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In Brazil, vaccination has always cut across party political and ideological
lines, which has delayed its start and brought the whole process into disre-
pute. Such divergences put the immunization of the population in the
background and create additional hurdles beyond the pandemic, mistrust
and scepticism over vaccines. We conduct a mathematical modelling study
to analyse the impacts of late vaccination along with slowly increasing cover-
age, as well as how harmful it would be if part of the population refused to
get vaccinated or missed the second dose. We analyse data from confirmed
cases, deaths and vaccination in the state of Rio de Janeiro in the period
between 10 March 2020 and 27 October 2021. We estimate that if the start
of vaccination had been 30 days earlier, combined with efforts to drive vac-
cination rates up, about 31 657 deaths could have been avoided. In addition,
the slow pace of vaccination and the low demand for the second dose could
cause a resurgence of cases as early as 2022. Even when reaching the
expected vaccination coverage for the first dose, it is still challenging to
increase adherence to the second dose and maintain a high vaccination
rate to avoid new outbreaks.
1. Introduction
As of 25 February 2020, when the first case of infection with SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2) was reported in Brazil, the country has
accumulated more than 21.8 million confirmed cases and, on 17 November 2021,
Brazil’s death toll topped 610 000. To date, nearly 9%of all cases in theworldwere
identified in Brazil and, considering a 7-day rolling average, the country has had
at least a thousand deaths per day for more than 240 days since the onset of the
epidemic. SARS-CoV-2 circulated undetected in Brazil for more than a month
[1] and, even after Brazil declared COVID-19 (coronavirus disease) a national
public health emergency on 3 February 2020 [2], the Brazilian government has
managed the epidemic very loosely so far [3–5], without a cooperative effort
and strategic planning to fight the pandemic. Brazil also faces many economic
and socio-cultural challenges that affect mitigation strategies, such as a large dis-
parity in themortality rate in economically disadvantaged regions [6], the uneven
geographic distribution of intensive care unit (ICU) beds [7,8] and lack of invest-
ment and vulnerability of the health system [9]. Each federal unit is self-governing
for decisions regarding efforts to curb the spread of the disease [10], which leads
to inequalities, such as unbalanced social distancing measures and lack of mass
testing and viral spread tracking.
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The long-awaited roll-out of vaccination programmes
against COVID-19 from across the globe has fuelled hope for
a reduction in the incidence of cases and deaths, as well as
the resumption of economic and social activities. Despite the
critical situation in containing the ensuing epidemic and the
resurgence of cases (especially with the emergence of new var-
iants), compared to other countries Brazil had delays in
starting the vaccination campaign [11], which began on 17 Jan-
uary 2021. Even with a slight increase in the pace of
vaccination in recent months, vaccination efforts remain far
belowwhat is required, with only 72.62% of the national popu-
lation having received at least one dose by 6 November 2021.
In turn, the second dose began to be administered on 5th Feb-
ruary, and since then only 56.65% of the population has been
immunized. To achieve full coverage for people aged 18 and
over by the end of 2021, Brazil needed an average of 1.5million
doses of vaccine administered per day [12]. As of 6 November
2021, the average is approximately 946 000 per day (first dose
and second dose or single dose). Currently, the population
benefits from vaccines from Pfizer-BioNTech, Oxford-Astra-
Zeneca, Janssen and Sinovac (the latter two approved for
emergency use up to the time of writing this paper).

The epidemiological situation in some states is parti-
cularly worrisome due to the level of government
intervention, investments in health, the pace of vaccination
and population mobility [13–15]. Political polarization and
the spread of fake news also hamper the fight against
COVID-19 and the adoption of non-pharmaceutical interven-
tions (NPI) [16,17]. Rio de Janeiro is one of the most
important states in Brazil (hereinafter referred to as Rio de
Janeiro), in terms of demographic density and economic
relevance. With an estimated population of approximately
17.3 million inhabitants in 2020, the state of Rio de Janeiro
is more populous than countries like Belgium, Portugal and
Sweden. The first case reported in the state was that of a tra-
veller returning from Italy and, since then, Rio de Janeiro has
been one of the states in which the epidemic has grown the
fastest, reaching a rate of contagion (in terms of the basic
reproduction number) between 2.2 and 4.9 [13]. The progress
of vaccination in the state follows the slow pace of the rest
of the country: 12.76 million people had received the first
dose (73.77% of the population) and 8.96 million people
had received the second dose (51.78% of the population) as
of 6 November 2021. On average, approximately only 74 800
vaccines have been administered per day since the start of
the vaccination campaign in the state, on 20 January 2021.

