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Abstract

How do neurons reconcile the maintenance of calcium homeostasis with perpetual switches in patterns of afferent
activity? Here, we assessed state-dependent evolution of calcium homeostasis in a population of hippocampal
pyramidal neuron models, through an adaptation of a recent study on stomatogastric ganglion neurons. Calcium
homeostasis was set to emerge through cell-autonomous updates to 12 ionic conductances, responding to different
types of synaptically driven afferent activity. We first assessed the impact of theta-frequency inputs on the evolution
of ionic conductances toward maintenance of calcium homeostasis. Although calcium homeostasis emerged effica-
ciously across all models in the population, disparate changes in ionic conductances that mediated this emergence
resulted in variable plasticity to several intrinsic properties, also manifesting as significant differences in firing
responses across models. Assessing the sensitivity of this form of plasticity, we noted that intrinsic neuronal properties
and the firing response were sensitive to the target calcium concentration and to the strength and frequency of afferent
activity. Next, we studied the evolution of calcium homeostasis when afferent activity was switched, in different
temporal sequences, between two behaviorally distinct types of activity: theta-frequency inputs and sharp-wave
ripples riding on largely silent periods. We found that the conductance values, intrinsic properties, and firing response
of neurons exhibited differential robustness to an intervening switch in the type of afferent activity. These results unveil
critical dissociations between different forms of homeostasis, and call for a systematic evaluation of the impact of
state-dependent switches in afferent activity on neuronal intrinsic properties during neural coding and homeostasis.

Key words: hippocampus; homeostasis; intrinsic plasticity; ion channels; sharp wave ripples; theta frequency
oscillations

Significance Statement

A growing body of theoretical and experimental evidence points to neuronal maintenance of calcium
homeostasis. The maintenance of such constancy in the face of perpetual switches in behaviorally driven
afferent activity is a paradox, and has not been quantitatively assessed. We assessed cell-autonomous
calcium homeostasis in a population of hippocampal model neurons subjected to switches in afferent
activity. We found that neuronal conductances and intrinsic properties could undergo variable and signif-
icant plasticity toward maintenance of calcium homeostasis through a regime of such behavioral state-
dependent changes. Our results also reveal that the maintenance of calcium homeostasis does not
necessarily translate to the emergence of individual channelostasis or of functional homeostasis (including
firing rate), thereby establishing critical dissociations between different forms of homeostasis.
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Introduction
Afferent activity patterns to hippocampal pyramidal neu-

rons manifest well established distinctions that reflect the
behavioral state of the animal (Anderson et al., 2007).
Whereas rapid eye movement (REM) sleep and exploratory
activity are associated with theta-dominant oscillatory (4–10
Hz) inputs, non-REM sleep and nonexploratory activity cor-
respond to sharp-wave ripples (SWRs; ripple frequency,
100–200 Hz) riding on largely silent (inter-SWR frequency,
1–3 Hz) periods (Buzsáki, 1986, 198920022006; Buzsáki
et al., 1992; Wilson and McNaughton, 1994; Ylinen et al.,
1995; Csicsvari et al., 1999; Louie and Wilson, 2001; Tononi
and Cirelli, 2006; Montgomery et al., 2008; Mizuseki et al.,
2011; Grosmark et al., 2012; English et al., 2014). Addition-
ally, a growing body of theoretical and experimental evi-
dence points to neuronal maintenance of calcium/activity
homeostasis, through changes in synaptic and/or intrinsic
properties (LeMasson et al., 1993; Siegel et al., 1994; Turri-
giano, 1999; Turrigiano and Nelson, 2000, 2004; Prinz et al.,
2004; Triesch, 2007; Turrigiano, 2007; Marder, 2011; Hon-
nuraiah and Narayanan, 2013; Marder et al., 2014; O’Leary
et al., 2014). How do neurons reconcile the maintenance of
calcium homeostasis with perpetual state-dependent
switches in afferent activity patterns? Existing literature has
explored switches in afferent activity from the perspective of
firing rate modulation, synaptic normalization and plasticity,
especially during sleep—(Tononi and Cirelli, 2006; Chau-
vette et al., 2012; Grosmark et al., 2012; Barnes and Wilson,
2014)—and from the perspective of how dendritic nonlin-
earities endow hippocampal neurons with the ability to
adapt to changes in afferent activity (Gasparini and Magee,
2006). However, the question of how neurons implementing
calcium homeostasis through changes in ionic conduc-
tances react to state-dependent switches in afferent activity
has not been addressed. Specifically, under a self-
regulating, cell-autonomous schema for calcium homeosta-
sis, are there changes in neuronal firing, conductance
values, and intrinsic properties that are consequent to
switches in afferent activity?

To address this, we first arrived at a population of 78
experimentally constrained (with 7 different physiological
measurements) CA1 pyramidal neuron models involving
12 ion channels, derived from a randomized population of
4000 models built from uniform sampling of 48 different

model parameters. Next, we adapted a recent study on
cell-autonomous self-evolution of calcium homeostasis in
neurons of the crab stomatogastric ganglion (O’Leary
et al., 2014) to hippocampal neurons. We ensured that the
adapted model included ion channels derived from hip-
pocampal pyramidal neurons, was endowed with detailed
calcium-handling mechanisms (including pumps, buffers
and the endoplasmic reticulum; Ashhad and Narayanan,
2013) and received different types of afferent activity
through AMPA and NMDA receptors. The temporal evo-
lution of messenger RNAs (mRNAs) and conductances
corresponding to each of the 12 channels was indepen-
dently monitored in each of the 78 valid models, with the
time courses of mRNA evolution controlled by ionic con-
ductances obtained from the corresponding valid model.
Within this modeling framework for cell-autonomous evo-
lution of calcium homeostasis, we tested the impact of
switches in afferent activity (between theta oscillations
and SWR inputs) on neuronal conductances and intrinsic
properties.

Our results suggest that neuronal ion-channel conduc-
tances and intrinsic properties could undergo significant
plasticity in the process of maintaining calcium homeo-
stasis through a regime of behavioral state-dependent
changes in afferent activity. The sign and strength of such
intrinsic plasticity were dependent on the specific activity
pattern, the temporal sequence of switches, and the spe-
cific neuronal model. These results call for a significant
reassessment of the impact of state-dependent switches
in afferent activity on neuronal and network physiology,
especially accounting for potentially adaptive changes in
intrinsic properties.

Materials and Methods
Neuronal model and ion channels

To study state-dependent and cell-autonomous cal-
cium homeostasis in hippocampal CA1 pyramidal neu-
rons, we used a single compartmental cylindrical model of
diameter (d) � 100 �m and length (L) � 100 �m. Passive
properties were set as specific membrane resistance
(Rm) � 35 k�.cm2 and specific membrane capacitance
(Cm) � 1 �F/cm2. These settings ensured that the passive
input resistance (Rin) was �111 M� and the passive
membrane time constant was 35 ms (Narayanan and
Johnston, 2007, 2008). The neuronal compartment con-
sisted of 11 conductance-based models for ion channels
(Fig. 1A) namely, fast sodium (NaF), delayed-rectifier po-
tassium (KDR), A-type potassium (KA), M-type potassium
(KM), T-type calcium (CaT), R-type calcium (CaR), N-type
calcium (CaN), L-type calcium (CaL), hyperpolarization-
activated cyclic nucleotide gated channel (HCN or h),
small conductance (SK) and big conductance calcium-
activated potassium (BK) channels. The channel kinetics
for NaF, KDR, and KA were obtained from Hoffman et al.
(1997) and Migliore et al. (1999), for CaT from Shah et al.
(2011), for KM from Migliore et al. (2006), for CaR and CaL
from Magee and Johnston (1995) and Poirazi et al. (2003),
CaN and SK from Migliore et al. (1995), for HCN from
Magee (1998) and Poolos et al. (2002), and for BK from
Moczydlowski and Latorre (1983). The reversal potentials
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for K� and Na� ions were set as –90 and �55 mV,
respectively, and for the HCN channel as –30 mV. Ac-
counting for the leak conductance (gleak�1/Rm), this con-
figuration meant the presence of 12 ion channels in our
model.

