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Abstract
Lipofilling may constitute a technique to assist reconstruction of breasts following prophylactic mastectomy for patients with 
mutated BRCA1 or BRCA2 genes. However, to date it is not clear whether adipose-derived stromal cells (ADSCs) increase 
the risk of tumor initiation and progression in this situation. Therefore, the interactions of BRCA1 mutated breast cancer cell 
lines with normal ADSCs were investigated in the present study. Characteristics of MDA-MB-436 (BRCA1 c.5277 + 1G > A) 
and HCC1937 (BRCA1 p.Gln1756.Profs*74) were compared to MDA-MB-231 and T47D BRCA1/2 wild-type breast cancer 
cell lines. ADSCs were cultivated from lipoaspirates of a panel of BRCA1/2- wildtype patients. Interactions of conditioned 
medium (CM) of these cells with the breast cancer lines were studied using proliferation and migration assays as well as  
adipokine expression western blot arrays. CM of ADSCs exhibit a dose-dependent stimulation of the proliferation of the 
breast cancer cell lines. However, of the ADSC preparations tested, only 1 out of 18 samples showed a significant higher  
stimulation of BRCA1-mutated MDA-MB-436 versus wildtype MDA-MB-231 cells, and all CM revealed lower stimulatory 
activity for BRCA1-mutated HCC1937 versus wildtype T47D cells. Additionally, migration of breast cancer cells in response to 
 CM of ADSCs proved to be equivalent or slower for BRCA1/2 mutated versus nonmutated cancer cells and, with excep-
tion of angiopoietin-like 2, induced expression of adipokines showed no major difference. Effects of media conditioned by 
normal ADSCs showed largely comparable effects on BRCA1-mutated and wildtype breast cancer cell lines thus advocating 
lipofilling, preferentially employing allogeneic non-mutated ADSCs.
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Introduction

The most common cancer among women is breast cancer 
(BC) and around 5–10% of BC cases are hereditary. A quar-
ter of all these cases are linked to germline mutations such 
as breast cancer genes (BRCA) 1 and 2 which function as 
tumor suppressor genes [1]. Mutations in these genes are 
strongly related with breast and ovarian cancer, but also pan-
creas or prostate cancer [2]. In Ashkenazi Jews the preva-
lence of these mutations is higher compared to the general 
population (1/40 individuals versus 1/300 individuals) [3]. 

Patients with mutated breast cancer genes (BRCA) 1 or 2 
have a lifetime risk of developing BC up to 72% and 69%, 
respectively. BRCA-associated cancer patients often show 
a more aggressive form of the disease compared to sporadic 
cancer cases. Additionally, breast cancer with BRCA 1 is 
more often of high grade and triple negative resulting in a 
poorer overall survival [1]. Patients with BRCA2 mutations 
are often estrogen-receptor positive and show an increased 
risk compared to other cancer types.

Bilateral prophylactic mastectomy reduces the risk of  
BC by more than 90% in patients bearing BRCA1/2 muta-
tions. In the US over 100.000 women undergo this form 
of operation each year. Within 4 years the rate of bilateral  
prophylactic mastectomy increased by approximately 35.7% 
only in the US. This operation is recommended for women 
between the age of 25–30 years [4]. After mastectomy, a 
variety of reconstructive techniques can be used to reduce the 
surgical burden of the patients and to provide a higher quality  
of life. These strategies include implants, autologous tissues or  
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the combination of both. Lipofilling has been demonstrated 
as an effective breast reconstruction technique which can 
be combined with implants and flaps [5]. This method has 
several benefits as fat is an autologous tissue, it is soft and 
malleable and, furthermore, available in sufficient quantity 
in the body [6]. The benefit of lipofilling is the usage of the 
patients own fatty tissue that contains numerous adipose-
derived stromal cells (ADSCs). Basically, these mesenchy-
mal stromal cells have the potential to differentiate into adi-
pocytes and other mesodermal tissue types and replace them. 
Although this type of stromal cells is often confused with 
stem cells it does not show the same properties as embryonal 
pluripotent stem cells [7].