Although Brazilians’ tendency towards vaccination com-
pliance is relatively high [18], some factors were partly
responsible for the slowness of the mass vaccination cam-
paign. The country is paying a price for the slow pursuit of
vaccines early on, especially regarding the federal govern-
ment’s rejection of vaccines from Pfizer in mid-2020 [12], in
addition to the revoking of the agreement signed with Sino-
vac [19]. Millions of people are also missing their second
dose—especially because of misinformation, assuming that
just one dose provides the expected immunity [20,21]—and
also owing to temporary interruptions of vaccination ser-
vices, a lack of shots, logistical problems or the absence of
supplies (particularly active pharmaceutical ingredient)
[22,23]. Furthermore, there are on the one hand people who
try to jump the queue to get vaccinated early, and on
the other hand those who choose not to get vaccinated,
seemingly motivated by political ideology [24].
Therefore, it is essential to investigate the likely conse-
quences of such events and circumstances regarding the
burden of the epidemic. For this purpose, this study aims
to at investigate the following issues:

— What would be the influence of bringing forward or
delaying the vaccination roll-out?

— How effective would a faster vaccination process be in
mitigating the epidemic?

— How many deaths could have been averted if there had
been more efforts to obtain and manage vaccines?

— How harmful is the choice of part of the population not
getting vaccinated?

— What is the effect of not taking the second dose of the vac-
cine on the population?

In this context, the objective of this work is to provide an
analysis of scenarios related to the epidemic in Rio de Janeiro,
one of the most important states in Brazil in terms of demo-
graphic density and economic relevance, to answer the issues
raised by employing computational simulations whose
results can be compared to the current situation of the epi-
demic in the state. The general framework we propose can
be extended to analyse the situation of the epidemic in any
region.

2. Methods
2.1. Model description
We extend the well-known SIR (susceptible–infected–removed)
model [25], aiming to incorporate the effects of vaccination in
the population. Initially, assume that β(t) is the transmission
rate over time and γ is the removal rate. The gain in the infective
class (I ) is at a rate proportional to the product of the contact
rates and transmission probability between infectives and sus-
ceptibles (S); that is, the rate of new incidences is given by
β(t)S(t)I(t)/N, where N is the population size. In turn, the rate
at which infected individuals move into the removed class (R)
is given by γI(t). Of note, we also compute the number of dead
individuals, once infected, which are eventually moved into the
dead class (D) at a rate of ρI(t), where ρ is the death rate.

Assume that both susceptible and infected individuals can be
vaccinated (the latter are able to be vaccinated as they may
be asymptomatic). Considering that n different vaccines can be
administered in a population, individuals vaccinated with a
given vaccine i are moved into the corresponding vaccinated
class (Vi) at a rate equal to νi(S(t) + I(t)), where νi is the
vaccination rate associated with vaccine i, for i ¼ 1, . . ., n. Indi-
viduals remain in compartment Vi for the period equivalent to
the interval between doses (when applicable), which is given
by 1/τi. After this period, vaccinated individuals are considered
immune and therefore moved into the removed class, taking into
account the efficacy of the corresponding vaccine, ηi. If immunity
is not acquired with proper vaccination, vaccinated indivi-
duals may become susceptible again, whose class is fed back
proportionally to (1− ηi)Vi.

The model also covers two other aspects inherent to the vac-
cination process: first, part of the population eligible to be
vaccinated can choose not to take both doses of the vaccine
(when applicable). In terms of vaccine efficacy, such individuals
have only partial protection, which we denote by �hi, an impaired
efficacy. In terms of the expected efficacy when both doses are
given, �hi ¼ mhi, where μ is the parameter that modulates the
drop in efficacy; second, a number of eligible individuals may
decide not to get vaccinated. This portion of the population is
denoted as α. Therefore, the rate of change of individuals who



Table 1. Conceptual definition of model parameters. Association between
symbols and their respective definitions, followed by measurement units.

symbol definition (unit)

β transmission rate (per day)

ρ death rate (per day)

γ removal rate (per day)

ν vaccination rate (% of the population per day)

1/τ interval between doses (day)

η overall vaccine efficacy (—)

�h overall impaired efficacy (—)

α portion of people who have not received the

second dose (—)
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take both doses of the vaccine (or the single-dose vaccine) is rep-
resented by the amount τiηi (1− α)Vi (t), whereas for those who
take only the first dose (when two are foreseen), or choose not to
get vaccinated, it is expressed by ti�hiaViðtÞ. The susceptible class
is also fed back proportionally to the value of α. The general
description of the model is provided in equation (2.1). The sche-
matic representation of the model is shown in the electronic
supplementary material. The conceptual definition of model
parameters is shown in table 1.

dS(t)
dt

¼ �b(t)
S(t) I(t)

N
�
Xn
i¼1

�
niS(t)

� ti((1� hi) (1� a)þ (1� �hi)a) Vi(t)
�
,

dI(t)
dt

¼ b(t)
S(t)I(t)

N
� gþ rþ

Xn
i¼1

ni

 !
I(t),

dVi(t)
dt

¼ ni(S(t)þ I(t))� tiVi(t),

dR(t)
dt

¼ gI(t)þ
Xn
i¼1

ti(hi(1� a)þ �hia) Vi(t)

and
dD(t)
dt

¼ rI(t):

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:1Þ

Additionally, we employ the next-generation matrix method
[26,27] to derive the effective reproduction number expression,
which is given by

R(t) ¼ b(t)S(t)
N gþ rþPn

i¼1 ni
� � : ð2:2Þ

For detailed derivation, refer to the electronic supplementary
material.

