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Abstract
Kif23 kinesin is an essential actor of cytokinesis in animals. It exists as two major isoforms,

known as MKLP1 and CHO1, the longest of which, CHO1, contains two HXRXXS/T NDR/

LATS kinase consensus sites. We demonstrate that these two sites are readily phosphory-

lated by NDR and LATS kinases in vitro, and this requires the presence of an upstream -5

histidine residue. We further show that these sites are phosphorylated in vivo and provide

evidence revealing that LATS1,2 participate in the phosphorylation of the most C-terminal

S814 site, present on both isoforms. This S814 phosphosite was previously reported to con-

stitute a 14-3-3 binding site, which plays a role in Kif23 clustering during cytokinesis. Sur-

prisingly, we found that phosphorylation of the upstream S716 NDR/LATS consensus site,

present only in the longest Kif23 isoform, is required for efficient phosphorylation at S814,

thus revealing sequential phosphorylation at these two sites, and differential regulation of

Kif23-14-3-3 interaction for the two Kif23 isoforms. Finally, we provide evidence that Kif23 is

largely unphosphorylated on S814 in post-abscission midbodies, making this Kif23 post-

translational modification a potential marker to probe these structures.

Introduction
NDR/LATS kinases form a specific subgroup in the AGC kinase family and are present
throughout the eukaryotic domain, including protists. NDR/LATS are characterized by their
activation through binding to MOB proteins and phosphorylation by a member of the MST or
YSK subgroups of the STE20 kinase family. The NDR/LATS clade itself comprises two distinct
members which are called NDR and LATS in animals. These two subgroups are duplicated as
NDR1,2 and LATS1,2 in vertebrates.

NDR/LATS kinases participate in a wide variety of cellular processes including mitotic exit,
polarized cell growth and control of cell proliferation [1]. Most functional investigations in ani-
mals have focused on LATS as a core component of the hippo pathway [2,3]. This pathway is
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involved in inhibition of cell proliferation in high cell density environments or structured epi-
thelia, as well as mecano-transduced differentiation processes [4]. On the other hand, few stud-
ies have unraveled potential roles for NDR/LATS kinases in mitosis. NDR has been proposed
to promote G1/S transition [5] and to control centrosome duplication [6] and chromosome
alignment [7], while LATS was found necessary for proficient cytokinesis [8,9]. Actually, better
insight on the mitotic functions of NDR/LATS was gained in yeast. Dbf2/Dbf20 of S. cerevisiae
and Sid2 in S. pombe are key players respectively of the MEN (Mitotic Exit Network) and SIN
(Septum Initiation Network) pathways, whose activations are essential for cytokinesis [10],
[11]. In both organisms, these kinases directly phosphorylate and activate Cdc14/Clp1 phos-
phatase [12][13], and Cdc14 in S. cerevisiae is necessary to remove phosphorylations on Cdk
substrates and enter cytokinesis. Other Dbf2 substrates more directly involved in cell cleavage
include Chs2 [14]) and Hof1 [15]. However, transposing these findings in animals is not
straightforward, not to mention differences in cytokinetic processes between yeasts and ani-
mals. First, Dbf2 and Sid2 are more distantly related to animal NDR/LATS kinases than is
Cbk1 and Orb6, the other NDR/LATS yeast kinases, and which are involved in polarized cell
growth [16], [17]. Second, all the Dbf2 and Sid2 phosphorylated sites identified so far have a
minimal AGC kinase RXXS/T signature, which matches that found using degenerate peptide li-
braries for Dbf2 [18]. On the other hand, a more specific HXRXXS/T consensus has emerged
for both animal LATS/NDR and yeast Cbk1 kinases [19], [20]. A strong requirement for the
histidine in position-5 of the phosphorylated serine or threonine was found for these kinases,
using either degenerate peptides or specific physiological protein substrates [19][21]. This re-
quirement is unique among all AGC kinases subgroups, which can otherwise often phosphory-
late the same substrates [19,22]. It is worth noting, however, that not all NDR/LATS identified
substrates bear this-5 histidine [1].