Synaptic receptors
Excitatory synapses containing AMPA and NMDA recep-
tors, modeled using the Goldman–Hodgkin–Katz formu-
lation (Goldman, 1943; Hodgkin and Katz, 1949; Ashhad
and Narayanan, 2013) were introduced in the model. Spe-

Figure 1. Measurements of intrinsic response dynamics in the base neuronal model. A, The cylindrical model used in this study
showing the 11 ion channels inserted. The red arrows denote inward currents and the green arrows denote outward currents. B,
Voltage responses (top) of the base neuronal model to current pulses (bottom) ranging from –50 to 50 pA in steps of 10 pA. C, The
steady state voltages from (B) are plotted against the corresponding current injected. The slope of the resulting V–I plot was defined
as the input resistance, Rin. D, The voltage response of the base neuronal model to a current injection of 250 pA. The amplitude of
the last action potential was defined as the action potential (AP) amplitude, VAP. E, The AP firing frequency (f) versus injected current
plot showing the frequency of firing with current injections from 0 to 250 pA in steps of 50 pA. The number of APs elicited by the model
in response to a 250 pA, 500 ms current pulse was used to compute the firing rate at 250 pA, f250. F, The model’s voltage response
(top) to a chirp current stimulus of peak-to-peak amplitude of 100 pA, with frequency linearly increasing from 0 to 25 Hz in 25 s
(bottom). G, The impedance amplitude profile |Z(f)| derived from traces in F. The frequency at which the impedance amplitude is
maximum (|Z|max) was defined as the resonance frequency, fR. The strength of resonance, Q, was taken as the ratio of |Z(fR)| to |Z(0.5)|.
H, The impedance phase profile (�(f)) with the area under the inductive part of the curve defined as the total inductive phase (�L).
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cifically, a canonical synapse consisting of colocalized
NMDA receptor (NMDAR) and AMPA receptor (AMPAR)
was modeled as in Narayanan and Johnston (2010). The
NMDAR current was modeled as a combination of three
different types of ionic currents namely Ca2�, Na� and
K�:

INMDAR(v, t) � INMDAR
Na (v, t) � INMDAR

K (v, t) � INMDAR
Ca (v, t), (1)

where,

INMDAR
Na (v, t) � PNMDAR PNa MgB(v)

vF2

RT

� [Na]i � [Na]o exp��
vF
RT�

1 � exp��
vF
RT� �, (2)

INMDAR
K (v, t) � PNMDAR PK MgB(v)

vF2

RT

� [K]i � [K]o exp��
vF
RT�

1 � exp��
vF
RT� �, (3)

INMDAR
Ca (v, t) � PNMDAR PCa MgB(v)

4vF2

RT

� [Ca]i � [Ca]o exp��
2vF
RT �

1 � exp��
2vF
RT � �, (4)

where PNMDAR defined the maximum permeability of the
NMDAR; PCa � 10.6, PNa � 1, PK � 1 (Mayer and West-
brook, 1987; Canavier, 1999). Extracellular and intracellu-
lar concentrations of ions were as follows (in mM):
[Na]i�18, [Na]o�140, [K]i�140, [K]o�5, [Ca]i�50 � 10�6,
[Ca]o�2. These ionic concentrations set the Na� equilib-
rium potential at �55 mV and K� equilibrium potential at
–90 mV. MgB(v) governed the Mg2� dependence of the
NMDAR current (Jahr and Stevens, 1990):

MgB(v) � �1 �
[Mg]o exp(�0.062v)

3.57
��1

, (5)

with the default value of [Mg]o set at 2 mM.
Current through the AMPAR was modeled as the sum

of currents carried by sodium and potassium ions:

IAMPAR(v, t) � IAMPAR
Na (v, t) � IAMPAR

K (v, t), (6)

where,

IAMPAR
Na (v, t) � PAMPAR PNa

vF2

RT � [Na]i � [Na]o exp��
vF
RT�

1 � exp��
vF
RT� �,

(7)

IAMPAR
K (v, t) � PAMPAR PK

vF2

RT � [K]i � [K]o exp��
vF
RT�

1 � exp��
vF
RT� �,(8)

where PAMPAR defined the maximum permeability of the
AMPAR. PNa was taken to be equal to PK (Dingledine
et al., 1999). The relationship between AMPAR and
NMDAR permeabilities was defined as follows:

PNMDAR � NAR � PAMPAR, (9)

where NAR represented the NMDAR–AMPAR ratio, with
its default value set at 1.5.

Calcium dynamics
Calcium handling mechanisms to take care of the calcium
reactions, radial diffusion, and buffers were adopted from
Ashhad and Narayanan (2013). The following partial dif-
ferential equation to govern the cytosolic calcium dynam-
ics was used (Sneyd et al., 1995; Fink et al., 2000):

d[Ca2�]
dt

� Dca�
2[Ca2�] � 	(Jleak � JSERCA)

� Rbuf � JVGCC � Jpump, (10)

where DCa is the diffusion constant for [Ca2�] experimen-
tally determined from Allbritton et al. (1992) and Klingauf
and Neher (1997); 	 is the density of leak channels and
SERCA pumps on the endoplasmic reticulum (ER) mem-
brane; JVGCC, JSERCA, Rbuf, Jpump, and Jleak are the calcium
flux due to voltage-gated calcium channels (VGCCs), sar-
coendoplasmic reticulum calcium ATPase (SERCA)
pumps, static buffers, membrane pumps, and leak chan-
nels respectively. Radial diffusion of calcium was taken
care of by compartmentalizing the cylinder into four con-
centric annuli. The calcium concentration on the outer-
most annulus was considered as the cytosolic calcium,
[Ca2�]c (Carnevale and Hines, 2006; Ashhad and Naray-
anan, 2013). The calcium influx into the cytosol through
the ER leak channels was modeled as follows (Fink et al.,
2000; Ashhad and Narayanan, 2013):

Jleak � L�1 �
[Ca2�]

[Ca2�]ER
�mM/ms, (11)

where the leak constant L was chosen such that at resting
state (–65 mV), there was no net flux of calcium through
the leak channels on the ER membrane. The influx of
calcium through the VGCCs and NMDARs in our study
(L-, T-, R-, and N-type calcium channels) was modeled as
follows (Poirazi et al., 2003; Ashhad and Narayanan,
2013):

JVGCC � �
ICa � 
 � diam

2 � F
mM/ms, (12)

where ICa represented the calcium current through the
VGCCs/NMDARs, diam is the diameter of the compart-
ment, and F is the Faraday constant. The negative sign
indicates the inward nature of ICa, and accounts for the
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positive flux of calcium ions with increase in ICa. The
uptake of calcium by the SERCA pump was modeled as
follows (Fink et al., 2000; Ashhad and Narayanan, 2013):

JSERCA � Vmax
[Ca2�]2

[Ca2�]2 � Kp
2
mM/ms, (13)

where Vmax is the average amplitude of uptake by the
pump (1 � 10�4 mM/ms) and Kp is the dissociation con-
stant of calcium binding to the pump (0.27 �M). Ca2�

extrusion through plasma membrane pumps was regu-
lated by a threshold on the cytosolic calcium ([Ca2�]c).
The pumps were inactive below a critical Ca2� concen-
tration, [Ca2�]crt, above which the extrusion rate de-
pended linearly on [Ca2�]c (Fink et al., 2000):

Jpump � ���[Ca2�]c � [Ca2�]crt� : [Ca2�]c � [Ca2�]crt

0 : otherwise
,

(14)

where [Ca2�]crt was set at 0.2 �M, and � (8 �m/s) defines
the sensitivity of pump extrusion (Herrington et al., 1996;
Fink et al., 2000; Ashhad and Narayanan, 2013). The rate
of change in calcium due to the stationary buffers was
modeled as follows (Ashhad and Narayanan, 2013):

Rbuf � �kon[Ca2�][Bbuf] � koff[Ca2�Bbuf], (15)

d[Bbuf]
dt

�
d[Ca2�Bbuf]

dt
� Rbuf, (16)

Kbuf �
koff

kon
, (17)

where [Bbuf] (�450 �M) and [Ca2�Bbuf] represented the
concentrations of free buffer and calcium bound buffer in
the cell. kon and koff denoted the on and off rate constants
for calcium binding to the buffer. Note that Eq. (16) con-
stitutes a pseudo steady-state approximation, consider-
ing free buffer and calcium bound buffer to be in
equilibrium. The value of Kbuf was set at 10 �M (Klingauf
and Neher, 1997; Fink et al., 2000; Ashhad and Naray-
anan, 2013).