2.2. Case incidence and vaccination data
Daily data on confirmed cases and dead individuals due to
COVID-19 in Rio de Janeiro are divided into two subsets, from
before and during vaccination. We call training data both time
series of infected and dead individuals in the interval between
10 March 2020, the first day with at least five cases diagnosed,
and 19 January 2021, the last day before the start of vaccination.
These data subsets are denoted as DDDDD1 and DDDDD2, respectively. In the
other subset, which we refer to as test data, the time series are in
the interval between 20 January, the day the vaccination started,
and 27 October 2021. Cumulative data on individuals vaccinated
with the first dose and immunized (with both doses or with the
single-dose vaccine) are also adopted from the same period.
There is no distinction regarding the type of vaccine in the avail-
able data. All data are obtained from the same public repository
[28], which compiles the data provided by the Ministry of Health
[29]. In turn, data on the distribution of vaccines for each Brazi-
lian state, with the distinction among the types of vaccines, are
obtained directly from the Ministry of Health website.

2.3. Data regularization
Daily data on infected and dead individuals in Rio de Janeiro are
very noisy (see the electronic supplementary material, figure S2).
Libotte et al. [30] analysed some of the reasons for this behaviour.
The accumulation of confirmed cases that are not reported on
weekends, in addition to a large-scale underreporting of cases
and a reduced testing capacity are some of the main causes of
such noise. The authors provide a numerical analysis of how
data regularization using Gaussian Process Regression (GPR)
can help reduce the effect of noise on parameter estimation.
The study shows that when successive parameter estimates are
performed, gradually adding data to the training set and com-
paring the corresponding model outcomes to the test set, there
is great variability in the results. Such variability becomes evi-
dent when very different parameter estimates are obtained
using slightly distinct training datasets (sometimes just adding
one more datum to the training set). However, when the training
set is regularized, the variability of the results has a remarkable
reduction. In these circumstances, the regularization of data
emerges as an alternative to reduce the noise level, without mis-
representing data behaviour, in order to streamline the task of
fitting model responses to the dataset. This is our motivation
for using regularized data in this study.

In particular, Gaussian Process (GP) models are a probabilis-
tic approach to representing arbitrary functions by means of a
probability distribution over all possible functions that fit a set
of points [31]. GPR differs from regular regression models in
that distributions are defined over functions, rather than their
parameters, not requiring the definition of a parametric model
that would be able to fit a set of observable data. The strength
of GPs in steering experiments is due to the fact that realizations
correspond to random functions, such that priors for unknown
regression functions are provided and updated with knowledge
of observable data. GPs depend on defining covariance functions
(also known as kernels) that are used to define a similarity
measure of the inputs [32]. Thus GPRs are able to avoid simple
parametric assumptions (because it is a non-parametric
approach), while providing uncertainty quantification on the
predictions [33].

More formally, let t ¼ ðt1, . . . , t pÞ` denote the time training
points associated to a set of p-dimensional observations
DDDDD ¼ ðD1, . . . , D pÞ`. Recalling the regular regression problem,
Di ¼ fðtiÞ þ 1, the function f :R ! R maps a time training point
into the data space (this is the GP we further expect to obtain),
and e � N ð0, �s2Þ is an additive independent and identically
distributed Gaussian noise, where �s2 is the noise variance.
Assuming that t, t

0
∈ t are a pair of general input vectors,

a process given by f(t), defined according to its mean
mðtÞ ¼ E½fðtÞ� and a positive semi-definite kernel function
kðt, t0Þ ¼ E½ðfðtÞ �mðtÞÞðfðt0Þ �mðt0ÞÞ�, is said to be a GP
represented by

f (t) � GP (m(t), k(t, t0)):

The mean is often assumed to be zero (since the observed out-
puts can always be centred in order to have a zero mean).

In a regression problem, the prior probability density of
fðtÞ ¼ ðfðt1Þ, . . . , fðt pÞÞ` has joint multivariate Gaussian distri-
bution f � N ð0, Kðt, t, lÞÞ, such that Kðt, t, lÞ is the covariance
matrix (which is also noise-dependent), whose entries are
ðKðt, t, lÞÞij ¼ kðti, t j, lÞ þ �s2dij, for i, j = 1,…, p, where l is the
set of kernel hyper-parameters and δij is the Kronecker delta.
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Now consider new input time points, denoted by t*, and their
associated output values DDDDD�, which we assume to be also nor-
mally distributed. The joint Gaussian distribution considering
such points is given by