ADSC have the ability of multilineage differentiation into 
bone, cartilage, several muscle types, blood vessels, nerves 
as well as skin. They are also associated with adipogenesis 
in the transplanted tissue and revascularization via paracrine 
effects. These cells can be easily harvested by standard lipo-
suction without the need for further cultivation [8]. The fat 
is harvested by liposuction from a suitable donor site of the 
patient (such as thighs or abdomen) and is then centrifuged 
in order to remove blood and to enrich the preparation with 
adipocytes. The ADSC-enriched fat is then injected into the 
breast for reshaping purposes [9]. Due to a slower metabolic 
activity rate, progenitor cells survive longer without nutri-
tion and consume less oxygen compared to mature adipo-
cytes. Additionally, they are more resistant to hypoxic and 
traumatic damage due to the processing of the harvested fat 
as mature adipocytes are more fragile and are not as persis-
tent [7, 8]. However, the side effects of injection of fat are 
necrosis, formation of cysts and hardening of tissue which 
could be mistaken as cancerous calcifications. However, the 
reabsorption rate of the injected fat tissue varies for every 
patient and may be as high as in 30% of the cases [9].

Currently, little is known about the interaction between 
ADSCs and BRCA-mutated normal and cancer cells. It 
is assumed that growth factors and cytokines secreted by 
ADSCs have a crucial impact on cancer initiation, progres-
sion and metastasis [5]. Several studies raised the concern of 
a potential contribution of the ADSCs-conditioned microen-
vironment to cancer development and/or as a possible addi-
tional stimulation of tumor growth [10]. However, clinical 
studies and experimental data failed to provide evidence of 
an increased risk of tumor neoformation or recurrence in 
BC patients [7]. Contrary to nonhereditary BC, lipofilling 
in BRCA1/2 patients employing ADSCs may pose addi-
tional risks which has been not fully investigated so far. A 
study by Zhao et al. reported a tumor-promoting effect of 
ADSCs in which BRCA1 was inactivated using CRISPR/
Cas9 knockdown [11]. These cells effect a approximately 
twofold growth stimulation of breast cancer cell lines and an 
increase in the inflammatory mediator IL-8 thus provoking 
a more malignant tumor phenotype.

In the present study we compared the BRCA1/2 wildtype 
BC cell lines MDA-MB-231 and T47D with two BRCA1-
mutated cell lines, namely MDA-MB-436 and HCC1937. 
Cell lines were tested for their alterations of proliferation 
and migration as well as for changes in the expression of 
selected adipokines in response to CM derived from a panel 
of ADSCs. For this investigation we used normal ADSCs 
due to the nonavailability of BRCA1-mutated ADSCs, ques-
tionable validity of the phenotype of genetically modified 
ADSCs and the putative use of allogeneic normal ADSCs 
that exhibit low immunogenicity.

Patients and Methods

Isolation, Characterization and Differentiation of ADSCs  ADSCs  
were recovered from BRCA1/2 wildtype female patients fol-
lowing liposuction with the written consent of the patients 
according to the Ethics Approval 366/2003 of the Ethics  
Committee of the Medical University of Vienna, Vienna,  
Austria. Fat particles resulting from aspiration through the 
12 gauge cannulas were incubated for 5 days in RPMI-1640 
medium (Seromed, Berlin, Germany) supplemented with  
30% fetal bovine serum (Seromed) and antibiotics (Sigma-
Aldrich, St. Louis, MO, USA), thereafter fat tissue was dis-
carded and the ADSCs that became attached to the tissue 
culture flasks were further cultivated and expanded using  
10% FBS. The ADSCs were characterized by flow cytometry 
by testing the expression of CD73, CD90, and CD105 and  
negative reactivity for CD34 (all antibodies from Bioleg-
end, San Diego, CA, USA) using a Cytomics FC500 FACS  
(Beckman Coulter Germany GmbH, Krefeld, Germany) as 
described previously [7]. Antibodies and isotype controls  
were from Biolegend (San Diego, CA, USA) and secondary 
reagents from Sigma-Aldrich). Data analysis and histogram 
overlays were done employing the Kaluza flow analysis soft-
ware (Beckman Coulter). CM of the ADSCs were prepared 
by harvesting supernantants of ADSCs from confluent cells  
which were kept for a duration of three days.

