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Abstract

Gene-gene interactions are proposed as one important component of the genetic architecture of 

complex diseases, and are just beginning to be evaluated in the context of genome wide 

association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is 

that it also increases power to detect weak main effects. We conducted a knowledge-driven 

interaction analysis of a GWAS of 931 multiple sclerosis trios to discover gene-gene interactions 

within established biological contexts. We identify heterogeneous signals, including a gene-gene 

interaction between CHRM3 and MYLK (joint p = 0.0002), an interaction between two 

phospholipase-β isoforms, PLCβ1 & PLCβ4 (joint p = 0.0098), and a modest interaction between 

ACTN1 and MYH9 (joint p = 0.0326), all localized to calcium-signaled cytoskeletal regulation. 
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Furthermore, we discover a main effect (joint p = 5.2E-5) previously unidentified by single-locus 

analysis within another related gene, SCIN, a calcium-binding cytoskeleton regulatory protein. 

This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible 

approach to identify new genetic effects. The results of this study are among the first gene-gene 

interactions and non-immune susceptibility loci for multiple sclerosis. Further, the implicated 

genes cluster within inter-related biological mechanisms that suggest a neurodegenerative 

component to multiple sclerosis.

Introduction

Multiple sclerosis (MS) is a complex autoimmune disorder characterized by demyelination 

and scar tissue formation within the central nervous system. Axonal loss and progressive 

neurodegeneration leads to impaired neurological function and diminished quality of life. 

The MHC region of chromosome 6 is consistently associated with MS risk1, 2, and several 

additional immunological and inflammatory loci have recently been implicated in MS 

susceptibility. However, all known susceptibility loci combined account for far less than 

50% of the estimated heritability.

Epistasis or gene-gene interaction has been promoted as an important part of complex 

disease etiology, due to the monumental complexity of biological systems. In addition, when 

explicitly modeled, it can increase power to detect the independent effects of susceptibility 

loci 3, 4. However, a key challenge of interaction analysis is the biological interpretation of 

statistical results and the task of resolving functional relationships between variants from 

multiple loci across the genome. With these challenges in mind, we assessed gene-gene 

interactions within established biological contexts based on multiple knowledge sources, 

such as pathway and ontology databases. This analysis implicates several new functionally 

related MS risk loci, including three interaction effects centered on calcium signaling, 

representing a neurodegenerative genetic component to MS etiology.

Results and Discussion

For our analysis, we examined gene-gene interactions in a screening dataset followed by 

three validation sets. The screening phase was conducted in two stages to maximize 

information gain from the analysis. Using the trio study design of our screen dataset, we 

examined the transmission of alleles to affected offspring. This stage revealed 5,463 models 

(consisting of 5,965 SNPs) with MF p < 0.001 and LR p < 0.001, indicating an effect from 

simultaneous over-transmission of alleles at two separate loci. The majority of these models 

contain distinct SNPs, however some are recurrent across multiple models. The top 

recurring SNP was involved in 35 models, and most occurred in less than 5 models. Also 

notably the majority of models do not contain the known main effect of the MHC region, 

with only 474 of 5,463 containing markers from chromosome 6 where the MHC resides. 

The joint transmission of alleles to offspring could also be due to chromosomal linkage if 

the two alleles are in close enough proximity that recombination events between the two loci 

are infrequent. To minimize false-positives due to this possibility and to provide additional 

evidence for interaction, we compared the probands from the 931 families with 2,950 

controls from the Wellcome Trust Case Control Consortium (WTCCC)5. Using standard 
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logistic regression on the proband/control set, we reduced the 5,463 models to 326 models 

(MF p < 0.001 and LR p < 0.001) containing 469 SNPs. For all validation sets, we 

established α = 0.05 for both MF and LR tests as our replication criteria.

In validation set I, 306 of the 326 models contain all SNPs available after QC procedures 

and were evaluated. Twenty multi-locus models had significant model fit (MF p < 0.05) and 

direction of coefficients consistent with the screening dataset, representing nine gene-gene 

combinations (supplemental table 1).

While this analysis approach incorporated prior biological knowledge, it was somewhat 

unexpected that of hundreds of thousands of gene-gene relationships considered, four of the 

nine models with statistically consistent results point to two interconnected biological 

mechanisms -- a calcium-signaled change in cytoskeleton dynamics. Of these four models, 

two had a significant interaction component (LR p < 0.05). To examine and validate the role 

of this biological mechanism in MS susceptibility, we explored the four functionally related 

models (table 1) in two additional datasets, validation set II and III. Validation set III was 

genotyped with a different platform from the other studies, so surrogate SNPs were selected 

with close physical proximity and high r-squared based on the Hapmap CEU data.