DDDDD
DDDDD�

� �
� N 0, K(t, t, l)þ �s2I K(t, t�, l)

K(t�, t, l) K(t�, t�, l)

� �� 	
,

where I is the p × p identity matrix. Therefore, by deriving the
conditional distribution [31], the posterior predictive equation
is the multivariate Gaussian distribution

p(DDDDD�jt�, t, DDDDD) ¼ N (m�, S�),

with mean

m� ¼ K(t�, t, l)(K(t, t, l)þ �s2I)�1DDDDD
and covariance matrix

S� ¼ K(t�, t�, l)�K(t�, t, l)
�
K(t, t, l)þ �s2I

��1
K(t, t�, l):

As new pairs ðt�, D�Þ are incorporated into the regression pro-
blem, the mean set m� is updated and adopted as the output of
the GPR model, whereas S� provides a measure of confidence
in the estimate [34]. In this work, we adopt the RBF (radial
basis function) kernel [31],

k(t, t0, ‘) ¼ exp � jt� t0j2
2‘2

 !
,

where l ¼ ð‘Þ is the length scale of the kernel. For the available
training data, the optimal hyper-parameter values are
‘ ¼ 51:1 days and ‘ ¼ 29:1 days for the daily data of infected
ðDDDDD1Þ and dead ðDDDDD2Þ individuals, respectively. Regularized data
are shown in the electronic supplementary material, figure S2.
2.4. Inference of model parameters
Model outcomes are fitted to the training set using Bayesian infer-
ence. As the training data are from the period prior to the start of
vaccination, all model parameters that are associated with vacci-
nation (α, νi, τi, ηi and �hi, for i = 1,…, n) are set to zero at this
point. In this setting, the model of equation (2.1) reduces to the
SIR model (including the dead class). As for the remaining par-
ameters, we take the removal rate and the death rate as biological
parameters. The removal rate is equal to γ = 0.06 [35] and the mor-
tality rate is inferred considering the number of cases and deaths,
on average, since the day the first case was reported. Since 5
March 2021, when the first case was confirmed in the state of Rio
de Janeiro, 607 days have passed, and 2174 cases and 113 deaths,
onaverage,per dayhavebeen reported. Thus,we infer themortality
rate as r ¼ 113=2174 ¼ 0:05197 per day.

Regarding the transmission rate, we adopt the functional
form given by

b(t) ¼ b1 exp (�b2t)þ b3 exp (b4t): ð2:3Þ
This specific choice is motivated by the fact that, in the particular
time period over which the training data span, there seems to be
the incidence of two waves of infection. The contribution of the
termassociatedwith thenegative exponentialwouldbe able to rep-
resent the infection rate at an early stage when few individuals are
immune, and the contact rate between them leads to an increase in
the incidence of cases until the peak of the first wave is reached. On
the other hand, the contribution of the term associated with the
positive exponentialwould be related to a new increase in the infec-
tion rate after the event of the first wave. Therefore, the parameters
to be estimated are u ¼ ðb1, b2, b3, b4Þ.

To update the Bayesian model, we employ the Transitional
Markov Chain Monte Carlo [36] (TMCMC) method. This sequen-
tial particle filter method combines aspects of simulated
annealing optimization [37] with Markov Chain Monte Carlo
sampling. To infer the parameters u, we initially obtain the set
of estimators that generate the model outcomes that best fit the
regularized training data, through least squares. Such values
are denoted by b̂1, . . . , b̂4 and, in turn, are used to define the
prior distribution pðuÞ of the corresponding parameters (our
prior belief about the distribution of u ), which we assume to
be uniformly distributed,

p(b j) � U(b̂ j(1� j), b̂ j(1þ j)), ð2:4Þ

where 0 < ξ < 1 is a relative displacement. In this particular appli-
cation, the prior distribution of βj is defined symmetrically
around b̂ j, for j [ f1, 2, 3, 4g, with ξ = 0.9. This strategy aims to
bypass parameter identification problems [38].

The likelihood pðDDDDDjuÞ expresses the plausibility of observing
the data, given a specific u. In this work, we assume that the like-
lihood follows a normal distribution

p(DDDDDqju) � N (mean ¼ Mq, variance ¼ s2
q): ð2:5Þ

Correspondingly to the data, the model responses Mq represent
the number of infected and dead individuals in equation (2.1),
for q [ f1, 2g, respectively. Of note, the model measures the
cumulative number of dead individuals. Therefore, it is manda-
tory to differentiate the result obtained by the numerical
approximation of equation (2.1), regarding compartment D, so
that M2 is consistent with DDDDD2. As the variance of the distribution
is not known, it plays the role of a hyper-parameter and must
therefore be estimated together with u. In the sampling process,
the solution of the system given by equation (2.1) is approxi-
mated using the Fehlberg method [39]. For this purpose, the
initial conditions adopted are Ið0Þ ¼ D1