In the present work, we have focused on kinesin Kif23 as a candidate target of NDR/LATS
kinases, as it contains consensus HXRXXS/T phosphorylation sites. Kif23 is a member of the
kinesin-6 subgroup and forms a heterotetramer complex with MgcRacGAP. This complex,
also called centralspindlin, is involved in stabilization of the mitotic spindle anti-parallel mi-
crotubules, from anaphase onset to abscission [23]. In the absence of Kif23 or MgcRacGAP,
cells undergo furrow constriction but fail to complete cytokinesis. Binding of centralspindlin
to the mitotic spindle is regulated by phosphorylation of Kif23 in two ways. First, Cdk1 phos-
phorylation of the N-terminal motor domain inhibits microtubule binding until the meta-
phase to anaphase transition, when Cdk1 activity drops [24]. Then, Aurora B, relocalised at
the spindle midzone at anaphase, phosphorylates Kif23 at S708/S812 (numbering according
to the two major isoforms), which allows its stable binding to midzone microtubules [25].
Actually, S708/S812 phosphorylation does not increase directly Kif23 interaction with
microtubules. It rather counteracts the sequestration of Kif23 by 14–3–3. In fact, Kif23 binds
to 14–3–3, due to the constitutive phosphorylation of S710/S814 on Kif23 by an as yet uniden-
tified kinase. This 14–3–3 phospho-binding site is disrupted when S708/S812 becomes phos-
phorylated by Aurora B. Consequently, replacement of wild type Kif23 by Kif23 S708A
mutant leads to severe cytokinetic defects. On the other hand, S710A Kif23 mutant shows no
defect in cytokinesis, but induces aberrant clustering of Kif23 due to disruption of its binding
to 14–3–3 [25]. In this study, we provide evidence that LATS1,2 are involved in generating
this 14–3–3 binding site by directly phosphorylating Kif23 on S710/S814 in vivo. We also
identify a new in vivo phosphorylation site (pS716) present specifically on the longer isoform,
and which is necessary for phosphorylation at S814 and 14–3–3 binding. Finally, we show
that dephosphorylation of pS710/pS814 is a post-abscission process that is uncoupled from
Kif23 degradation.

Phosphorylation of Kif23
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MATERIALS ANDMETHODS

Antibody reagents
Affinity purified anti-Kif23 was prepared from rabbit serum immune to human GST-Kif23-
iso1(682–907). Antibodies directed against pS716 (ab pS716) and pS814 (ab pS814) of Kif23-
iso1 were prepared as follows. Rabbits were immunized against peptides RRSNpSCSSISVAC
and RRSRpSAGDRWVDC, where pS denotes phospho-serine and C at the C-terminus was
used for crosslinking to thyroblobulin. Rabbits were handled in the animal house of the Institut
Universitaire de Technologie de Montpellier which has an institutional agreement (number
D34–172–8) from Direction Départementale de la Protection des Populations (DDPP) de
l’Hérault (Montpellier, France), which operates under the supervision of the Ministry of Agri-
culture and is dedicated to rabbit immunization and blood sampling. The protocol was not fur-
ther submitted to the approval of an ethics committee. Such approval was not necessary for
those experiments under the French and European legislation at the time they were conducted.
At the end of the immunization protocol, rabbits were anaesthetized with pentobarbital
(30mg/kg) and then sacrificed by injection of dolethal (pentobarbital, 220 mg/kg). Rabbit sera
were first purified on the peptides above immobilized as BSA conjugates on CNBr-activated
sepharose, and the eluates where rapidly passed over unphosphorylated peptide-coupled resin.
Anti-myc antibodies where prepared from mouse 9E10 hybridoma. Anti-human LATS1 clone
C66B5 was from Cell Signalling Technology, anti-human MgcRacGAP from abcam (ab2270),
anti-human cyclin B1 from Santa Cruz (sc-752), anti-Flag clone M2 and anti-tubulin clone
DMA1 from Sigma.

Plasmids
For expression of 6his fusion proteins in E. coli, fragments of human Kif23-iso1 (a.a. 645–911,
NM_138555.2), human PARD3 (a.a. 2–157, BC071566.1), human CYLD (a.a. 2–150,
BC012342.1), human TSG101 (a.a. 240–390, BC002487.1) and mouse MTSS1 (a.a. 293–443,
BC024131.1) were cloned by PCR C-ter of 6xhis tag in pRSETA. Kif23-iso1 (a.a. 682–907,
NM_138555.2) was also cloned in pGEX-4T1 for expression of GST-Kif23. For expression of
Nter-tagged fusion proteins in human cells, complete open reading frames of human Kif23-
iso1 (BC071566.1), X. laevis NDR1 (NM_001086949.1) and X. laevisMOB1A
(NM_001089248.1) were cloned in pCMV10–3xFlag, pRK5HAGST and pRK5myc, respective-
ly. Human 14–3–3, Kif23iso1 and LATS2 were also expressed from vectors pEF6-myc-14–3–
3γ [26], pEGFPC1-KIF23-iso1 [27], pCMV-myc-LATS2 [28] and pEGFP3B-LATS2 [28], all as
Nter-tagged fusion proteins. To express kinase-dead mutants, we generated pRK5HAGST-
NDR1-K118A by site-directed mutagenesis, while pEGFP3B-LATS2–K697M was kindly pro-
vided by H. Nojima [28].

Recombinant proteins
Recombinant proteins were produced in BL21 pLysS E. coli strain and purified on either
TALON affinity resin (6xhis-tagged proteins) (Clontech) or glutathione-sepharose (GST-
tagged proteins).