Measurements
The excitability of the neuronal model was characterized
by measuring its firing rate at 250 pA (f250; Hz), action
potential amplitude (VAP; mV), input resistance (Rin; M�)
and maximum impedance amplitude (|Z|max; M�). The
intrinsic response dynamics of the neuron were charac-
terized by measuring the resonance frequency (fR; Hz),
strength of resonance (Q) and total inductive phase (�L;
rad.Hz). These standard measurements (Fig. 1) have been
previously used to characterize CA1 pyramidal neurons.
Firing rate at 250 pA was taken as twice the number of
action potentials fired when a current of 250 pA was
injected into the neuron for 500 ms (Fig. 1D,E). Action
potential amplitude was calculated as the difference be-
tween the peak voltage of the action potential and the
resting membrane voltage (–65 mV). Input resistance was

measured by injecting currents of –50 pA to 50 pA, in
steps of 10 pA, for 500 ms (Fig. 1B), recording the corre-
sponding steady-state voltage deflection from –65 mV
and taking the slope of the linear fit to the resulting V–I plot
(Fig. 1C). To quantify the intrinsic response dynamics of
the neuron, we injected a current in the form of a sinusoi-
dal chirp stimulus of constant amplitude (50 pA) and a
linearly increasing frequency (0–25 Hz in 25 s; Fig. 1F).
The impedance as a function of frequency (Z(f)) was ob-
tained by dividing the Fourier transform of the voltage
response by the Fourier transform of the injected chirp
current. The impedance amplitude profile (Fig. 1G) was
calculated as the magnitude of this impedance Z(f) which
is given as follows:


Z(f)
 � 	�Re�Z(f)��2 � �Im�Z(f)��2, (18)

where Re(Z(f)) and Im(Z(f)) are the real and imaginary parts
of the complex valued function Z(f). The frequency at
which |Z(f)| is maximum is called the resonance frequency,
fR. The impedance amplitude at the resonance frequency,
|Z(fR)|, denotes the maximum impedance amplitude,
|Z|max. The strength of resonance, Q, was computed as
the ratio of the maximum impedance amplitude profile
and the impedance amplitude at 0.5 Hz. The impedance
phase profile (�(f); Fig. 1H) was calculated as follows:

�(f) � tan�1 Im�Z(f)�
Re�Z(f)�

. (19)

Total inductive phase was defined as the area under the
inductive part of curve �(f) (Narayanan and Johnston,
2008) which is given by the following:

�L(f) � 

�(f)�0

�(f)df. (20)

Global sensitivity analysis
We used the global sensitivity analysis (GSA), a random
sampling technique similar to previously used approaches
(Bhalla and Bower, 1993; Foster et al., 1993; Goldman
et al., 2001; Golowasch et al., 2002; Prinz et al., 2003,
2004; Achard and De Schutter, 2006; Tobin et al., 2006;
Reid et al., 2007; Hobbs and Hooper, 2008; Weaver and
Wearne, 2008; Taylor et al., 2009; Rathour and Naray-
anan, 2012b, 2014) to study the effect of the variability in
and interactions among the passive and active properties
of the neuron on activity-dependent calcium homeosta-
sis. Four thousand models were generated by choosing a
unique value for each of the 48 parameters (spanning
passive and active properties) from uniform distributions
around appropriate base values (Table 1). The base val-
ues of parameters were obtained by hand-tuning a base
model. As all the 4000 models could not be expected to
have biologically realistic measurements, we validated the
models by constraining the seven measurements to have
values within experimentally determined ranges for CA1
pyramidal neurons (Table 2). Doing so, we found 78 of
4000 (�2%) neuronal models to be physiologically realis-
tic, and called these as valid models. All further analyses
were performed on these 78 valid neuronal models.
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Table 1. Parameters, their default values in the base model and the range over which random sampling was performed during
global sensitivity analysis

Parameter, unit Symbol Default value Testing range
Passive parameters
1 Specific membrane resistance, k�.cm2 Rm 35 30 to 40
2 Specific membrane conductance, �F/cm2 Cm 1 0.5 to 1.5
Na channel parameters
3 Maximal conductance, S/cm2 Na-g 0.007 0.005 to 0.01
4 Inactivation time constant, ms Na-�h 2.34 1.87 to 2.81
5 Activation time constant, ms Na-�m 0.163 0.13 to 0.20
6 Slow inactivation time constant, ms Na-�s 106.1 84.88 to 127.32
7 V1/2 inactivation, mV Na-Vh –45 –47 to –43
8 V1/2 activation, mV Na-Vm –30 –32 to –28
9 V1/2 slow inactivation, mV Na-Vs –60 –62 to –58
KDR channel parameters
10 Maximal conductance, S/cm2 DR-g 0.003 0.001 to 0.005
11 Activation time constant, ms DR-�n 222.9 111.45 to 445.8
12 V1/2 activation, mV DR-Vn 13 10 to 15
KA channel parameters
13 Maximal conductance, S/cm2 A-g 0.008 0.001 to 0.01
14 Inactivation time constant, ms A-�l 2 1 to 4
15 Activation time constant, ms A-�n 0.137 0.086 to 0.43
16 V1/2 inactivation, mV A-Vl –56 –60 to –50
17 V1/2 activation, mV A-Vn 11 8 to 15
CaT channel parameters
18 Maximal conductance, mS/cm2 T-g 0. 1 0.05 to 0. 2
19 Inactivation time constant, ms T-�h 31.02 10.24 to 46.53
20 Activation time constant, ms T-�m 0.858 0.43 to 1.72
21 V1/2 inactivation, mV T-Vh –75 –80 to –70
22 V1/2 activation, mV T-Vm –28 –25 to –15
HCN channel parameters
23 Maximal conductance, mS/cm2 h-g 0.08 0.005 to 0.05
24 Activation time constant, ms h-�l 28.5 20.52 to 71.25
25 V1/2 activation, mV h-Vl –81 –85 to –70
CaL channel parameters
26 Maximal conductance, �S/cm2 L-g 100 50 to 200
27 Activation time constant, ms L-�m 0.189 1.8 to 7.2
28 V1/2 activation, mV L-Va –27.01 –30 to –24
CaR channel parameters
29 Maximal conductance, �S/cm2 R-g 100 50 to 200
30 Inactivation time constant, ms R-�h 12.7 6.35 to 25.4
31 Activation time constant, ms R-�m 0.221 0.11 to 0.442
32 V1/2 inactivation, mV R-Vh –39 –43 to –35
33 V1/2 activation, mV R-Vm 3 –2 to 7
SK channel parameters
34 Ca1/2 activation, nM SK-Ca 140 110 to 180
35 Maximal conductance, �S/cm2 SK-g 1 0.5 to 5
36 Activation time constant, ms SK-� 196.8 98.4 to 393.6
BK channel parameters
37 Maximal conductance, �S/cm2 BK-g 1 0.5 to 5
38 Slope of Ca activation (mM) BK-k1 4.8 � 10�4 2.8 � 10�4 to 6.8 � 10�4

39 Ca1/2 activation (nM) BK-k2 0.13 0.08 to 0.18
40 Activation time constant, ms BK-� 8.04 4.04 to 16.08
KM channel parameters
41 Maximal conductance, �S/cm2 M-g 1 0.5 to 5
42 Activation time constant, ms M-� 6662 3331 to 13323
43 V1/2 activation, mV M-V –40 –45 to –35
CaN channel parameters
44 Maximal conductance, �S/cm2 N-g 100 50 to 200
45 Inactivation time constant, ms N-�h 1555 777.5 to 3110
46 Activation time constant, ms N-�m 0.942 0.471 to 1.884
47 V1/2 inactivation, mV N-Vh 39 35 to 44
48 V1/2 activation, mV N-Vm 19.88 15 to 24
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Self-regulation of calcium homeostasis
To study activity-dependent self-regulation of calcium ho-
meostasis in a hippocampal pyramidal neuron, we
adapted the model introduced by O’Leary et al. (2014)
based on the central dogma of molecular biology (Alberts
et al., 2007). Specifically, we used a single transcription
factor to regulate calcium-dependent transcription of the
twelve channels expressed in the model neuron, with
different time constants (�i) for the messenger RNA
(mRNA) evolution associated with each channel (mi):