1, Dð0Þ ¼ D2
1, R(0) = 0

and, therefore, S(0) =N− I(0) −D(0) −R(0).
Since TMCMC gradually pushes the samples from the prior

distribution to the posterior target distribution, the samples of
the intermediate distributions are used to obtain an estimate of
the evidence pðDDDDDÞ. Therefore, the information from equations
(2.4) and (2.5) is combined to compose the posterior distribution
of the parameters,

p(ujDDDDDq)/ p(DDDDDqju)p(u):
Information from observable data is employed to update the
prior belief about the model’s parameters to a posterior belief,
simultaneously considering data from infected and dead individ-
uals. Posterior distributions are approximated using 2000
samples. To compute the 95% credible intervals (whose values
are shown in parentheses following each numerical result in
this work), we adopt an equal-tailed interval, by computing
the 2.5th and 97.5th percentiles of the posterior distribution
pðujDDDDDÞ; that is, 2.5% of the distribution on either side of its
limits. In turn, the maximum a posterior (MAP) of each par-
ameter is approximated by computing the maximum value of
the probability density function estimated using the kernel
density estimator (KDE) [40,41].
3. Results
To perform the simulations, it is first necessary to infer the
values of the free parameters of the model, whose model out-
comes best fit the regularized training data. Figure 1a shows
the posterior distributions of parameters β1,…, β4, whose
statistics are detailed in the electronic supplementary
material, table S3. The solid orange curves represent the
approximation of the distribution computed by KDE. In
turn, the orange dots are the MAPs of each parameter.
Figure 1b shows the behaviour of the function that describes
the transmission rate, given by equation (2.3), using the MAP
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values, for the time period over which the training data span.
In the early stage of the outbreak, with more frequent contact
between people and in the absence of pharmaceutical inter-
ventions, the transmission rate was at a high level,
gradually decreasing during the first wave of infections,
approximately until the end of July 2020. A further increase
in the transmission rate led to the second wave, which
remained at a high level of transmission for months until
its growth could be halted by the start of vaccination.

We consider that the target of individuals to be immu-
nized in Rio de Janeiro is proportional to 80%, which also
corresponds to the number of inhabitants aged 12 years or
over [42]. The vaccination process is carried out with four
vaccines (n = 4), and the vaccination rates of each one are pro-
portional to the number of doses granted to Rio de Janeiro by
the Ministry of Health, as shown in figure 2a. Table 2 shows
the attributes related to each vaccine’s efficacy and dosage
(including the interval between doses) adopted in this
study. The simulations are conducted considering three scen-
arios related to the overall vaccination rate: the base scenario
is associated with the average vaccination rate at the time of
writing this paper; that is, n ¼ 0:40% of the population vacci-
nated per day. This corresponds to approximately 69 200
vaccinated individuals per day, which agrees with the aver-
age of daily vaccinations. In the two other hypothetical
scenarios, we consider n ¼ 0:35% and n ¼ 0:50% of the popu-
lation vaccinated per day. In this setting, approximately
60 550 and 86 500 individuals are vaccinated per day, on aver-
age, respectively. Taking into account the situation of
asymptomatic individuals and a poor testing policy, which
leads to substantial underreporting of cases, we adopt the
same vaccination rate for susceptible and infected individuals
[48,49]. Figure 2b shows the frequencies of vaccination rates
considering both shots (single-dose vaccines count as
second doses), given the cumulative number of individuals
vaccinated per day, which in turn is shown in figure 2c.
The target vaccination coverage for the first dose would be
reached in approximately 290 days, which means that 80%
of the population would have received at least the first dose
by November 2021, as supported by the prediction shown
in figure 2c. As for the second dose, the prediction indicates
that the population would be immunized in the first
months of 2022, respecting the interval between doses.

3.1. Benefits and risks regarding the pace of vaccination
The influence of the pace of vaccination on the mitigation of
the epidemic, in the matter of reducing the number of
infected and dead individuals over time, is shown in
figure 2d. Note that the vaccination data agree with the simu-
lations, even if they were not used to estimate the model
parameters (only DDDDD1 and DDDDD2 were used in the parameter esti-
mation). The same goes for the cumulative data from infected
and dead individuals, indicating that the choice of model
parameters seems to correspond to the actual epidemic scen-
ario in Rio de Janeiro. Such simulations indicate that if the
vaccination process were faster, allowing the vaccination of
approximately 8650 more people per day (with n ¼ 0:5%)
compared to the amount vaccinated in the base scenario,
on average, the number of cases could be reduced by
26.58%, from 1 378 382 (1 226 446–1 472 044) to 1 011 948
(944 239–1 054 368) cases, whereas the death toll would
drop from 70 846 (63 037–75 659) to 52 013 (48 532–54 193).
On the other hand, when the pace of vaccination is delayed
proportionally to n ¼ 0:35%, the adverse effect is dispropor-
tionately greater: the number of confirmed cases would rise
to 1 922 585 (1 607 030–2 128 694), a meaningful increase of
39.48%, and deaths could reach 98 812 (82 596–109 401).
3.2. How the timing of vaccination roll-out affects
disease mitigation