Cell culture
HeLa and HEK293T cells were cultured in DMEM with fetal calf serum. HEK293T were trans-
fected with polyethylenimine. For double thymidine block synchronization, HeLa cells were in-
cubated in 2.5 mM thymidine for 24 hrs, washed and released for 8 hrs and incubated again in
2.5 mM thymidine for 16 hrs. Synchronised cells were then released in normal medium and
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sampled at different time points. siRNA experiments were carried out using RNAiMAX (Invi-
trogen). Sequence GCAGUCUUCCAGGUCAUCU of Kif23 (iso1 and 2) [29] was used as tar-
get for RNAi. LATS 1 and 2 were depleted using either one of two sets of siRNAs:
ACUUUGCCGAGGACCCGAA (LATS1) and GGACCAAACAGUGACACUU (LATS2), set
1 [30], and CACGGCAAGAUAGCAUGGA (LATS1) [4] and AGCAGAUUCAGACCU-
CUCC (LATS2) [31], set2. HEK293T cells were transiently transfected using JetPEI and col-
lected 40 hrs after transfection. Cell extracts were prepared in 20 mM Tris pH8.0, 150 mM
NaCl, 1% IGEPAL, 5mM EDTA, 50 mMNaF, 50 mM β-glycerophosphate, 1 mMDTT, 1mM
PMSF, 1 mM sodium vanadate and complete protease inhibitor tablet (Roche).

NDR1-MOB1A and LATS2–MOB1A kinase preparation
HEK293T cells were transfected with pRK5HAGST-NDR1/pRK5-Myc-MOB1A or pEGFP3B-
LATS2/pRK5-Myc MOB1A. 40 hrs after transfection, cells were treated for 1 hour with 1 μM
okadaic acid. NDR1 and LATS2 kinases were adsorbed to glutathione beads (via a GST-tagged
GFP trap kindly provided by A. Lamond (Dundee) for LATS2) and eluted with glutathione. Ki-
nase-dead versions were similarly prepared. The GFP-trap used consists of a camel anti-GFP
antibody fused with GST. Kinase preparations were analyzed by gel analysis (S1 Fig.).

Immunofluorescense and microscopy
Cells were fixed in 4% paraformaldehyde, 0.5% Triton X-100, 1X BRB80 for 20 minutes and
processed for immunofluorescence staining with all antibodies diluted in PBS-1% BSA buffer.
To obtain Kif23 and pS814 staining on the same cells, these where first stained with ab pS814
and Alexa 488-coupled anti-rabbit, and then stained with anti-Kif23 coupled to Cy3 fluoro-
phore. Z-stacks were acquired and processed into maximum intensity projections. Midbody
signals were quantified using ImageJ (http://rsb.info.nih.gov/ij/).

Real-time qRT-PCR
Quantification of LATS2 mRNA by qRT-PCR was performed using oligos GGGTTCAGGTG-
GACTCACAA and GTCCCCACACCGACAGTTAG. GAPDH was used as the
reference gene.

Statistical analysis
For statistical analysis of quantified data fromWestern blots, a one-sample two-tailed t-test
was used, while for quantified data from immunofluorescence microscopy, we used a two-
tailed Mann-Whitney test.

RESULTS

Identifying Kif23 S716 and S814 as in vitro targets of NDR and LATS
kinases
With the aim of identifying new mitotic substrates for NDR/LATS kinases, we performed a
simple bioinformatics screen. A scansite search was run to extract a list of HxRxxS/T motif
containing proteins from the UniProtKB/Swiss-Prot database. This list was further filtered
with the “cell cycle” Gene Ontology term and for the presence of evolutionary conservation in
animals ranging from drosophila to humans. From a primary list of nearly 50 candidates,
9 were chosen for their acknowledged role during mitosis and were expressed in E. coli as 6-
His tagged ~20 kDa domains. Among those, five could be radiolabeled when incubated with
ATP-γ-P33 and NDR1-MOB1A kinase purified from HEK293T cells (S1 and S2 Figs.). We
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then determined if substituting alanine for serine in the HXRXXS consensus sequence affected
phosphorylation by the NDR kinase. Two candidate substrates indeed showed decreased phos-
phorylation when mutated: Kif23 and PARD3 (S2 Fig.). Interestingly, the identified phospho-
sites for Kif23 and PARD3 were documented in large scale phospho-proteomics analysis
(S1 Table) [32,33]. We chose to concentrate on Kif23 kinesin for its well established essential
role during cytokinesis. Kif23 exists as two isoforms in mammals, arising from differentially
spliced transcripts: isoform 1 (also known as CHO1) and isoform 2 (also known as MKLP1),
the later lacking a 104 amino acid domain near the C-terminal end (Fig. 1A). Isoform 1 pos-
sesses two candidate NDR/LATS sites, HRRSNS716 and HRRSRS814, the former located in
the supplementary domain, and which is therefore absent in isoform 2. We will thereafter refer
to the Kif23 isoform1 (Kif23-iso1) sequence for numbering the position of these phosphosites.
Two polyclonal antibodies, ab pS716 and ab pS814, were raised against these two phosphosites
and their specificity verified by a dot blot assay (S3 Fig.). These allowed better monitoring of
Kif23 phosphorylation by NDR/LATS kinases. Recombinant GST-Kif23-iso1(682–911) which
includes most of the tail domain of Kif23 was used as a substrate. Fig. 1B shows that both phos-
phosite antibodies detected wild type Kif23-iso1(682–911) after incubation with either NDR1
or LATS1 kinases. These phospho-specific signals were reduced to control levels when the cor-
responding serines were mutated to alanines. We then asked if the histidines at position-5 were
important for efficient phosphorylation, as has been shown for other known LATS substrates
[19][21]. As shown in Fig. 1B, H711A and H809A Kif23 mutants exhibited only background
signals after treatment with NDR and LATS kinases when detected with ab pS716 and ab
pS814, respectively, revealing a strong dependency on these residues for Kif23 phosphorylation
at both sites. We conclude that in vitro, S716 and S814 of Kif23 are specific phosphorylation
sites for NDR1 and LATS1 kinases.