BRCA1‑mutated Breast Cancer Cell Lines and Normal Controls  
The BRCA1-mutated breast cancer cell lines MDA-MB-436 
and MDA-MB-231 as well as the control lines T47D and 
HCC1937 were cultured in RPMI-1640 medium supple-
mented with 10% fetal bovine serum (FBS, Seromed, Berlin,  
Germany) and on confluence cells were detached with 
trypsin/EDTA (Sigma-Aldrich) and cell numbers counted 
with a LUNA cell counter (Biozym, Vienna, Austria).

Adipokine Western Blot Arrays  Adipokine markers were 
analyzed using the ARY024 Proteome Profiler Array (R&D 
Systems, Minneapolis, MN, USA) according to manufac-
turer’s instructions. Experiments were done in duplicate and 

236 Journal of Mammary Gland Biology and Neoplasia (2021) 26:235–245



1 3

individual membranes calibrated using the included protein 
controls. Arrays were evaluated using ImageJ and Origin 9.1 
software (OriginLab, Northampton, MA, USA).

Cell Proliferation Assays  1 ×  104 cells in 100 µl medium 
were distributed to wells of 96-well microtiter plates (TPP 
Techno Plastic Products, Trasadingen Switzerland) and ten 
twofold dilutions of CM were added in triplicate starting 
with a 1:1 ratio of CM to culture medium. Assays were at 
least performed in triplicate. The plates were incubated 
for four days and viable cells detected using a modified 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbro-
mid (MTT) assay (EZ4U, Biomedica, Vienna, Austria). Test 
results were calculated using Origin 9.1 software (Origin-
Lab, Northampton, MA, USA).

Migration Assay  Cell lines MDA-MB-436, MDA-MB-231  
and HCC1937 were kept in 6-well plates (TPP) in 3 ml 
medium until confluency was reached. T47D showed no 
migratory capacity under these conditions and was not 
considered for these experiments. Then, 2 perpendicular 
scratches were set to remove cells using a plastic tip and 
wells were supplemented with 1 ml of control medium or 
respective ADSC-CMs and further incubated under tissue 
culture conditions. Pictures were taken using a light micro-
scope (magnification 40x) for 3 successive days and areas 
not covered by cells calculated by ImageJ software (imagej.
net) for several positions. Migratory capacity is presented as 
area newly covered by the breast cancer cells.

Statistical Analysis  Statistical significance was determined 
by t-tests and P < 0.05 regarded as significant difference.

Results

ADSC‑dependent Growth Stimulation of the Breast 
Cancer Cell Lines

ADSCs were cultivated from lipoaspirates and this cell pop-
ulation was tested for purity by flow cytometric detection of 
the specific markers CD73, CD90, CD105 and absence of 
CD34 as described previously [7]. CM of the ADSC cultures 
were applied to proliferation assays in twofold dilutions to 
the respective breast cancer cell lines (Fig. 1).