Here, we propose hypothetical scenarios in which the vacci-
nation efforts get underway 10, 20 or 30 days before or
after 20 January 2021. For each particular vaccination rate,
we simulate the model for all combinations of proposed scen-
arios, whose outcomes are shown in figure 3a, concerning the
daily number of infected and dead individuals. For an arbi-
trary vaccination rate, it is clear that starting the vaccination
campaign a few days earlier is beneficial both in terms of
‘flattening the curves’ and in terms of suppressing the
epidemic. Take as an example the scenario in which
n ¼ 0:40%. On 4 June 2021, when simulations show that the
daily death toll would peak if vaccination had started
30 days late, there would have been 893 deaths (700–1001).
On the same day, had the start of vaccination been 30 days
early, there could have been only 34 deaths (28–38). Note
that in the latter case, deaths would peak on 5 June 2020
(first wave), at 148 deaths (146–151).

Figure 3b shows how delaying the start of vaccination
combined with vaccination at a slow pace could be devastat-
ing to the population. In the worst-case scenario, with
vaccination coverage increasing slowly ðn ¼ 0:35%Þ and
the vaccination campaign starting 30 days after 20 January
2021, the number of infected individuals could have reached
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Figure 2. Speed of vaccination and expectation of disease mitigation in Rio de Janeiro. (a) Map of vaccine doses distributed in each Brazilian state per 100 000
inhabitants, and the proportion of each type of vaccine destined for Rio de Janeiro, until 27 October 2021. (b) Frequency of vaccination rate for each shot, in terms of
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6 398 467 (4 754 038–7 462 813), whereas there could have
been 328 781 deaths (244 308–383 445). If we look at the oppo-
site scenario, when more effort is put into a rapid vaccination
ðn ¼ 0:50%Þ that started 30 days before the actual day,
the number of cases and deaths would drop to 660 212
(637 960–677 854) and 33 935 (32 791–34 841), respectively.

We also sought to directly relate the number of vaccinated
and dead individuals, aiming to analyse the likely hardship to
the population when the start of vaccination is delayed, com-
pared to the scenario in which vaccination had started
earlier. Suppose vaccination had started on 19 February 2021,
30 days beyond the actual date, when 313 deaths (291–324)
would have been confirmed, as shown in figure 3c. Based on
the benchmark vaccination rate, the simulations show that
the deaths would peak approximately in June 2021, at 893
deaths (700–1001). At this time, about 6 028 386 people (6 026
531–6 032 208) could have been vaccinated (with both doses
and with the single-dose vaccine), representing approximately
34.84% of the population. However, the worst-case scenario
would bring out a far more ruthless possibility: even with
approximately 7 081 206 people immunized (7 078 053–7 091
406), deaths would peak in July 2021, reaching 1405 deaths in
a single day (1010–1640). This means that, despite having vac-
cinated nearly 17.46%more people, comparing both scenarios,
a record-high daily death toll could have been reached, to a
great extent driven by the late start of vaccination.
According to the simulations, in 2020 the effective repro-
duction number (see the electronic supplementary material)
was only below the threshold RðtÞ ¼ 1 between June and
October, as shown in figure 3d. Despite that, in this period
the lowest value reached was RðtÞ ¼ 0:912, at the end of
July. Afterwards, the effective reproduction number was
always above one, until the vaccination started to take effect.
At this point, imagine that the vaccination had been brought
forward by 30 days. On the same day as the start of vacci-
nation, 1834 new cases (1786–1862) would have been
confirmed. Even maintaining a slow pace of immunization
ðn ¼ 0:35%Þ, the transmission potential of SARS-CoV-2
could have reached RðtÞ ¼ 1 as early as February 2021
(approximately three months after the hypothetical start of
vaccination), when Rio de Janeiro would have vaccinated
24.19% of the eligible portion of the population.
3.3. Potential aftermath of COVID-19 vaccine hesitancy
We now simulate the model considering only 70% vacci-
nation coverage, a reduced amount due to people who are
unwilling to be vaccinated. Figure 4a shows the model
outcomes for the daily number of infected and dead individ-
uals over time, given the three vaccination rates we have
assumed, alongside the cumulative number of vaccinations.
Considering the benchmark vaccination rate, 70% vaccination



Table 2. Characteristics of the vaccines used in the simulations, in terms of
overall efficacy and interval between doses (when applicable). Of note, the
recommended inter-dose interval for Pfizer-BioNTech vaccines is 21–28 days
[43]. However, for countries that face a high incidence of COVID-19 cases
and that have not yet achieved safe vaccination coverage rates, the World
Health Organization recommends that the interval between doses be
extended to 12 weeks [44], which has been adopted all states of Brazil.

vaccine efficacy dosage source

Janssen 66.9% single-dose [45]