�iṁi � [Ca2�]tgt � [Ca2�]c, (21)

where [Ca2�]tgt (default value was 200 nM) represented
the target value of cytosolic calcium concentration
([Ca2�]c) at which homeostasis should be maintained. The
evolution of conductances (gi) of individual channels from
their respective mRNA (translation) was governed by:

�gġi � mi � gi, (22)

where �g is the time constant for the translational process,
and was set to be identically equal to 10 ms for all 12
conductances. We noted, with an additional set of simu-
lations, that changes to the specific value of �g merely
altered the time-course toward reaching steady-state, but
not the steady-state values of the conductances. For the
mRNAs and the conductances to evolve as functions of
the integral of error in calcium with reference to the target
calcium (Eqs. 21, 22), we randomized the initial values of
mi’s and gi’s to be very low. The time constants (�i) for the
evolution of mRNAs with reference to each channel were
selected from the corresponding conductances of the
valid models obtained from the GSA. Specifically, the time
constants (�i) for transcription were set to different values
as follows (O’Leary et al., 2014):

�j

�i
�

gi
k

gj
k

, (23)

where i and j correspond to the 12 ion channels in our
model, and k varies from 1 to 78 and corresponds to the
number of valid models obtained from the GSA. As Eq. 23
defines �i ratios from gi ratios, one of the �i values needed
to be set to obtain the other values. We set the �i value
associated with the sodium conductance at 10 ms, and
computed the other �i values from the appropriate con-

ductance ratios as in Eq. 23. We noted, with an additional
set of simulations, that changes to the specific value of
the �i value for the sodium channel altered the time-course
toward reaching steady-state, but not the steady-state
values of the conductances. The temporal evolution of
transcription and translation were independently as-
sessed for each of the 78 valid models by setting the �i

values to be dependent on the corresponding conduc-
tance ratios in each of these models (O’Leary et al., 2014).
The other parameters associated with the model (the
half-maximal activation voltages, time constants of ion
channels and passive properties) were all derived from the
respective valid model from where the �i values were
derived from.

Assessing state-dependent evolution of calcium
homeostasis
In a manner similar to conditions observed under in vivo
conditions, changes in afferent input to the neuron were
presented as changes to synaptic receptors, specifically
to AMPAR and NMDAR permeabilities (Eqs. 2–9). We
tested the evolution of calcium homeostasis with two
different types of afferent activity patterns that corre-
spond to different behavioral states. The first corre-
sponded to inputs received by hippocampal neurons
during awake/REM-sleep state, and were modeled using
a theta frequency (8 Hz) sinusoidal modulation (Buzsáki
et al., 1983; Harvey et al., 2009) of AMPAR/NMDAR per-
meabilities (Fig. 7B). The amplitude of the sinusoidal per-
meability modulation was such that it was the minimum
amplitude required to elicit action potentials in the neuron.

The second type of afferent activity pattern reflected
that during non-exploratory/non-REM sleep state (Fig.
7C), where the neuron received SWRs riding on largely
silent periods (Buzsáki, 1986). The shape of the SWR
waveform was derived from English et al. (2014), and
SWR amplitude was set such that the response to an
SWR input resulted in a membrane voltage change of
�5–10 mV (English et al., 2014). Specifically, the func-
tional form of SWR inputs was modeled as follows:

SWR(t) � exp��
(t � 55)2

2 � 20 � 20� � 0.3

exp��
(t � 40)2

2 � 15 � 15�sin(2
fripplet/1000), (24)

where t represented time in milliseconds, and fripple was
the ripple frequency set at 150 Hz. Each SWR waveform
lasted for around 150 ms, and was set to repeat at 3 Hz
(Buzsáki, 1986; English et al., 2014). Afferent activity of
the same type was continued until steady state of evolu-
tion in conductances (Eq. 22) was achieved (typically
around 150 s), at which point measurements of intrinsic
properties were noted and a switch in afferent activity was
effectuated as necessary. All switches in afferent activity
from theta oscillations to SWR inputs were initiated after a
reset pulse to –65 mV for 1 s to avoid depolarization-
induced block observed in certain neurons.

Table 2. Constraints on measurements for declaring a model
to be valid under the global sensitivity analysis paradigm

Measurement, unit Lower bound Upper bound
f250, Hz 10 35
VAP, mV 90 110
Rin, M� 50 90
|Z|max, M� 50 110
fR, Hz 2 5.5
Q 1.01 1.5
�L, rad.Hz 0 0.15

These bounds were extracted from experimental recordings (somatic re-
cordings) presented by Narayanan and Johnston (2007, 2008) and Naray-
anan et al. (2010).
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Simulation details
All simulations were performed in the NEURON simulation
environment (Carnevale and Hines, 2006) at –65 mV and
35° C with an integration time constant of 25 �s. Temper-
ature dependence of channel kinetics was appropriately
accounted for with experimentally measured Q10 values
for each channel. The computational complexity of these
simulations was enormous, as there were several differ-
ential equations associated with the activation and inac-
tivation gates of the 11 ion channels (excluding the leak
channel), the differential equation for the voltage and
calcium (including calcium diffusion; Eqs. 10–17), and the
differential equations governing the evolution of 12 mR-
NAs and 12 conductances (Eqs. 21–23). The solutions to
all these differential equations were computed at every
time step (of 25 �s) over a period of 150 s in achieving
steady state for one type of afferent activity (a double
switch in afferent activity is 	3 � 150�450 s, running for
several days in terms of simulation time), for each of the
78 valid models. Data analyses were performed using
custom-written code with IGOR Pro (Wavemetrics) and
statistical analyses were performed with the R Statistical
Package (R Core Team, 2014).

RESULTS
Generation of a valid model population through
global sensitivity analysis
As a first step in assessing state-dependence of cell-
autonomous calcium homeostasis in hippocampal neu-
rons, we generated several biophysically realistic models
of CA1 pyramidal neurons using the GSA approach. Spe-
cifically, we created a cylindrical base neuronal model
(100 � 100 �m) containing 12 ion channels (Leak, NaF,
KDR, KA, KM, HCN, CaL, CaT, CaN, CaR, BK, and SK)
and AMPA and NMDA receptors (Fig. 1A). We hand-tuned
the base model such that the seven intrinsic measure-
ments namely, f250, VAP, Rin, |Z|max, fR, Q, and �L (Fig.
1B–H) were within experimentally determined ranges
(Narayanan and Johnston, 2007, 2008; Narayanan et al.,
2010). We then uniformly sampled 48 parameters (span-
ning passive properties and densities/kinetics of channels
in the neuron) from a range determined from the corre-
sponding base model values to generate 4000 neurons
(Table 1). We obtained seven measurements from each of
these 4000 model neurons, and compared the measure-
ments against their experimental counterparts. A model
neuron was declared valid if all seven measurements of
the model fell within their respective experimental bounds
(Table 2). Upon imposing these experimental constraints
on measurements from the 4000 models, we found 78
(�2%) models to be valid. To test whether there were
correlations between channel expression profiles and
their kinetics, we asked whether there were pairwise cor-
relations between the values of the 48 parameters asso-
ciated with these 78 valid models. Consistent with
previous results on hippocampal neurons (Rathour and
Narayanan, 2012a, 2014), we found the parametric values
to be weakly correlated (Fig 2A) with the range of corre-
lation coefficients ranging from –0.6 to 0.6 (Fig 2B–C).
Importantly, of the 1128 correlation coefficients, 1125

were in the range of –0.4 to 0.4 suggesting weak pairwise
relationships between parameters in the model. As the 78
models were valid models (referred to as GSA models in
what follows) for hippocampal pyramidal neuron physiol-
ogy, we used these for our analysis on state-dependence
of intrinsic properties in regulating calcium homeostasis.

