked based
on their performance per dataset per experiment per
validation parameter. This rank-based assessment pre-
vents a single dataset that is modeled very well or very
badly (as expressed in RMSE or MCC) unduly influen-
cing the average performance of this descriptor set. De-
scriptor sets were ranked twice per experiment using 2
validation parameters (R0

2 and RMSE in the case of
regression and MCC and Sensitivity in the case of classi-
fication). Hence this leads to 14 ranks (ACE inhibitors
R0
2 rank, ACE inhibitors RMSE rank, GPCR 70–30 MCC

rank, GPCR 70–30 Sensitivity rank, etc.). These valid-
ation parameters were the mean of the ten repeats of
each model. Subsequently the median rank and the
MAD were determined of all descriptor sets based on
these 14 ranks. This lead to a final rank of each descrip-
tor set that could be compared over all data sets.

Consent
All patient data used in our manuscript were obtained
from different collaborators. With each of these collabo-
rators a contract was signed stipulating that patient con-
sent was available from local IRB and/or the competent
IRB/EC authorizations were obtained to provide us with
the patient samples for research purposes.
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classifiers used as compound descriptors. Figure S1. PCA analysis of the
58 ACE inhibiting peptides (I). Figure S2. PCA analysis of the 58 ACE
inhibiting peptides (II). Figure S3. PCA analysis of the 58 ACE inhibiting
peptides (III). Figure S4. GPCRs in 70-30 validation. Figure S5. GPCRs in
LOSO validation. Figure S6. PCA analysis of the GPCR target space (I).
Figure S7. PCA analysis of the GPCR target space (II). Figure S8. PCA
analysis of the GPCR target space (III). Figure S9. RT mutants in 70-30
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