Oxford-AstraZeneca 76% two doses,

12 weeks apart

[46]

Pfizer-BioNTech 95% two doses,

12 weeks apart

[43]

Sinovac 50.34% two doses, 4

weeks apart

[47]
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coverage would be reached in the first half of October 2021,
when simulations indicate that 485 cases (290–629) would
be reported daily. In the same period, but assuming a
slower vaccination rate, the daily number of confirmed
cases would be 2171 (1280–2842), when 64.09% of the popu-
lation would be immunized. In addition, overall low
vaccination coverage combined with a lethargic immuniz-
ation program could raise the possibility of a resurgence of
cases (and hence deaths) as early as 2022. After experiencing
a reduction in the number of cases, to a large extent due to
vaccination, in February 2022 there would be the smallest
number of infected individuals since the onset of the epi-
demic, 519 (206–856). However, in the following months,
the incidence of cases could increase again, reaching 1188
new cases (313–2492) per day by mid-May 2022.

Thousands of people have also been missing their second
dose of vaccine in Rio de Janeiro, further complicating a cam-
paign already marred by backwardness and supply
shortages. To the best of our knowledge, there are still no
studies that confirm the overall efficacy of all vaccines used
in Rio de Janeiro when only one shot is provided (except
for the Janssen vaccine), although some studies have already
reported relevant results [50–54]. In the absence of such
information, we assume two scenarios regarding vaccine
efficacies when only the first shot is given: that is, efficacies
are weakened proportionally to m ¼ 25% and m ¼ 50%.
Surveys show that around 14.5% of the Brazilian population
somewhat disagree, strongly disagree, or remain neutral
regarding vaccination [18]. Within this context, we also
consider scenarios with low ða ¼ 20%Þ and moderate
ða ¼ 10%Þ demand for the second dose of vaccines (when
applicable), as well as the best scenario in which a ¼ 0%.
Simulations for the number of dead individuals as of
the actual day when vaccination started, combining factors
associated with parameters μ and α, are shown in figure 4d.
Initially, assume that the first dose of vaccines would yield
an efficacy proportional to m ¼ 25% of the overall efficacy
when both doses are given. In a scenario subject to slow
vaccination, 70% of the eligible population would have
been immunized in approximately 211 days. After this time
frame, the number of daily deaths would be 357 (236–437)
if 20% of the population eligible to be vaccinated missed
their second dose. If the percentage of individuals who do
not receive the second dose dropped to 10%, the death toll
would be 263 (174–322) in the same period. In turn, if the effi-
cacy of vaccines were weakened by m ¼ 50% when the
second dose is neglected, the number of dead individuals
on the same day could be 292 (193–358) and 237 (156–290),
bearing in mind the two scenarios related to vaccination
coverage with the second dose, respectively.

3.4. More ambitious vaccination targets and avertable
deaths

We attempt to infer deaths that could have been averted
simply by having vaccination started days earlier or if the
daily rate of vaccination had been higher. Figure 4b shows
the relationship between vaccinated individuals and cumu-
lative deaths over time. We simulate the model using the
benchmark vaccination rate ðn ¼ 0:40%Þ and compare the
outcomes in the context of a faster vaccination ðn ¼ 0:50%Þ,
making allowance for different days for the start of vacci-
nation from the day it actually started. Simulations show
that presumably not-so-challenging measures, such as
having anticipated the vaccination campaign roll-out by
just ten days, combined with an average vaccination rate
approximately 25% faster, could have averted 15 129 deaths
(12 029–16 986) in relation to the actual scenario; from a
more optimistic, yet still realistic, perspective on the vacci-
nation roll-out, consider a 30-day advance on the date on
which the campaign actually started. In this framework,
31 657 deaths (25 801–35 117) could have been prevented,
which represents 44.68% of the deaths (40.93–46.41%) that
would have occurred since vaccination was started, assuming
a vaccination rate equal to n ¼ 0:40%.

When vaccination became available in Rio de Janeiro, 490
821 cases and 28 215 deaths had already been reported (on
that day, there were 4015 new cases, with 189 deaths).
Figure 4c shows that by increasing the vaccination rate, and
even under the hypothesis of delay, the number of deaths
could drop to 110 653 (95 920–119 456) when the target vacci-
nation coverage in October 2021 had been reached. By
contrast, starting mass vaccination 30 days before 20 January
2021, when Rio de Janeiro had 457 160 cases (448 776–467
785) and 23 546 deaths (23 114–24 093), could have caused
the number of deaths to drop to 20% compared to the
worst-case scenario, assuming that n ¼ 0:40%.