Under theta-frequency afferent activity, calcium-
dependent evolution of ionic conductances resulted
in variable plasticity of intrinsic properties
We set the time constants (�i) for the evolution of mRNAs
with reference to each channel from the corresponding
conductances obtained from the valid model (Eq. 23), and
implemented the evolution of calcium homeostasis (Eqs.
21, 22) for each of the 78 valid models. The neurons were
presented with theta-frequency afferent activity, modeled
as an 8 Hz sinusoidal permeability change in synaptic
receptors. The mRNAs and conductances were allowed
to evolve in time until a steady state was achieved in the
cytosolic calcium concentration and the conductance val-
ues (Fig. 3A). During the initial phase of the evolution
process, the voltage response of the model neuron to the
sinusoidal input conductance corresponded to large-
amplitude oscillations with small action potential ampli-
tudes (Fig. 3A). We noted that this was consequent to the
initial low values of all conductances, implying a large
input resistance leading to large-amplitude voltage oscil-
lations. The small action potential amplitudes, on the
other hand, were consequent to the lower values of the
spike-generating fast sodium conductance. As the
calcium-dependent evolution progressed toward achiev-
ing the target calcium value, the voltage response corre-
sponded to large-amplitude action potentials within each
theta cycle (Fig. 3A).

Although the overall patterns of voltage evolution
across the 78 models were similar to the example pre-
sented in Fig. 3A, there was significant variability in the
final steady-state firing behavior of the model. Specifi-
cally, there was variability in the number of action poten-
tials fired per cycle and there were models that did not fire
at every cycle of the theta, with some of them exhibiting
skipping spikes in alternate cycles and others skipping
several cycles (Fig. 3B). These results imply that the main-
tenance of calcium homeostasis does not require and
does not translate to maintenance of firing rate homeo-
stasis, thereby establishing the dissociation between ac-
tivity homeostasis and calcium homeostasis.

As neuronal firing properties are dictated by ionic con-
ductances, we asked whether changes in conductance
values during theta-dependent evolution was also vari-
able. To answer this, we plotted the histogram of sodium
conductances obtained after theta-dependent evolution
for the 78 valid models, and found that the variability in
firing patterns also reflected in these conductance values
(Fig. 3C). We plotted the histogram solely for the sodium
conductance, and not for all 12 conductances because
the changes in all conductances are correlated given that
a single transcription factor regulated all conductances
(O’Leary et al., 2014; Eqs. 21–23; Fig. 3A). These results
imply that the maintenance of calcium homeostasis does
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not require and does not translate to maintenance of
individual channels at specific conductance values,
thereby establishing the dissociation between individual
channelostasis (Rathour and Narayanan, 2014) and cal-
cium homeostasis (O’Leary et al., 2014).

Variability in the percentage change in conductance
values would imply that the intrinsic response properties
of the neuron should have undergone variable plasticity
during the evolution of calcium-dependent homeostasis.
Therefore, we calculated the seven intrinsic measure-
ments at steady state of the �-dependent evolution, and
compared these measurements with their corresponding
GSA values for each of the 78 valid models. We found that
�-dependent evolution introduced variable plasticity in
each of these measurements, with significant variability in
the strength and sign of these changes (Fig. 3D). Impor-
tantly, although the conductance values obtained from
GSA were those that satisfied experimental bounds
(Table 2), several measurement values at steady state
after �-dependent evolution were not valid with reference
to these experimental bounds (Fig. 3D). Together these
results revealed that plasticity in neuronal intrinsic prop-
erties and in conductances could exhibit significant vari-

ability when ionic conductances were allowed to evolve
toward achieving calcium homeostasis with �-oscillations
as afferent inputs. These results imply that the mere main-
tenance of calcium homeostasis does not require and
does not translate to maintenance of intrinsic measure-
ments within a “valid” range, thereby establishing the
dissociation between functional homeostasis and calcium
homeostasis.

Sensitivity of intrinsic plasticity driven by calcium
homeostasis to target calcium concentration and to
the strength and frequency of afferent activity
What was the impact of changing the target calcium
concentration, [Ca2�]tgt (from the default value of 200 nM),
on the temporal evolution of conductances and conse-
quent plasticity in intrinsic properties? To address this, we
repeated the �-dependent evolution experiments (Fig. 3)
with two other values for [Ca2�]tgt, set at 100 and 300 nM.
We observed neuronal firing at steady state (150 s) of
�-dependent evolution and found that the neuronal model
fired more action potentials per �-cycle upon increase in
[Ca2�]tgt. However, at a higher target value (300 nM), the
neuron entered into depolarization-induced block with the

Figure 2. Weak correlations between underlying parameters in valid models that emerged from global sensitivity analysis spanning
48 parameters. A, Pairwise interactions of the 48 parameters of the valid model population consisting of 78 models. Blue scatter plots
represent parametric pairs whose correlation coefficient was more than 0.4, whereas red scatter plots indicate pairs with correlation
coefficient less than –0.4. Bottom, The normalized histograms of the 48 parameters across the 78 valid models. B, Color-coded plot
denoting the correlation coefficients for the corresponding scatter plots in A. C, Histogram of the 1128 correlation coefficients
corresponding to the scatter plots in A.

New Research 9 of 24

July/August 2015, 2(4) e0053-15.2015 eNeuro.sfn.org



membrane potential hovering at suprathreshold voltage-
levels (Fig. 4A). Turning to steady-state values of intrinsic
properties after �-dependent evolution, we noted that
variable plasticity in all seven intrinsic measurements was
observed across all three values of [Ca2�]tgt, with no
qualitative differences observed in measurement variabil-
ity with different values of [Ca2�]tgt (Fig. 4B–H).

We next assessed the impact of afferent activity
strength on �-dependent evolution by altering the peak-
to-peak amplitude of the sinusoidal modulation in recep-
tor permeability, with the sinusoidal frequency fixed at 8
Hz (Fig. 5). Whereas the neuron did not fire action poten-
tials for lower strengths of afferent input (Fig. 5A; perme-
ability value P1), at very high values of input permeability
neurons entered into depolarization-induced block with
average membrane potential around –30 mV (Fig. 5A;
permeability value P4). In the mid-range between these
two extremes, the number of action potentials fired per

cycle increased with increase in afferent input strength.
Assessing steady-state values of intrinsic properties after
�-dependent evolution, we noted that variable plasticity in
all seven intrinsic measurements was observed across all
tested values of input strength, with no qualitative differ-
ences observed in the measurement variability with dif-
ferent values of the sinusoidal peak-to-peak amplitude
(Fig. 5B–H).

Finally, to understand the impact of afferent activity
beyond the theta-frequency range on the evolution of
calcium homeostasis and intrinsic properties, we picked
samples from different frequency bands (delta: 1 Hz, the-
ta: 8 Hz, slow gamma: 40 Hz, and fast gamma: 100 Hz)
and repeated our simulations (until steady-state was
achieved) with these afferent input frequencies. Neuronal
response reflected theta-frequency band-pass structure
of hippocampal pyramidal neurons, eliciting maximal fir-
ing response at the theta range with reduced response

Figure 3. Evolution of ionic conductances and intrinsic measurements through cell-autonomous self-regulation of calcium homeostasis in
model neurons receiving theta-frequency inputs. A, Temporal evolution of the internal calcium concentration (left), the 12 ionic conduc-
tances in the model (Leak, NaF, KDR, KA, KM, HCN, CaL, CaN, CaR, CaT, BK, SK; middle) and membrane voltage (right) in a model neuron
receiving sinusoidal input of 8 Hz. The firing pattern of the neuron is shown at the three different temporal locations (middle). B, Firing pattern
of four different model neurons at steady-state of theta-dependent evolution. All traces are for a 1 s period. C, Histogram of gNa measured
at steady state of evolution with �-frequency oscillations (black). Also plotted is the histogram of base values of gNa obtained from GSA.
Histograms are across the 78 valid models. D, Top, Seven intrinsic measurements (f250, VAP, Rin, |Z|max, fR, Q, �L) at steady state of
theta-dependent evolution (�) of six different valid models (color-coded) compared with the corresponding baseline GSA values (GSA).
Bottom, Histograms of the percentage change in the seven measurements at steady state of theta-dependent evolution from the
corresponding baseline GSA values, plotted for all 78 valid models. Percentage change in subthreshold measurements (Rin, |Z|max, fR, Q,
�L) were computed only for those models that did not fire action potentials in response to the injected stimulus. In addition, models that
showed very high percentage changes in �L were eliminated. The number of models (n) used for each histogram is mentioned in the
respective panel.