The results show that the CM of ADSCs result in a dose-
dependent stimulation of the proliferation of the cancer cell 
lines and that, in case of the Fat3A CM, this effect is more 
pronounced for the nonmutated cell lines MDA-MB-231 
and T47D versus the BRCA1/2-mutated cell lines MDA-
MB-436 and HCC1937, respectively (Fig. 1). The prolifera-
tion tests for the 4 breast cancer cell lines were extended to 
CM derived from ADSCs of 18 different patients (Fig. 2A 

and 2B). Figure  2A. shows a summary of the growth 
stimulation experiments for control MDA-MB-231 and 
BRCA-mutated MDA-MB-436 employing ADSC-CM of 
18 preparations. Comparison of the effects found for MDA-
MB-231 and MDA-MB-436 revealed that only 1/18 samples 
(GERT) gave a significant higher response for the BRCA-
mutated cell line whereas 4/18 CM gave an opposite signal 
(Fig. 2A). The T47D BC control cell line was grouped with 
the mutated HCC1937 line according to their similar growth 
morphology. In this case, the ADSC-CM revealed a higher 
growth stimulation for the nonmutated T47D line that was 
statistically significant for 6/18 ADSC cultures (Fig. 2B).

Effects of ADSC‑conditioned Media on Cancer Cell 
Migration

The migration of the cancer cell lines was investigated in 
migration assays supplemented with control medium and 
ADSC-CM, as described previously [7]. T47D cells exhib-
ited no significant migration within 2 days and were omit-
ted. Confluent monolayers of the cells were scratched and 
the so-called wound healing process monitored microscopi-
cally for 2 days (Fig. 3). Within 2 days, cells migrate into 
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Fig. 1  Growth stimulation of MDA-MB-231, MDA-MB-436, 
HCC1937 and T47D with conditioned media derived from ADSC 
cell line Fat3A (medium control set to 100%; data represent val-
ues ± SD; initial concentration 50% CM in normal medium; six dilu-
tion steps shown)
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the empty tissue culture flask area and this movement was 
retarded upon supplementation of the cultures with F13 and 
HAB CM.

A quantitative determination of the migratory capac-
ity was carried out using image analysis. For MDA-
MB-231, addition of F13 and HAB media showed a  
trend of lower migration which was significant for F13 and 
day 1 (Fig. 4A). For the BRCA-mutated MBA-MD-436 a 
similar retarding effect was detectable which was significant  
for HAB and day 2 (Fig. 4B). Migration of BRCA-mutated 
HCC1937 cells was retarded in a similar manner with sta-
tistical significance for both supernatants at day 1 and HAB 
media for days 2 (Fig. 4C).

Analysis of Adipokine‑related Proteins Changed 
by ADSC stimulation

The four breast cancer cell lines were preincubated with 50% 
of the respective ADSC-CM and after further incubation 
analyzed for the expression of proteins using an adipokine 
proteome profiler array. Of the 58 adipokines analyzed, 12 
proteins are shown for the MDA-MB-231/MDA-MB-436 
pair and 10 proteins for the HCC1937/T47D pair, respec-
tively (Fig. 5 and Fig. 6). The relevant differences under 
investigation were the diverse responses of wildtype 
and BRCA-mutated BC cell lines to CM of the ADSCs. 
Angiopoietin-like 2 showed higher induction in response 

Fig. 2  Stimulatory effect of CM 
derived from a panel of ADSC 
cell lines on MDA-MB-231 
and MDA-MB-436 (A) and on 
T47D and HCC1937 (B) BC 
cells. Statistical significance is 
indicated by an asterisk. Data 
are shown as mean values ± SD. 
The highest stimulatory effects 
are shown observed for the 50% 
initial concentration of CM in 
regular medium
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to F13 CM in MDA-MB-436 cells whereas chemerin and 
complement factor yielded a similar response in both cell 
lines for both CM used. Elevations in IGFBP-3, CCL2, MIF 
and CCL5 were more pronounced in MDA-MB-231 ver-
sus MDA-MB-436 in contrast to the expression of M-CSF. 
Induction of angiopoietin-like-2, chemerin, complement 
factor and DPPIV was higher in HCC1937 versus T47D in 
contrast to IGFBP-3. With the exception of angiopoietin-
like-2 and DPPIV in the BRCA-mutated breast cancer lines, 
the other differences in ADSC-induced proteins are of minor 
quantitative nature.