Such delays can also further increase the incidence of the
disease, delaying its peak and, consequently, causing the
peak of deaths to be shifted forward. According to simu-
lations, at the worst stage of the epidemic, there could be
up to 893 deaths (706–1003) a day if there had been a
30-day delay in making vaccines available to the population,
considering the benchmark vaccination rate, shifting the
peak two months ahead of what is expected without such a
delay. Figure 4c supports the fact that delays in the start of
the vaccination campaign cause adverse effects that are
more severe when the vaccination process is slower.
4. Discussion
Until 27 October 2021, approximately 290 days since the roll-
out of vaccination in Brazil, Rio de Janeiro was one of the
states that had received the most doses per 100 000 inhabi-
tants, about 163 561, as shown in figure 2a. Altogether,
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Brazil had about 155 727 doses per 100 000 inhabitants. In
general, access to vaccines in Brazil was delayed, and this
ends up affecting the pace of vaccination even in the states
with the most supply of doses. This fact becomes clear
when we place the situation in Brazil side by side with that
of some other countries, such as Canada, in terms of access
to vaccines. Vaccination was launched in Canada on
14 December 2020, nearly one month earlier than in Brazil.
In the 290-day window since the launch of the vaccination
in Canada, approximately 147 820 doses per 100 000 inhabi-
tants had been administered, a pace similar to what had
been performed in Brazil. However, as of 27 October 2021,
Canada had reached around 153 480 vaccines administered
per 100 000 inhabitants. Considering a 7-day rolling average
of daily new deaths, at that time Canada had 0.89 deaths
per million people, whereas Brazil had 1.64 deaths [55].
Such statistics shed light on the importance of getting
vaccinated as soon as possible.

Social mobility and NPIs are also important factors when
analysing the course of vaccination. The engagement of the
Brazilian population in such measures has always been
below expectations [56]. A very relevant fact is that only
45.5% of Brazilians say they wear a face mask outside the
home [57]. Our findings show that the possibility of an event-
ual resurgence of cases in 2022 should not be overlooked,
even though most of the population has been vaccinated.
This concern even brings up discussions about the possible
loss of immunity and the need for extra doses [58], although
vaccines may remain limited, especially in low-income
countries [59], making NPIs essential even after achieving
adequate vaccine coverage.

In this study, we simplify the effect of vaccines to provide
‘instant immunity’. In the proposed model, this follows from
the fact that the rate at which vaccinated individuals move
into the removed class is given by τiVi(t); that is, individuals
become immunized instantly after the interval between
doses. In fact, immunity only arises a few days after the
second dose (when applicable). However, the model is simu-
lated for several days longer than the time required for
immunity to be achieved—usually around two weeks.
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Therefore, we assume that our results would not be greatly
influenced by this latent period, especially as the number of
vaccinated individuals would not change. On the other hand,
such simplification of the model reduces the number of par-
ameters to be analysed, so that greater focus is given to
parameters and quantities related to the objectives of the
work. This motivates us to consider the choice of not including
a delay in immunization after the second dose (or after
receiving the single-dose vaccine).

As for the values of vaccine efficacies, it is important to
emphasize that they refer to the probability of preventing
severe disease and death. However, we assume that vacci-
nated individuals can still be infected. This hypothesis is in
line with the expected effect of vaccines [43,45,47]. In the pro-
posed model, infected individuals, even having been
vaccinated, can die. The frequency of deaths is preeminently
related to the efficacy of the vaccine. However, note that in
our model, vaccine efficacy has no relevant effect on
transmission rate, but on the rate at which individuals are
moved into the removed compartment. Therefore, the vacci-
nation rate acts in the system of differential equations as a
modulator of the rate at which individuals are moved from
the infected to the dead compartment, as vaccines prevent
severe disease and therefore reduce the mortality rate, but
with no significant effect on the transmission rate [60].

The analysed scenarios reflect current knowledge about
vaccination in Rio de Janeiro, from the perspective of avail-
able data. The persistence of such predictions depends to
some extent on the confirmation of the hypotheses put for-
ward. Particularly regarding vaccine hesitancy (whether for
both doses or just the second), the inaction of certain
people depends a lot on facts that cannot be predicted.
Despite this, social network posts can provide insight into
attitudes and sentiments towards vaccination, for instance.
From 1 December 2020 to 31 March 2021, a lexicon-based sen-
timent analysis of Twitter posts shows a steady trend in



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:2022027

10
people’s perception of Pfizer and Moderna vaccines, while
hesitation over the Oxford-AstraZeneca vaccine appears to
be increasing over time [61]. Nevertheless, until 27 October
2021, Oxford-Astrazeneca vaccines supplied most of the
Brazilian demand, with 34.8% of all vaccines distributed so
far (figure 2a). This could be an indication that, even if the vac-
cine is available, popular sentiment may be volatile enough
that eventually people would not return for the second dose
or possible additional doses, especially for vaccines where
the interval between doses is high. In this context, social net-
works play a fundamental role in shaping the opinion of
part of the population, since the sharing of narratives and per-
sonal opinions without scientific background comes to the
knowledge of many people [62,63]. In Brazil, the oscillations
regarding the feelings analysed in the posts on social networks
are due, in large part, to political actions [64].
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