New Research 10 of 24

July/August 2015, 2(4) e0053-15.2015 eNeuro.sfn.org



with little or no firing at other frequency bands (Fig. 6A).
Although the measurements at steady state of calcium-
dependent evolution did exhibit significant variability
across the 78 models, their values did not have any
specific dependence on the frequency of the input (Fig.
6B–H). For all further analyses, the default input frequency
was 8 Hz to take into account the hippocampal theta
rhythms, as mentioned above. Together, although neuro-
nal firing pattern was heavily dependent on target calcium
values and the strength/frequency of afferent inputs, in-
trinsic properties measured across all parametric combi-
nations exhibited significant variability in the plasticity
consequent to calcium-dependent evolution of conduc-
tances.

Neuronal conductances exhibited differential
robustness to an intervening switch in the type of
afferent activity
To study the state dependence of such a calcium homeo-
static mechanism, we used experimentally well estab-
lished differences in afferent activity to hippocampal
neurons during different behavioral states and during dif-
ferent modules of the sleep cycle (Buzsáki, 2006; Miz-

useki et al., 2011; Grosmark et al., 2012). Specifically,
during REM sleep or exploratory behavior, afferent activity
to the hippocampal CA1 neuron is dominated by oscilla-
tions in the theta-frequency (Fig. 7B), whereas during
non-REM or non-exploratory behavior, the neuron pre-
dominantly receives SWRs riding on largely silent back-
ground (Fig. 7C). In this context, to study state
dependence of the autonomous self-regulating calcium
homeostasis mechanism, we switched the afferent activ-
ity to the neuron between �-frequency oscillations and
SWR activity. We analyzed two different temporal se-
quences of activity: theta–SWR–theta and SWR–theta–
SWR sequences (Fig. 7A), with each afferent state of
activity lasting for 150 s (to achieve steady-state conduc-
tance values with each phase of afferent activity).

Given the formulation of the dynamical evolution, the
calcium levels expectedly converged to the target value of
calcium, with transient changes occurring during the pe-
riod that followed the switches. This maintenance of cal-
cium homeostasis was effectuated by alterations in ionic
conductances, which accommodated for the switch in
afferent activity patterns (Fig. 7D–F). Although the extent
of plasticity in ionic conductances was a continuum (see

Figure 4. The target value of internal calcium concentration critically regulated changes in intrinsic response properties during
cell-autonomous self-regulation of calcium homeostasis. A, The steady-state voltage response after theta-dependent evolution
plotted for three different target calcium levels (black, 100 nM; red, 200 nM; green, 300 nM). B–H, Histograms of the steady-state
measurement values (f250, B; VAP, C; Rin, D; |Z|max, E; fR, F; Q, G; �L, H) for the 78 valid models, obtained after theta-dependent
evolution with different target calcium levels. The dashed lines in B–H represent the lower and upper bounds for the corresponding
measurement (in that order) in the GSA model validation procedure (Table 2).
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below), we classified neurons into two distinct classes
based on the amount of plasticity in ionic conductances.
The first corresponded to neurons that underwent signif-
icant plasticity in their conductance values upon receiving
the same type of afferent activity after an intervening
period of switch to a different activity pattern (plastic
neurons, �80%; Fig. 7D,F). A second class of neurons
restored their conductance values, exhibiting similar val-
ues upon receiving the same type of afferent activity after
an intervening period of switch to a different activity pat-
tern (robust neurons, 20%; Fig. 7E,G). Concurrently, neu-
ronal response (firing) patterns with identical afferent
activity were similar in robust neurons (Fig. 7E,G), but
were significantly different in plastic neurons (Fig. 7D).

We assessed the percentage changes in sodium con-
ductance after each switch in both sequences (across all

78 model neurons), and found that the changes in con-
ductances introduced by the switches were significantly
variable (Fig. 8B–E for the theta–SWR–theta sequence
and G–J for the SWR–theta–SWR sequence). We plotted
the histogram solely for the sodium conductance, but not
for all 12 conductances because the changes in all con-
ductances are correlated given that a single transcription
factor regulated all conductances. However, upon revert-
ing back to the same type of afferent activity, a significant
percentage of neurons were robust (with reference to
conductance values, firing patterns and intrinsic proper-
ties) to the intervening switch to another type of afferent
activity (Fig. 8E,J). The robustness of the neuron to an
intermediate activity switch, however, was dependent on
the specific temporal sequence of activity switch. Specif-
ically, the percentage of neurons robust to an intervening

Figure 5. The strength of afferent theta inputs critically regulated changes in intrinsic response properties during cell-autonomous
self-regulation of calcium homeostasis. A, The steady state voltage response after theta-dependent evolution, for four different amplitudes
of the 8 Hz input sinusoid (peak-to-peak value of sinusoidal permeability: black, 100 nm/s; red, 200 nm/s; green, 300 nm/s; blue, 400 nm/s).
Note that at high values of sinusoidal amplitudes (e.g., 400 nm/s) the deflections are large along the hyperpolarized direction because of
the large driving force for AMPA/NMDA receptors that mediate the sinusoidal oscillations. Along the depolarized direction, an action
potential was elicited once the membrane potential crossed threshold, and the amplitude of the action potential did not cross the sodium
reversal potential of �55 mV. B–H, Histograms of the steady state measurement values (f250, B; VAP, C; Rin, D; |Z|max, E; fR, F; Q, G; �L,
H) for the 78 valid models, obtained after theta-dependent evolution with different sinusoidal amplitudes. The dashed lines in B–H represent
the lower and upper bounds for the corresponding measurement (in that order) in the GSA model validation procedure (Table 2).
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period of activity switch was lower for the theta–SWR–
theta (�20%; Fig. 8E) compared with the percentage for
SWR–theta–SWR sequence (�90%; Fig. 8J). These re-
sults also reveal that the maintenance of calcium homeo-
stasis does not necessarily require or translate to
maintenance of individual conductances at specific val-
ues (O’Leary et al., 2014), and that significant plasticity in
ionic conductances need not necessarily translate to sig-
nificant changes in afferent-driven firing activity (Fig. 7F),
thereby revealing a significant dissociation between indi-
vidual channelostasis, activity/functional homeostasis
and calcium homeostasis.

Neuronal intrinsic properties exhibited differential
robustness to an intervening switch in the type of
afferent activity
Finally, we asked how state-dependent evolution of
calcium homeostasis altered neuronal intrinsic proper-

ties. To do this, we measured seven intrinsic properties
(Fig. 1) at steady states of temporal evolution with
activity pattern (theta or SWR) with the theta–SWR–
theta (Fig. 9) and the SWR–theta–SWR (Fig. 10) se-
quences. Analysis of the evolution of intrinsic
properties with switch in afferent activity revealed sev-
eral important observations. First, intrinsic properties
underwent significant plasticity as a consequence of
these switches in types of afferent activity, and the sign
and strength of this plasticity varied across different
model neurons. Second, in the process of such activity-
dependent evolution, neuronal intrinsic properties did
not necessarily fall into their established experimental
bounds (Figs. 9, 10; Table 2). These results reveal a
significant dissociation between functional and calcium
homeostasis. Third, when neurons were presented with
identical (the initial pattern preceding the switch) activ-
ity patterns after an intervening period of switch in

Figure 6. The frequency of afferent inputs critically regulated changes in intrinsic response properties during cell-autonomous
self-regulation of calcium homeostasis. A, The steady state voltage response for 4 different sinusoidal frequencies (delta, 1 Hz, black;
theta, 8 Hz, red; slow gamma, 40 Hz, green; fast gamma, 100 Hz, blue). B–H, Histograms of the steady state measurement values
(f250, B; VAP, C; Rin, D; |Z|max, E; fR, F; Q, G; �L, H) for the 78 neurons for different sinusoidal frequencies appropriately color-coded.
The dashed lines in B–H represent the lower and upper bounds for the corresponding measurement (in that order) in the GSA model
validation procedure (Table 2).
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activity type, there were models whose intrinsic mea-
surements did not restore to values before the inter-
vening period. However, a significant proportion of
neurons were robust to the intervening period of activity
switch, where their intrinsic properties were restored
when the activity pattern was switched back (Fig. 11).
Similar to our observation with conductances, we noted
that the percentage of neurons robust (in terms of

changes in measurements) to an intervening period of
activity switch was lower for the theta–SWR–theta (Fig.
11A–G) compared with the percentage for SWR–theta–
SWR sequence (Fig. 11H–N). We also noted that neu-
rons fired significantly higher during the theta periods
and lesser during SWR periods, which was partly due to
overall reduction in intrinsic excitability of the neurons
during SWR period (Figs. 7–11).