The results from validation sets II and III indicate heterogeneous weak effects from variants 

within this biological mechanism (table 2). In validation set II, model 1 had a non-

significant model fit (MF = 0.0595), and there was no evidence of interaction (LR = 

0.7664). In validation set III, model 1 also had a non-significant model fit (MF = 0.0748) but 

with a significant interaction term (LR = 0.0366). Models 2, 3, and 4 had non-significant p-

values (MF and LR) in both validation sets, and while model 1 was not significant, it did 

show consistently low p-values (p < 0.1) across all evaluated datasets.

As models 1 and 2 did not show evidence of interaction in validation set I, and as interaction 

analysis can enhance the detection of main effects4, we hypothesized that significant models 

identified in the screening phase could consist of weak effects of independent SNPs. Within 

validation set I, the significant model fit of models 1 and 2 are driven by main effects of 

rs1009150 within MYH9 (p = 0.0022) and rs2240571 within SCIN (p = 0.0004). In 

validation set II, rs2240571 shows a main effect (p = 0.0073). In validation set III, 

rs6118378 of PLCβ1 (surrogate for rs6516415) has a significant main effect (p = 0.0391).

Combining all datasets with directly typed SNPs (excluding validation set III) for a joint 

analysis, all models have significant MF p-values (α = 0.05), and all but model 1 have 

significant LR p-values (α = 0.05). In this joint analysis, SCIN SNP rs2240571 appears as a 

significant main effect (p = 5.2e-5), and its interaction with CYFIP1 SNP rs8025779 is non-

significant (LR p = 0.0677).

Models

Model 1

rs2240571 is located approximately 400 BP upstream from the scinderin (SCIN) gene on 

chromosome 7. In some datasets, SCIN statistically interacts with cytoplasmic fragile X 

mental retardation 1 (FMR1) interacting protein 1, or CYFIP1.
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SCIN is a calcium-dependent actin severing protein5. In addition to binding calcium, SCIN 

has PIP2 binding sites that likely play a role in its activity. SCIN mediated disassembly of 

the cortical actin cytoskeleton may regulate translocation of secretory vesicles to facilitate 

neurotransmitter release6. SNPs in the SCIN gene curiously did not show a significant main 

effect from the transmission disequilibrium test (p = 0.1026), Cochran-Mantel-Haenszel test 

(p = 0.3762), or additive logistic regression analysis (p = 0.2014) of the screen data. In the 

screen dataset, there was approximately 48% power (α = 0.001) to detect an additive effect 

of 1.213 (the point estimate for the SNP from the overall dataset), and an effect from 

rs2240571 was only seen when modeled with rs8025779, a SNP in the CYFIP1 gene. 

Assessing the joint effect of these SNPs allowed the detection of the weak main effect from 

the SCIN SNP, either due to a true interaction effect that was oversampled in the screen data, 

or perhaps due to subtle changes in allele frequency that prevented detection of the 

interaction in the validation sets7. The effect from SCIN was seen in all datasets, appearing 

as a main effect in two datasets and as an interaction with CYFIP1 in two others. Though the 

nature of the interaction effect was inconsistent, the direction of the effect from SCIN was 

consistent in all models, and in the overall set of samples, SCIN appeared as a main effect.

Model 2

rs17106421 is a SNP 6KB upstream of actinin alpha 1 (ACTN1) located on chromosome 14 

and rs1009150 is an intronic SNP in myosin heavy chain 9 (MYH9) located on chromosome 

22. ACTN1 and MYH9 function in the formation of actin stress fibers and cytoskeletal 

contraction. ACTN1 plays a key role in phosphoinositide-3-kinase-induced cytoskeletal 

reorganization 8, and has brain-specific splicing isoforms 9. Variations in the MYH9 gene 

have been implicated in a wide variety of disorders including HIV-associated nephropathy, 

hypertension and other kidney diseases10, and hearing loss11.