Fig 1. In vitro phosphorylation of Kif23 on S716 and S814 by NDR1-MOB1A and LATS1–MOB1A. A.
Schematic representation of Kif23 isoforms. Black box in Kif23-iso1 depicts the 104 amino acids insertion
corresponding to exon 18. B. WT and mutant GST-tagged Kif23-iso1 (a.a. 682–907) were incubated with
active NDR1-MOB1A or LATS2–MOB1A and analysed by SDS-PAGE and western blotting with the
indicated antibody.

doi:10.1371/journal.pone.0117857.g001
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In vivo phosphorylation of Kif23 on S716 and S814
While phosphorylations at S716 (isoform 1) and S814 (isoforms 1 and 2) were both reported in
phospho-proteomic studies (S1 Table), only the latter has been characterized in more detail
[25]. We could confirm with our anti-pS814 antibody that Kif23 is phosphorylated in cells on
S814 for both endogenous isoforms in HeLa cells (Fig. 2A, right panel) as well as on exogenous
Kif23-iso1 expressed in HEK293T cells (Fig. 2A, right panel). Albeit of lower quality, our anti-
body directed against pS716 could detect endogenous and ectopically expressed pS716–Kif23-
iso1 on anti-Kif23 immunoprecipitates (Fig. 2B), validating the existence of this phospho-resi-
due on endogenous Kif23. However, ab pS716 did not permit us to conduct intracellular locali-
sation studies by immunofluorescence. On the other hand, ab pS814 strongly labeled the
central spindle and midbody rings from anaphase initiation to late telophase (S4 Fig.) in fixed
HeLa cells, as previously described with another pS814 antibody [25]. To see if S814 phosphor-
ylation levels varied during mitosis, we performedWestern blot analysis on extracts of HeLa
cells released from a double thymidine block. As shown in S5 Fig., levels of pS814 mirrored
those of Kif23 for both isoforms from late G1 to exit of mitosis, suggesting that phosphoryla-
tion of this site is constitutive. We conclude that Kif23 is phosphorylated in cells on LATS/
NDR consensus sites S716 and S814 for both isoforms, with the latter being detected in ana-
phase, telophase, and cytokinesis.

LATS is involved in phosphorylation of Kif23 on S814 in vivo
The kinase responsible for in vivo phosphorylation of S814 has not been identified yet. We fo-
cused on testing whether LATS kinases regulate Kif23 phosphorylation in human cells, and did
not address NDR kinases in our cellular settings. LATS1 and 2 were co-depleted using two dif-
ferent pairs of previously validated siRNAs [4,30,31]. Results obtained with set1 siRNAs are
presented in Fig. 3. While LATS1 and 2 were strongly depleted, pS814 to Kif23 ratios were
more modestly reduced by 56% (Fig. 3A,B). The absence of a more complete reduction of
pS814 levels might be explained by redundancy of NDR/LATS kinases, incomplete LATS1,2
depletion, differential stabilities of the phosphorylated and unphosphorylated forms of Kif23,
or involvement of other kinases. Cells depleted of LATS1 and 2 did not exhibit an altered
FACS profile for DNA content (Fig. 3C), excluding the possibility that the observed changes in
Kif23 S814 phosphorylation levels could result from enrichment in a particular phase of the
cell cycle. To strengthen our conclusion that LATS1 and 2 were involved in S814

Fig 2. In vivo phosphorylation of S716 and S814 on endogenous and exogenous Kif23. A. Detection of
S814 phosphorylation byWestern blot on whole cell extracts (WCE) of HeLa cells treated or not with Kif23
siRNA (left) or WCE of HEK293T cells transfected with WT and mutated Flag-tagged Kif23-iso1 (right). B.
Detection of S716 phosphorylation on material immunoprecipitated with anti-Kif23 antibody from HeLa cells
(left) or HEK293T cells transfected with WT and mutated GFP-tagged Kif23-iso1 (right).