Discussion

Breast reconstruction is a favorable option for women with 
a BRCA1/2 mutation who undergo risk-reducing mastec-
tomy [12]. BRCA1 carriers have earlier-onset disease, 
particularly under age 50 and are more likely to develop 
aggressive triple-negative breast cancer than BRCA2 
carriers or those who are BRCA mutation negative [13]. 
Bilateral prophylactic mastectomy decreases the incidence 
of breast cancer by 90% or more in patients with BRCA 
mutation. Regarding the surgical technique, nipple-sparing  
mastectomy is the current standard procedure that is 
able to optimize the oncological and aesthetic results 
[14]. In the absence of contraindications, all patients 
should undergo breast reconstruction in order to mini-
mize the negative impact of the mastectomy. The breast 

reconstruction should be immediate and performed at the 
same time of the prophylactic mastectomy with permanent 
prosthesis or autologous tissues. There may be the need 
to resort to further aesthetic/plastic procedures after the 
prophylactic mastectomy to correct some imperfections or 
repair complications.

Among other techniques, lipofilling can be used for breast 
reconstruction of these patients. However, so far there are 
not sufficient data available to establish the safety of such 
a procedure in respect to tumorigenesis and tumor recur-
rence [5, 15]. In fact, adipocytes, preadipocytes and pro-
genitor cells can stimulate angiogenesis and cancer cell 
growth. The effects of lipofilling were studied by Aroldi 
et al. in patients with BRCA mutations and cancer and the 
authors reported 3 cancer related events: two local relapses 
and one systemic recurrence [15]. The median follow-up 
from primary surgery was quite long: 60 months (range 
20–93) whereas time from lipofilling was 27 months (range 
10–64 months) [15]. The median number of lipofilling was 
3 (range 1–6). Half of the patients had a BRCA1 mutation, 
42% a BRCA2 and 8% a variant of uncertain significance in 
BRCA2. In another study, 18 BRCA carriers with no history 
of breast cancer who had undergone bilateral prophylactic 
mastectomy followed by breast reconstruction with lipo-
filling were observed [5]. A total of 36 lipofilling proce-
dures were performed following an implant or flap, or as an 
exclusive fat grafting for breast reconstruction. The average 
number of lipofilling sessions was 1.4 with a mean volume 
of 108.8 ml per breast. Median follow-up was 33.0 months 

Fig. 3  Light microscopy picture 
of the migration assay of MDA-
MB-436. A) medium control 
showing the scratch area; B) 
medium control at day 2; C) 
effect of F13 CM at day 2; D) 
effect of HAB CM at day 2
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after mastectomy and 24.5 months after the last lipofilling 
intervention and no patients were diagnosed with BC during 
follow-up. This study with limited follow-up provides a first 
hint to the safety of this procedure in patients without cancer.

For the present study we employed two BRCA1-mutated 
cell lines, namely MDA-MB-436 and HCC1937, which 
lack expression of this protein, and compared these lines 
with matching wild-type BC cell lines MDA-MB-231 and 

Fig. 4  Analysis of the migra-
tion assays of MDA-MB-231 
(A), MDA-MB-436 (B) and 
HCC1937 (C). The cell lines 
were stimulated with CM 
derived from ADSC F13 and 
HAB. Statistical significance is 
indicated by *. Data is shown as 
mean values ± SD and represent 
the actual area newly covered by 
migrating cells
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T47D. Tests were performed to check for differences in pro-
liferation, migration and stimulated expression of several 
adipokines after exposure to a number of ADSC-derived 
CM. Unfortunately, only a few BRCA-mutated breast cancer 
cell lines are available [16]. Both MDA-MB lines present as 
small loosely attached cells and HCC1937 and T47D rep-
resent firmly attached cells that require prolonged trypsin 
treatment for harvesting. The breast cancer cell lines were 
stimulated with CM of a large panel of ADSCs and the 
BRCA1-mutated cell lines revealed no higher proliferation 
compared to the matching wild-type breast cancer cells. The 
migratory capacity of the BRCA1-mutated cell lines was not 
stimulated by ADSC-CM, instead, a retardation was found 
for the HAB ADSC-CM. Since triple-negative BC lines are 
known to exhibit higher mobility only MBA-MD231, MDA-
MB-436 and HCC1937 were compared for the effects of CM 
of the ADSCs on migration.