Figure 7. Switch in afferent activity between � oscillations and SWRs triggered significant changes in ionic conductances during
cell-autonomous self-regulation of calcium homeostasis. A, Experimental design for assessing state-dependence of ionic conduc-
tances during cell-autonomous self-regulation of calcium homeostasis. For each valid neuronal model obtained from GSA, ionic
conductances were allowed to evolve toward achieving calcium homeostasis when afferent inputs were � oscillations (or SWRs). At
steady state of this evolution (150 s), inputs were switched to SWR (or � oscillations). When this evolution reached steady state (150
s from the first switch), the input was switched back to � oscillations (or SWR). B, Input received by a neuron during awake/REM sleep
state was modeled as theta-frequency oscillations (8 Hz) injected as AMPAR and NMDAR permeabilities. C, Input received by a
neuron during non-exploratory/non-REM sleep state was modeled as SWR inputs (inset, ripple frequency fripple was 150 Hz; Eq. 24),
repeating at a frequency of 3 Hz. These inputs were injected as AMPAR and NMDAR permeabilities into the neuronal model. D, E,
Temporal evolution of the 12 ionic conductances in two different model neurons, where afferent activity switched from � oscillations
to SWR and back to � oscillations. The calcium concentration (target [Ca]: 200 nM) and the conductances were allowed to reach
steady state before either of the switches. The firing patterns of the neuron at the three steady states are also shown. F, G, Same as
D, E, but with afferent activity switching from SWR to � oscillations and back to SWR.
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Figure 8. Across different model neurons, switch in afferent activity between � oscillations and SWRs triggered variable changes in
ionic conductances during cell-autonomous self-regulation of calcium homeostasis. A, Schematic showing the temporal sequence of
the experiment, along with notations for the temporal locations at which steady-state values of the sodium conductance (gNa) were
measured in the course of their calcium-dependent evolution. Note that this schematic represents a theta–SWR–theta temporal
sequence in afferent activity, and the notations here hold for B–E. All histograms depict statistics across the 78 valid models obtained
after GSA. B, Histogram of gNa values at the steady state of the evolution with �-frequency oscillations as afferent inputs. Inset,
Histogram of base values of gNa obtained from GSA. C, Histogram of percentage changes in gNa measured at steady state of evolution
with SWR inputs (after �1–SWR), computed with reference to the steady state value after evolution with �-frequency oscillations (�1).
D, Histogram of percentage changes in gNa measured at steady state of evolution with �-frequency oscillations (after �1–SWR–�2),
computed with reference to the steady state value after evolution with SWR inputs (after �1–SWR). E, Histogram of percentage
changes in gNa measured at steady state of evolution with �-frequency oscillations (after �1–SWR–�2), computed with reference to gNa
measured at steady state of evolution after �1. F–J, Same as A–E, but for a SWR–theta–SWR temporal sequence in afferent activity,
with notations for conductance values shown in F.
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Together, our results suggest that neuronal conduc-
tances and intrinsic properties could undergo significant
plasticity toward maintenance of calcium homeostasis in
the face of behavioral-state dependent changes in affer-
ent activity. Although a significant population of neurons
exhibited robustness to an intervening switch in the type
of afferent activity, there were neurons that manifested
significantly distinct intrinsic properties upon restoration
of the type of afferent activity after the intervening switch.
These results suggest that neuronal conductances and

intrinsic properties exhibited differential robustness to an
intervening switch in the type of afferent activity, apart
from demonstrating significant dissociations between
functional/channel/firing-rate and calcium homeostasis.

DISCUSSION
The key conclusion of this study is that neuronal ionic
conductances and intrinsic properties could undergo sig-
nificant plasticity in the process of maintaining calcium ho-
meostasis through a regime of behavioral state-dependent

Figure 9. A Theta–SWR–theta switch in afferent activity introduced significant changes to neuronal intrinsic response properties
during cell-autonomous self-regulation of calcium homeostasis. A, Experimental design representing a theta–SWR–theta temporal
sequence in afferent activity for assessing state-dependence of intrinsic response properties during cell-autonomous self-regulation
of calcium homeostasis. The arrows represent time points at which intrinsic measurements were computed, and also associated with
different symbols used in B–H. B–H, Intrinsic measurements (f250, B; VAP, C; Rin, D; |Z|max, E; fR, F; Q, G; �L, H) for six example
neurons (different colors) computed for the base valid model (GSA), and at different steady-state time points corresponding to
different activity patterns (A).
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changes in afferent activity. This form of intrinsic plasticity
driven by calcium homeostasis was sensitive to the spe-
cific value of target calcium and the strength and fre-
quency of afferent activity. We assessed the impact of
behavioral state-dependence of afferent activity on cal-
cium homeostasis by switching afferent activity pattern
between theta-frequency oscillations (REM sleep/explor-
atory behavior) and SWR activity (non-REM sleep/non-
exploratory behavior). Switches in activity patterns
resulted in variable plasticity in ionic conductances and
neuronal measurements, with the sign and strength of
plasticity dependent on the specific type of activity pat-

tern and on the temporal sequence of switch. Additionally,
our analysis with temporal sequences of activity switch
revealed the presence of two classes of neurons. One that
showed significant plasticity in conductance values and in
intrinsic properties when presented with identical activity
patterns after an intervening period with a different activity
pattern, and a second that restored its conductance val-
ues and intrinsic properties after the intervening period.
The percentage of robust versus plastic neurons was
variable in a manner that was critically dependent on the
specific sequence of switch in activity. Finally, our results
also reveal that the maintenance of calcium homeostasis

Figure 10. An SWR–theta–SWR switch in afferent activity introduced significant changes to neuronal intrinsic response properties
during cell-autonomous self-regulation of calcium homeostasis. A, Experimental design, representing a SWR–theta–SWR temporal
sequence in afferent activity, for assessing state-dependence of intrinsic response properties during cell-autonomous self-regulation
of calcium homeostasis. The arrows represent time points at which intrinsic measurements were computed, and also associated with
different symbols used in B–H. B–H, Intrinsic measurements (f250, B; VAP, C; Rin, D; |Z|max, E; fR, F; Q, G; �L, H) for six example
neurons (different colors) computed for the base valid model (GSA), and at different steady-state time points corresponding to
different activity patterns (A).
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does not necessarily translate to the emergence of indi-
vidual channelostasis or of functional homeostasis
(across physiological measurements, including firing rate),
thereby establishing critical dissociations between these
forms of homeostasis. In what follows, we present certain
physiological implications for our conclusions, along with
detailed analyses on model assumptions and future di-
rections with testable predictions.

Behavioral state-dependent changes in neuronal
intrinsic properties
Afferent activity patterns in hippocampal pyramidal neu-
rons exhibit well-established distinctions that reflect the
behavioral state of the animal (Anderson et al., 2007). The
literature on behavioral state-dependent changes in neu-
ronal activity has largely focused on postulates that in-
volve synaptic normalization and synaptic plasticity
during activity switches (Tononi and Cirelli, 2006; Chau-
vette et al., 2012; Grosmark et al., 2012; Barnes and
Wilson, 2014), or on how dendritic nonlinearities could
differentially process different forms of activity patterns
(Gasparini and Magee, 2006). Our results point to a novel
form of behavioral state-dependent plasticity in neuronal
intrinsic properties, emerging as a direct consequence of
the requirement to maintain calcium homeostasis in the
face of changes in afferent activity. In this context, it is
important that future studies on behavioral-state depen-
dence of neuronal physiology also consider the role of

neuronal intrinsic properties and ionic conductances to-
ward changes in overall firing rate (Tononi and Cirelli,
2006; Grosmark et al., 2012), without limiting the analysis
to synaptic changes and neuromodulatory influences (Le-
Masson et al., 1993; Siegel et al., 1994; Turrigiano, 1999;
Turrigiano and Nelson, 2000, 2004; Prinz et al., 2004;
Triesch, 2007; Turrigiano, 2007; Marder, 2011; Hon-
nuraiah and Narayanan, 2013; Marder et al., 2014;
O’Leary et al., 2014). Additionally, although it is estab-
lished that the propensity of different activity patterns is
higher during specific behavioral states, a constant affer-
ent pattern used in the model is physiologically infeasible
under in vivo conditions. Future experiments should
therefore explore the relationships between time con-
stants for channel plasticity under in vivo conditions and
the temporal extent of specific afferent activity patterns.
Although in vitro experiments have shown plasticity in
several ion channels to occur in a matter of minutes and
have demonstrated that changes in ion channels and
intrinsic properties can be concurrent with synaptic
changes (Frick et al., 2004; Fan et al., 2005; Kim et al.,
2007; Narayanan and Johnston, 2007; Lin et al., 2008;
Losonczy et al., 2008; Narayanan and Johnston, 2008;
Rosenkranz et al., 2009; Narayanan et al., 2010; Remy
et al., 2010; Shah et al., 2010), the temporal aspects of
activity-dependent plasticity in ion channels under in vivo
conditions needs to be explored in detail, in a manner that
accounts for channelostasis individually and collectively