doi:10.1371/journal.pone.0117857.g002
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phosphorylation, we wished to determine if the LATS consensus histidine upstream S814 was
important for the observed phosphorylation level of this site in vivo. Wild type and mutated
Flag-tagged Kif23-iso1 were expressed in HEK293T cells and analyzed for their levels of pS814.
Fig. 4A and B shows that mutating the upstream histidine, which was shown to be necessary
for S814 phosphorylation by LATS in vitro, decreased in vivo phosphorylation 4 fold. Given
that NDR/LATS kinases are the only known basophilic kinases showing specificity for histidine
at position-5, together with the siRNA results, we conclude that LATS1 and 2 significantly par-
ticipates in Kif23 phosphorylation at S814 in vivo. On the other hand, the presence of a histi-
dine at position-5 of S716 was dispensable for its phosphorylation, arguing that NDR/LATS is
not involved in this phosphorylation (Fig. 4C).

Phosphorylation of S814 is dependent on S716 phosphorylation on
Kif23-iso1
Unexpectedly, mutation of S716 to alanine not only impeded phosphorylation at S716
(Fig. 2B), it also strongly reduced that of S814 on isoform 1 (Fig. 4). On the opposite, mutation
of S814 in Kif23-iso1 did not affect phosphorylation of S716 (Fig. 2B). Meanwhile, the shorter
Kif23-iso2, lacking the S716 phosphosite, exhibited similar levels of S814 phosphorylation to
that of Kif23-iso1 (S7A Fig.), comforting the conclusion that phosphorylation of S716 is neces-
sary for phosphorylation on S814, rather than allowing hyper-phosphorylation of S814. This
suggests that an ordered sequence of phosphorylation is taking place, with that on S716 occur-
ring before S814. This could be due to unphosphorylated domain around S716 interacting with
and masking S814. It was previously demonstrated that Kif23-iso2 interacts with 14–3–3 in a
phospho-S814 dependent manner and that the peptide sequence surrounding phospho-S814
has 14–3–3 binding activity [25]. We could confirm this interaction by immunoprecipitation
using tagged versions of Kif23-iso1 and 14–3–3-γ expressed in HEK293T cells (Fig. 5 and S7A
Fig.), as well as with both endogenous Kif23 isoforms (S7B Fig.). Mutation of S814 to alanine

Fig 3. pS814–Kif23 levels are reduced after depletion of LATS1,2. A. Unsynchronised HeLa cells were
treated with LATS1,2 siRNAs (set1, see Materials and methods) for 72 hrs and analysed for pS814–Kif23
levels. Depletion of Lats1 was monitored byWestern blot and that of LATS2 by RT-PCR (right panel). Ability
of LATS2 siRNA (set 1) to deplete LATS2 protein was verified indirectly on exogenous myc-LATS2 (S6 Fig.).
B. Quantification of pS814 levels corrected for the amounts of Kif23 (pS814/Kif23) from A and three other
similar experiments.

doi:10.1371/journal.pone.0117857.g003

Phosphorylation of Kif23

PLOS ONE | DOI:10.1371/journal.pone.0117857 February 6, 2015 7 / 16



led, as expected, to a strong, 6 fold decrease in 14–3–3 binding (Fig. 5). Mutation of the
upstream H809 but not that of H711, significantly reduced binding to 14–3–3, although
more modestly. We then asked if Kif23-iso1 S716A mutant could influence formation of
Kif23/14–3–3 complexes. In keeping with its ability to negatively regulate S814

Fig 4. Analysis of pS716 and pS814 levels onWT andmutant Kif23 in HEK293T cells. A. WT and mutant
Flag-tagged Kif23-iso1 were expressed in HEK293T cells and analysed for S814 phosphorylation by
Western blot. B. Histograms of pS814/Kif23 ratios calculated from A and three other experiments. ND: not
detected; NS: not significant. P values refer to comparisons betweenWT and specified mutant Kif23. C. WT
and mutant GFP-tagged Kif23-iso1 were expressed in HEK293T cells, immunoprecipitated with anti-Kif23
antibody and analysed for S716 phosphorylation.

doi:10.1371/journal.pone.0117857.g004

Fig 5. Phosphorylation dependant interaction between Kif23 and 14–3–3. A. WT and mutant Flag-
tagged Kif23-iso1 were expressed with myc-tagged 14–3–3 in HEK293T cells. Material immunoprecipitated
with anti-myc antibodies was analysed byWestern blot for the presence of Kif23. B. Histograms show
amounts of Flag-Kif23 present on anti-myc immunoprecipitates corrected by the amount of Flag-Kif23 in
extracts, calculated from A and three other experiments. P values refer to comparisons betweenWT and
specified mutant Kif23.

doi:10.1371/journal.pone.0117857.g005
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phosphorylation, S716A mutant strongly reduced binding to 14–3–3 (Fig. 5). It ensues that
binding of Kif23-iso1 to 14–3–3 depends on the phospho-S814 binding site, which in turn is
dependent on prior phosphorylation of the upstream S716. As Kif23-iso1 S814A mutant re-
tained only residual binding capacity to 14–3–3, phospho-S716 is probably not a 14–3–3 bind-
ing site per se, and S716D mutation was unable to rescue 14–3–3 binding of the S814 mutant
(S8 Fig.). Altogether, these results show that phospho-S814 is the main determinant of 14–3–3/
Kif23 complex formation, while phosphorylation of S716 is necessary for that on S814. Since
S716 phosphosite is only present in isoform 1, this raises the possibility that the two Kif23 iso-
forms are differentially regulated.