A range of adipokine-related markers were analyzed in 
the wildtype and BRCA1-mutated breast cancer cell lines 
exposed to ADSC-CM. In all cell lines, chemerin and com-
plement factor/adipsin were induced in response to the 
ADSC-CM. Chemerin is a multifunctional adipokine with 
established roles in inflammation, adipogenesis and glucose 
homeostasis [17]. Chemerin is expressed in many tissues 
and is able to induce angiogenesis in endothelial cells. It 
is suggested that chemerin is important for early immune 
responses to infection, injury and inflammation [18]. How-
ever, the role of chemerin in cancer is not fully understood. 
El-Sagheer et al. detected a higher protein expression in can-
cerous tissue compared to healthy ones which was found to 
be also associated with poor survival rates. Pachynski et al. 
found a reduced expression of chemerin RNA in malignant 
breast cancer tissue compared to normal samples. Due to its 
ability to recruit immune effector cells based on increased 

Fig. 5  A and B Ratio CM/
medium of protein expressions 
of MDA-MB-231 and MDA-
MB-436 pretreated with CM of 
F13 and HAB ADSCs, respec-
tively (mean values ± SEM). 
Significantly different adi-
pokines are shown
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gene expression chemerin may exhibits anti-cancer effects 
[18–20]. In breast cancer, with regard to tumor expression 
of chemerin receptors, this adipokine is suggested to exert a 
tumor-suppressive role via binding to chemokine-like recep-
tor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1) 
which effect growth-inhibitory downstream signaling [17]. 
Complement factor D (also called adipsin) is one of the most 
prominent proteins in adipose cells and catalyzes the limit-
ing step of the alternative pathway of complement activation 
[21]. Adipsin was demonstrated to enhance proliferation of 
human breast cancer patient-derived xenograft (PDX) cells 
and may be partially responsible for the increased prolifera-
tion triggered by ADSC-CM [22].

Angiopoietin-like 2 is prominently overexpressed in 
MDA-MB-436 in response to F13-ADSC-supernatant com-
pared to MDA-MB-231 wildtype cells and the same effect 
is detectable in HCC1937 breast cancer cells. Angiopoietin-
like 2 is a secretory glycoprotein related to angiopoietins 
which is expressed by many tissues and is associated with 
angiogenesis and inflammation [23]. The expression of 

angiopoietin-like 2 is elevated in obesity and related patho-
logical conditions [24]. Both in vitro and in vivo experi-
ments showed that the levels of angiopoietin-like 2 secreted 
from breast cancer cells increased with cell proliferation 
and cancer progression [25]. Angiopoietin-like 2 may also 
contribute to vasculogenesis and an important physiological 
property of this factor is that it increases survival and expan-
sion of progenitor cells [26]. Of the other proteins deter-
mined, angiopoietin-1 maintains mostly the homeostasis of 
blood vessels which are in a quiescent state, while angiopoi-
etin-2 plays a crucial role in malignant diseases [27]. Intra-
cellular endocan is also an important regulator of cell growth 
and can also facilitate tumor growth [28]. The expression of 
CCL2 and CCL5 is associated with inflammation and with 
advanced breast cancer and tumor progression [29, 30]. MIF 
can promote tumor microenvironment via macrophages [31].

In HCC1937 cells exposed to ADSC-CM, DPPIV/CD26  
is upregulated and IGFBP-3 shows a reduced expression.  
DPPIV regulates the activity of biopeptides by proteolytically  
cleaving a number of peptides, cytokines, and chemokines. 