Model 3

rs528011 is an intronic SNP located on chromosome 1 in the muscarinic cholinergic 

receptor 3 (CHRM3) gene between exons 4 and 5. This SNP statistically interacts with 

rs4677905, an intronic SNP in the myosin-light-chain kinase (MYLK) gene located on 

chromosome 3. These genes are related by the calcium signaling pathway and also play a 

role in regulation of the actin cytoskeleton (KEGG pathways: ko04810 & ko04020).

CHRM3 is a G-protein coupled receptor that binds acetylcholine, freeing the G-protein 

complex to activate phospholipase C (PLC) isoforms, generating inositol 1,45-tripohsphate 

(IP3). IP3 binds to the IP3-receptor to release Ca2+ ions from intracellular stores. MYLK is 

activated by this downstream intra-cellular calcium release12. CHRM3 is lost in astrogliotic 

MS lesions13, and acetylcholinesterase inhibitors reduce the clinical severity of experimental 

autoimmune encephalomyelitis (EAE), the mouse model of MS14. MYLK mediates myosin 

II motor activity responsible for actin cytoskelelon contraction, is upregulated during axon 

regeneration15, and plays a role in axon retraction and regeneration mechanisms16. 

Differential expression of MYLK is seen in astrocytes from glaucoma patients, and appears 

to be part of a collection of genes involved in neurodegenerative processes17. As the IL-2 

receptor (IL2R) has been implicated in MS by multiple studies18-20, it is noteworthy that 
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intracellular calcium release also triggers multiple downstream events including IL-2 

production21.

Model 4

rs4816129 in the intronic region of the phospholipase C beta 4 (PLCβ4) gene is located on 

chromosome 20 and statistically interacts with intronic SNP rs6516415 in the phospholipase 

C beta 1 (PLCβ1) gene, located approximately 200 KB upstream. Despite being in close 

physical proximity, these two SNPs are not in linkage disequilibrium in any of the datasets. 

PLCβ4 and PLCβ1 function together in multiple KEGG pathways, including the calcium 

signaling pathway, Wnt signaling, and inositol phosphate metabolism (KEGG: ko04020, 

ko04310, & ko00562).

PLCβ1 and PLCβ4 are two isozymes in the larger phospholipase-C family22, which 

hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) to produce IP3 and diacylglycerol 

(DAG). Notably, DAG activates various protein kinase C (PRC) isoforms. Further, PLCβ1 

and PLCβ4 are expressed in the central nervous system23, 24, and model systems illustrate a 

role for both isoforms in proper conduction of nerve signals25.

The genes identified fall among the first susceptibility loci for MS ostensibly involved with 

the central nervous system and neuron function. Previous studies have identified numerous 

genes implicated primarily in the autoimmune inflammatory process 26-29. The recent 

analysis of Baranzini et al. identified general patterns of significance in axon guidance and 

neurogenesis pathways using the entire GWAS data from Validation set III30, but did not 

specifically identify any of the genes found in this study. From these results we identify 

calcium-signaled cytoskeleton regulation as potential neurodegenerative mechanism for MS 

risk.

Using basic logistic regression procedures, we identified three models that have a non-

additive interaction component while significantly contributing to MS risk, and further 

identify a main effect that was undetected by single-locus analysis of the GWAS data, 

confirming the principle that interaction analysis can improve detection of weak main 

effects4. Methodologically, this study is among the first to apply knowledge-based 

interaction analysis to genome-wide association data30-35, and illustrates that restricting 

evaluation of two-locus interaction models to those with established biological contexts is a 

viable strategy.

Materials and Methods

The International Multiple Sclerosis Genetics Consortium (IMSGC) genotyped 931 parent-

affected child trios for ~500,000 single nucleotide polymorphisms (SNPs) using the 

Affymetrix Mapping 500K SNP chip. 334,923 SNPs passed quality control (QC) 

procedures29. Validation set I consisted of 808 MS cases and 1,720 controls ascertained 

through the Partners MS Center in Boston, Massachusetts and genotyped using the 

Affymetrix 6.0 platform. From this panel, 453 of the 469 SNPs passed QC procedures, and 

these were used to assess the significant models from the genome-wide screen. Validation 

set II consists of an independent set of 2,330 MS cases and 2,110 controls ascertained from 
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Brigham and Women’s Hospital in Boston, MA, University of California San Francisco, 

Washington University, the Accelerated Cure Project out of Massachusetts, Rush University 

of Chicago, and Cambridge University in the United Kingdom. Eight SNPs were genotyped 

for this study using the Sequenom MassARRAY iPLEX genotyping platform. Validation set 

III consists of an independent set of 875 MS cases and 903 controls ascertained as part of the 

multicenter collaborative GeneMSA study, involving the University of California San 

Francisco, Vrije Universiteit Medical Center in Amsterdam, University Hospital Basel, and 

Glaxo SmithKline. This study typed samples using the Illumina Sentrix® HumanHap550 

BeadChip genotyping platform6. Because the initial studies used Affymetrix SNP panels, 

surrogate SNPs were selected from the Illumina platform with close physical proximity and 

high r-squared value based on the Hapmap CEU data.