Kif23 is hypophosphorylated on S814 in midbody remnants
As noticed earlier, we found that midbodies (MB) in cells undergoing cytokinesis are strongly
labeled with both anti-Kif23 and anti-pS814 antibodies (Fig. 6A). However, differential labeling
with these two antibodies was noticed when examining structures known as midbody remnants
(MBR), which correspond to post-abscission midbodies. We identified MBRs in HeLa cells as
Kif23 positive single dotted signals not located in the thin constriction bridge of late cytokinetic

Fig 6. Midbody remnants show low level of Kif23 phosphorylation at S814. A, B. Micrographs of HeLa cells stained with DAPI and antibodies against
pS814, Kif23 and tubulin, and representative of cytokinetic MBs (A) or MBRs (B). Yellow arrows point to cytokinetic MBs, while red and green arrows point to
MBRs with low and high pS814 relative staining, respectively. Scale bar: 15 μM. C. Relative phosphorylation at S814 (pS814/Kif23 ratio) was calculated on
individual midbodies either engaged in late cytokinesis (MB) or not (MBR), and represented as box and whiskers plots. Outliers represent values found
outside the 2.5 to 97.5 percentile range. The red horizontal line represents the threshold ratio value above which lie 90% of cytokinetic midbodies. D. Bars
represent the percentage of pS814/Kif23 ratio values that are higher than the threshold value shown in C and counted as pS814 positive.

doi:10.1371/journal.pone.0117857.g006
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cells (Fig. 6B). To strengthen the identity of these structures, we verified that they were also la-
beled with an anti-MgcRacGAP antibody, as MgcRacGAP is known to persist in MBRs
(S9 Fig.) [34]. While quite uniformly and strongly labeled by anti-Kif23 antibodies, these MBRs
produced more heterogeneous signals when revealed by ab pS814, with a large majority exhib-
iting weak signals (Fig. 6B). To better characterise pS814 levels in these two MB populations,
we calculated pS814/Kif23 signal ratios on each individual midbody objects. As shown in
Fig. 6C, the median ratio was 2.7 higher for mitotic MBs, as compared to that of MBRs, reveal-
ing that Kif23 in MBRs are much less phosphorylated than in cytokinetic MBs. When we ap-
plied a minimal threshold ratio above which 90% of late cytokinetic MBs values were found,
only 22% of remnants came out as positive for pS814 (Fig. 6D). This suggests that disappear-
ance of phospho-S814 is not merely a consequence of MBR degradation, but of active dephos-
phorylation of Kif23 at this site which takes place after abscission and early in the
MBR lifespan.

DISCUSSION
During our search of mitotic substrates for NDR/LATS kinases, we noticed that Kif23 dis-
played two consensus HXRXXS phosphorylation sites. One of these sites, pS814, was previous-
ly shown to act as a 14–3–3 binding site, but the kinase responsible for this phosphorylation
was not identified. In this work, we could show that LATS1/MOB1A and NDR1/MOB1A ki-
nases phosphorylate both consensus sites in vitro, and that the presence of histidine at posi-
tion-5 is essential for these phosphorylations. A majority of the identified in vitro and in vivo
NDR/LATS phosphorylated sites comply with the HXRXXS/T signature [1]. Among those, it
was verified that phosphorylation of S175 of angiomotin in vivo was dependant on the up-
stream histidine [21]. Studies performed on a degenerate peptide library with yeast Cbk1 or
semi-degenerate peptides with LATS1 further showed the strong requirement of the histidine
residue [19,20]. When we asked if phosphorylation of S716 and S814 of Kif23-iso1 were also
dependant on the presence of a histidine in vivo, we obtained different outcomes. While S716
phosphorylation was unaffected by its absence, that of S814 was strongly reduced. As no other
basophilic kinase has been reported to rely on a histidine at-5 for substrate recognition, this
suggests that S814 is phosphorylated by a NDR/LATS kinase in vivo. On the other hand, the
neutral outcome of the H711A mutation rather suggests that NDR/LATS are not involved in
S716 phosphorylation in vivo, in contrast to what we observed in vitro. It cannot be excluded
though, that NDR/LATS could be less stringent for this site in vivo. As compared to mutating
the upstream histidine, which resulted in a 4 fold decrease in S814 phosphorylation, a more
modest effect emerged when we performed LATS depletion. LATS1,2 depletion resulted in a
56% decrease in S814–phosphorylated Kif23. While it is conceivable that this modest impact
may arise from the potentially high redundancy of the four NDR/LATS kinases or incomplete
depletion by siRNA, it is also possible that other kinases play a role in this phosphorylation. In
that respect, YAP and p21, two in vivo NDR/LATS substrates, are also known to be phosphory-
lated by other kinases [5,35–37]. We conclude from our siRNA results and the strong depen-
dency of S814 on the upstream histidine that LATS contributes to in vivo phosphorylation of
S814 on both Kif23 isoforms.