Fig. 6  A and B Ratio CM/
medium of protein expres-
sions of HCC1937 and T47D 
pretreated with CM of F13 
and HAB ADSCs, respectively 
(mean values ± SEM). Signifi-
cantly different adipokines are 
shown
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DPPIV plays a significant role in cancer biology and inhibi-
tion of DPPIV promotes cancer metastasis via induction of 
the CXCL12/CXCR4/mTOR/EMT axis [32], implying a dis-
semination-suppressive role in cancer. The family of insulin 
growth factor binding proteins (IGFBPs) plays an important 
role as modulators of the signaling associated with insulin 
growth factors (IGFs) [33]. In tumors, high IGFBP-3 lev-
els in breast cancer tissue are correlated with rapid growth 
and poor prognosis [34, 35]. Therefore, high expression of 
DPPIV and reduced expression of IGFBP-3 point to reduced 
metastasis and proliferation of the breast cancer cells.

BRCA1 gene has been extensively studied and more  
than 1600 mutations have been described with the majority of  
them constituting frameshifts mutations resulting in the 
deletion of or non-functional protein [36, 37]. One investi-
gation studied the effect of an ADSC line in which BRCA1 
was eliminated using the CRISPR/Cas9 technique on the 
interaction with wildtype MDA-MB-231 breast cancer cells 
[11]. This BRCA1-negative ADSCs were reported to induce 
a more aggressive phenotype in MDA-MB-231, that is 
already recognized as highly invasive breast cancer cell line. 
BRCA1 has a tumor suppressor function and it has been 
documented previously that knocking down the expres-
sion of BRCA1 in BRCA1 wild-type cells resulted in an  
increase in the rate of proliferation, increase in the propen-
sity to grow in soft agar, to migrate and to invade matrigel 
[38]. Bendera et al. studied the effect of CM of BRCA1 
and BRCA- mutated or wild-type ADSC on different  
wildtype breast lines. The CM of the ADSCs induced  
the proliferation of luminal, Her2 and basal-like tumor breast 
lines. This proliferative effect of differentiated ADSCs and  
their estrogenic signaling was independent of the BRCA 
mutation status. Furthermore, the tumor stroma of BRCA1/2  
mutated patients was found to be severely altered and to pro-
mote tumor growth and dissemination [39]. It was concluded  
that cells in lipofilling should only be used after removal of  
cancer [40].

The present investigation studied the effects of wildtype 
ADSCs on wildtype and BRCA1-mutated breast cancer 
cell lines and found no major difference of the effects of 
CM derived from a panel of ADSCs. For the case of pos-
sible adverse effects of BRCA1-mutated ADSCs, allogeneic 
ADSCs may be used which are known to exhibit low immu-
nogenicity [41]. In fact, ADSCs beyond passage 1 failed 
to elicit a T lymphocyte response and late passage ADSCs 
actually suppressed the mixed lymphocyte reaction, thus 
supporting the feasibility of allogeneic human ADSC trans-
plantation [42]. The own BRCA1/2 mutated ADSCs may be 
removed by their adherence to plastic surfaces and replaced 
by allogeneic cells during lipofilling. Prophylactic mastec-
tomies and, as a result, breast reconstruction is also per-
formed more frequently and making lipofilling more often 
eligible to improve the aesthetic results. Although guidelines 

disapprove fat grafting in patients with positive familial his-
tory or genetic alteration in BRCA1/2 genes, increasingly 
clinical and experimental evidence support lipofilling for 
these patients [10, 42].

Conclusion

BRCA1/2 mutations result in an increased incidence of 
breast and other cancers. Frequently, carriers of these muta-
tions chose prophylactic mastectomy but material from 
liposuctions is not routinely used for reconstructive surgery 
for these patients due to possible increased tumor initiation 
or recurrence. The present study compared the interaction 
of adipose-derived stromal cells (ADSCs) on wildtype 
and BRCA1-mutated breast cancer cell lines and found no 
increased protumor effects of CM of ADSCs.
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