Pair-wise linkage disequilibrium (LD) statistics computed for over two million SNPs by the 

International HapMap Project (posted June, 2006) were used to establish the Caucasian-

specific haplotype block boundary for each of the 334,923 SNPs in the IMSGC data set. We 

defined the boundaries of the haplotype block represented by each IMSGC SNP using an 

iterative procedure that extends the block boundary sequentially (by SNP) if the D’ measure 

between the HapMap SNP and the IMSGC SNP is equal to 1. Because the IMSGC SNPs are 

a subset of all known genomic variants, using HapMap LD statistics in this way provides the 

larger genomic region (which may harbor susceptibility variants) represented by each 

IMSGC SNP. 5,137 markers in the IMSGC data set were not represented in the HapMap LD 

data, and the nearest HapMap marker was used as a surrogate to assess haplotype block 

boundaries. Marker-gene mappings were generated if a haplotype block that overlaps with 

any portion of a gene as described by the Ensembl database. IMSGC markers capture 14,236 

genes using LD, compared to 13,425 using the markers without accounting for LD.

Using a collection of public data sources that suggest putative gene-gene interaction, we 

generated a set of roughly 20 million two-SNP models36. These sources include the Kyoto 

Encyclopedia of Genes and Genomes, the Protein Families database, the Gene Ontology, 

Reactome, the Database of Interacting Proteins, NetPath, the Genetic Association Database, 

prior regions of suspected linkage for MS, hand-selected candidate genes, and genes 

showing differential expression in MS. These resources define gene categories, such as a 

Gene Ontology term or a KEGG pathway. Because the Gene Ontology is a hierarchical 

resource with some broad categories, GO terms were used for model generation were 

restricted to those containing 30 genes or less. For the collection of genes within each 

category, two-SNP models were exhaustively generated by selecting LD-mapped SNPs 

(using the LD-Spline procedure above) from two different genes of the category. Models 

containing two SNPs within the same gene were avoided to prevent the assessment of 

haplotype effects.

Models were evaluated using conditional logistic regression37 in the trio analysis and 

logistic regression for case-control analysis. Regression models contained three terms; the 

additive main effect of each of two SNPs and a multiplicative interaction term. Two test 

statistics are generated for each model; a model fit statistic (MF) describing the likelihood of 

the specified model given the data, and a likelihood ratio test statistic (LR) comparing the 

full model to a reduced model containing only main effect terms. A significant likelihood 

Bush et al. Page 6

Genes Immun. Author manuscript; available in PMC 2012 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ratio test indicates that including an interaction term significantly improves the fit of the 

model. We required both statistics to be significant, further constraining our results set to 

models with evidence of non-additivity, consistent with Fisher’s description of epistasis38.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Calcium-signaled actin cytoskeleton regulation. Acetylcholine binds to CHRM3 on the 

extracellular surface, releasing its G-protein complex to activate phospholipase C proteins 

(PLCβ1 & PLCβ4). These proteins hydrolyze phosphatidylinositol 4,5-bisphonsphate (PIP2) 

to diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). IP3 binds the IP3 receptor to 

release intracellular calcium (Ca2+) stores from the endoplasmic reticulum (ER). Released 

calcium activates calmodulin (CALM) which then activates myosin light-chain kinase 

(MYLK) triggering downstream MYH9 leading to cytoskeletal rearrangements. Ca2+ also 

binds scinderin (SCIN), an actin severing protein which also functions in actin cytoskeleton 

remodeling, and PIP2 activates actinin alpha 1 (ACTN1), also leading to actin remodeling 

and stress fiber formation. In the present study, CHRM3 and MYLK statistically interact 

(shown in blue), PLCβ1 and PLCβ4 statistically interact (shown in pink), ACTN1 and MYH9 

statistically interact (shown in green), and SCIN has an independent effect (shown in 

orange). [diagram modified from KEGG ko04020].
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