While monitoring the phosphorylation status at both S716 and S814 on non-phosphorylata-
ble Kif23-iso1 mutants, we could uncover an interplay between these two sites. Namely, muta-
tion of S716 drastically reduced phosphorylation of the distant S814, but not the opposite. This
would imply that phosphorylations at S716 and S814 obey to a hierarchical order in Kif23-iso1,
whereby S716 phosphorylation would occur first and be necessary for efficient phosphoryla-
tion at S814. We note that this cross-talk between these two phosphorylation events was not
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observed in our in vitro NDR/LATS kinase assay using a ~20 kDa Kif23 fragment. Phosphory-
lation at S710 of Kif23-iso2 (S814 in Kif23-iso1) was previously shown to be important for
binding to 14–3–3 [25]. We found that both S716A and S814A Kif23-iso1 single mutants were
deficient in 14–3–3 binding. While it is still possible that pS716 constitutes a minor 14–3–3
binding site, pS814 is clearly the main 14–3–3 binding site. First, a 26 amino acid including
pS814 was found to behave as an autonomous 14–3–3 binder [25], and second, phosphoryla-
tion of S716 influences that of S814, but not the opposite. This leads to the conclusion that
phosphorylation of S716 indirectly regulates binding to 14–3–3 by influencing S814 phosphor-
ylation, rather than acting as a binding site per se for 14–3–3. Such a hierarchical phosphoryla-
tion system regulating 14–3–3 binding was reported for the FOXO3/FKHR transcription factor
[38]. The underlying mechanism could be that S716 phosphorylation induces unmasking of
S814, either directly by changing Kif23 conformation around S814, or by altering binding to an
unidentified Kif23 interactor.

Both isoforms of Kif23 reside at the spindle midzone and at the MB, and each is sufficient to
achieve proper cytokinesis [25,39]. However, it is possible that each isoform performs other
specific non-essential mitotic functions. Besides, Kif23 participates in other cellular processes,
where each isoform could carry out different tasks [40,41]. It was reported that the 104 amino
acid supplementary domain of Kif23-iso1 bears actin and Arf3 binding activity [42,43]. It
could be worth testing if phosphorylation of S716, located inside this domain, and binding to
these interactors are interdependent. Interestingly, it was shown that phosphorylation of for-
min in yeast and angiomotin in human cells by NDR/LATS kinases regulates their binding to
actin [21,44]. In any case, phosphorylation of S716, as a requisite for S814 phosphorylation,
could modulate binding to 14–3–3 and hence recruitment of Kif23 to the central spindle mi-
crotubules. While this regulation could affect only Kif23-iso1, it is tempting to speculate that it
could concern both isoforms, as Kif23 was shown to act as clusters [45], let aside the possibility
that it could engage as a mixed heterodimer in the centralspindlin complex. Finally, the regula-
tion of Kif23 binding to 14–3–3 by two phospho-sites raises the interesting possibility that this
interaction might be controlled by at least two kinases integrating different signaling inputs, as
was shown for REEP proteins [46].

At the end of mitosis, the two future daughter cells are connected by the MB, a thin intercel-
lular bridge containing a microtubule rich zone [47]. The MB is organized in sub-compart-
ments, including the central MB ring (also called Flemming body) where Kif23 reside.
Asymmetric membrane severing induces the separation of the daughter cells and the inheri-
tance of the MB ring in one of the daughter cells. Alternatively, free floating extracellular MB
rings arise from symmetric severing of the cytoplasmic bridge [34,48]. These post mitotic MB
rings are referred to as midbody remnants (MBR). It was first thought that MBRs did not fulfill
any specific function and were merely destined to degradation, but recent studies have demon-
strated their involvement in post mitotic functions. While in cancer and stem cells, MBRs re-
main in the cytoplasm during multiple cell divisions, in differentiated or differentiating cells,
MBRs are either degraded by the ubiquitin and autophagosome pathways or expulsed in the
culture medium [34,49–51]. Those MBRs remaining inside the cell might play a role in cell fate
[52]. In differentiating germline stem cells of the drosophila embryo, the MBR is segregated
specifically in the daughter cell [53]. In the early C. elegans embryo, the MBR repositions the
mitotic spindle in the P1 cell, a crucial step for the dorso-ventral patterning of the embryo
[54,55]. In HeLa cells, MBRs are rarely released and are mainly found as intracellular organelles
with an average life of 11 hrs [49,50,56]. Among the proteins of the MB that persist in the MBR

are Cep55, MgcRacGAP and Kif23. In this work, we have shown that Kif23 is largely unpho-
sphorylated on S814 in MBRs, in contrast to what is observed for cytokinetic MBs. Since a non
insignificant portion of MBRs do have relative pS814 levels comparable to those of MBs, it is
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probable that dephosphorylation of pS814 takes place after abscission, but rather early during
the lifespan of the MBRs. It will be interesting to determine whether this dephosphorylation oc-
curring in the next cell cycle is the result of lower LATS1,2 kinase activity or higher phospha-
tase activity, or both. While regulation of LATS1,2 kinases during the cell cycle is still elusive,
control of its activity as part of the hippo pathway during control of cell proliferation is well
documented. It is worth noting that cell proliferation is correlated with low LATS kinase activi-
ty and a high number of MBRs. We could show that in the numerous MBRs of HeLa cells, phos-
phorylation of Kif23 on S814, that we suggest to be driven by LATS, is low. On the opposite,
we would expect this phosphorylation to be stronger in cells containing fewer MBRs. This
could merely be the consequence of the expected shorter half-life of MBRs in these low-
population MBRs, the new MBRs just arising from abscission being fully phosphorylated on
S814. On the other hand, those MBRs which escape degradation for longer times would be less
phosphorylated on S814, residing in a context of low LATS kinase activity. However, it is
tempting to speculate that the phosphorylation state of S814 on Kif23 could itself behave as a
determinant of MBRs’ longevity. It will be interesting to establish the phosphorylation status of
S814 of Kif23 on MBRs in other cell types containing different number of MBRs and to verify if
altering this phosphorylation could modulate the MBRs per cell ratio. Alternatively, it could be
worth monitoring pS814 to probe MBRs during differentiation or embryogenesis.

Supporting Information
S1 Fig. Gel analysiss of NDR1 and LATS2 kinase preparations. GST-NDR1, GFP-LATS2 ki-
nases and kinase-dead (KD) versions were purified from HEK293T cells as described in Mate-
rials and Methods and analysed by Coomassie blue staining on polyacrylamide gels. Asterisks
denote recombinant GST-GFP-trap and its degradation products.
(TIF)

S2 Fig. Phosphorylation of NDR1-MOB1A candidate substrates. 6His-tagged candidate sub-
strate domains, as indicated, were incubated with NDR1-MOB1A kinase (WT or kinase dead
(kd)) and analysed by SDS-PAGE and autoradiography.
(TIF)

S3 Fig. Characterization of anti-pS716 and-pS814 phosphosite antibodies. Phosphorylated
and unphosphorylated peptides lining S716 and S814 were deposited on a nitrocellulose mem-
brane as two-fold serial dilutions and revealed with the corresponding affinity purified ab
pS716 and ab pS814.
(TIF)

S4 Fig. Kif23 is phosphorylated on S814 on central spindle and midbody ring. Unsynchro-
nised HeLa cells were fixed and stained with ab pS814, anti-Kif23 and anti-tubulin antibodies.
(TIF)

S5 Fig. Phosphorylation of Kif23 on S814 is constitutive from S to M phase.HeLa cells were
released from a double thymidine block and analyzed for pS814, Kif23 and cyclin B1 content
by Western blot. Cyclin B1 was used as a marker of cell cycle progression. A longer exposure
(right panel) allowed monitoring of S814 phosphorylation level for the minor isoform 1.
(TIF)

S6 Fig. Validation of LATS2 siRNAs on ectopically expressed myc-LATS2.HeLa cells were
transfected with myc-LATS2 and control or LATS2 siRNAs (set 1) and analyzed for the
amount of myc-LATS2 by Western blot.
(TIF)
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S7 Fig. Isoforms 1 and 2 of Kif23 have similar S710/S814 phosphorylation levels and 14–3–
3 binding properties.Myc-14–3–3 (A, B) and WT or mutant GFP-Kif23-iso1, iso2 (A) were
expressed in HEK293T cells and immunoprecipitated with anti-myc antibody. Whole cell ex-
tracts as well as immunoprecipitated materials were analyzed by Western blot.
(TIF)

S8 Fig. Phosphomimetic S716D mutation does not rescue 14–3–3 binding capacity of
Kif23-iso1 S814A mutant.WT and mutant Flag-tagged Kif23-iso1 were expressed with myc-
tagged 14–3–3 in HEK293T cells. Material immunoprecipitated with anti-myc antibodies was
analyzed by Western blot for the presence of Kif23.
(TIF)

S9 Fig. Kif23 and MgcRacGAP co-localise on MBRs. Unsynchronized HeLa cells were fixed
and stained with anti-Kif23, anti-MgcRacGAP and anti-tubulin antibodies and DAPI. Yellow
arrow points to MBs in cytokinetic cells.
(TIF)

S1 Table. List of NDR/LATS consensus phosphorylation sites studied.
(XLSX)
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