Figure 11. Across different model neurons, switch in afferent activity between � oscillations and SWRs triggered variable changes in
neuronal intrinsic response properties during cell-autonomous self-regulation of calcium homeostasis. A–G, �1–SWR–�2 constitutes
the temporal sequence of afferent activity, with notations shown in Figure 9A. Histogram of percentage changes in the seven intrinsic
response properties (f250, A; VAP, B; Rin, C; |Z|max, D; fR, E; Q, F; �L, G) measured at steady state of evolution with �-frequency
oscillations (after �1–SWR–�2), computed with reference to the corresponding base value of the intrinsic property measured at steady
state of evolution after �1. Percentage changes in subthreshold measurements (Rin, |Z|max, fR, Q, �L) were computed only for those
models that did not fire action potentials in response to the injected stimulus. In addition, models that showed very high percentage
changes in �L were eliminated. The number of models (n) used for each histogram is mentioned in the respective panel. H–N, Same
as A–G, but for a SWR1–theta–SWR2 temporal sequence of afferent activity, with notations shown in Figure 10A.
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(Hanus and Schuman, 2013; Rathour and Narayanan,
2014; Anirudhan and Narayanan, 2015). Additionally, such
experiments could test for variability in such state-
dependent intrinsic plasticity predicted by our model,
apart from addressing the impact of such variability on
neurophysiology and behavior.

As a specific instance, the existence of plasticity in
intrinsic properties (in addition to synaptic plasticity)
would expand the putative mechanisms that could be
involved in memory consolidation, a postulated function
for sleep rhythms (Siegel, 2001; Stickgold et al., 2002;
Walker and Stickgold, 2004; Stickgold, 2005; Marshall
and Born, 2007). As activity-dependent plasticity in neu-
ronal intrinsic properties is well established (Zhang and
Linden, 2003; Kim and Linden, 2007; Johnston and
Narayanan, 2008; Shah et al., 2010; Narayanan and John-
ston, 2012), the exploration of the postulate that memory
consolidation is effectuated through intrinsic plasticity (in
conjunction with synaptic changes) is a critical prediction
that needs rigorous experimental evaluation. Given this
postulate where the possibility of intrinsic changes exists,
interpretation of observations from experiments that in-
volve replay or disruption of specific activity pattern (Gi-
rardeau et al., 2009; Ego-Stengel and Wilson, 2010;
Jadhav et al., 2012; Barnes and Wilson, 2014) should also
account for changes in neuronal intrinsic properties that
might have been brought about by the specific activity
pattern or lack thereof.

Would behavioral state-dependent intrinsic plasticity
in a neuronal compartment be dependent on its
somatodendritic location?
Although the macroscopic activity patterns recorded in
the hippocampus show theta-SWR switches during dif-
ferent behavioral states, it is evident that there are subtle,
yet significant, differences in afferent activity at different
somatodendritic locations along a hippocampal pyrami-
dal neuron (Colgin et al., 2009; Colgin and Moser, 2010;
Bieri et al., 2014; Schomburg et al., 2014). Additionally,
there are well-established differences in localization of
different ion channels (Johnston et al., 1996; Magee,
2000; Migliore and Shepherd, 2002; Johnston and Naray-
anan, 2008; Spruston, 2008; Narayanan and Johnston,
2012), in the locus of plasticity in these channels (Frick
et al., 2004; Narayanan and Johnston, 2007; Losonczy
et al., 2008; Narayanan et al., 2010; Shah et al., 2010), and
in calcium source localization and calcium propagation
(Magee and Johnston, 1995; Augustine et al., 2003; Hertle
and Yeckel, 2007; Ross, 2012) across the somatoden-
dritic arbor. Consistent with this, and given our results
with a single-compartmental model (necessitated by the
tremendous computational complexity of calcium-
dependent evolution), we postulate that the behavioral-
state dependent intrinsic plasticity reported here would
be dependent on the somatodendritic location of the
neuronal compartment.

Testing this postulate would require development of
specific experimental techniques and computational
models to assess the impact of the self-regulating evolu-
tion of calcium homeostasis on changes in localization

profiles of ion channels across the somatodendritic arbor.
Experimental procedures would require direct measure-
ment of somatodendritic channel properties under in vivo
conditions, during different stages of sleep or behavior,
with location-dependent afferent activity monitored in
parallel (Agarwal et al., 2014; Schomburg et al., 2014).
These experiments would provide direct answers to ques-
tions on whether dendritic channel localization profiles
change as a function of activity switch (during specific
stages of sleep or behavior), and if neurons implement an
efficient form of neural coding that accounts the statistics
of their afferent activity (Stemmler and Koch, 1999; Simo-
ncelli and Olshausen, 2001; Simoncelli, 2003; Narayanan
and Johnston, 2012).

Computational models, on the other hand, would have
to explicitly account for somatodendritic differences in ion
channel profiles, physiological measurements and cal-
cium source localization (Berridge, 2006; Vacher et al.,
2008; Kotaleski and Blackwell, 2010; Nusser, 2012; Ash-
had and Narayanan, 2013; Hanus and Schuman, 2013;
Rathour and Narayanan, 2014), apart from ensuring that
spatial compartmentalization of the neuronal model is
based on the calcium space constant rather than the
electrical space constant (Koch and Zador, 1993; Zador
and Koch, 1994; Ashhad and Narayanan, 2013). Second,
these models would have to address the question on
whether calcium homeostasis is maintained globally or
locally, and ask if localization profiles of different channels
were emergent properties consequent to the cell-
autonomous calcium homeostasis process (Siegel et al.,
1994; Rabinowitch and Segev, 2006, 2008). Third, con-
sistent with the existence of several enzymes that act as
calcium sensors (Liu et al., 1998), and the existence of
several activity-dependent transcription factors (Dolmet-
sch, 2003), future models should extend beyond the sin-
gle transcription factor-based analysis used in our model
(see below). Finally, in our study, we have not accounted
for neuromodulatory influences, and have resorted to a
simplistic classification of afferent activity as theta versus
SWR. Future experimental and computational studies on
state-dependent calcium homeostasis should also ac-
count for differences in neuromodulatory activity during
REM versus exploratory behavior and non-REM versus
non-exploratory behavior (Vertes, 1984; Steriade, 2004;
McCarley, 2007; Lee and Dan, 2012), and the impact of
each of such differential neuromodulatory activity on ion
channels and their plasticity (Fisher and Johnston, 1990;
Hoffman and Johnston, 1999; Cantrell and Catterall,
2001; Marder and Thirumalai, 2002; Perez-Reyes, 2003;
Biel et al., 2009; Marder, 2012; Marder et al., 2014).

What is the impact of such location-dependent plastic-
ity in somato-dendritic channel properties on neuronal
physiology and behaviorally relevant neural computation?
First, such plasticity would alter the following physiologi-
cal characteristics of these neuronal structures, each of
which is known to exhibit location-dependence in a man-
ner dependent on specific ion channel combinations:
spectral selectivity (Narayanan and Johnston, 2007; Hu
et al., 2009; Das and Narayanan, 2014), coincidence de-
tection (Johnston et al., 2003; London and Häusser, 2005;
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Sjöström et al., 2008; Das and Narayanan, 2015), imped-
ance phase (Narayanan and Johnston, 2008; Vaidya and
Johnston, 2013), and supralinear summation (Losonczy
and Magee, 2006; Losonczy et al., 2008; Sjöström et al.,
2008; Spruston, 2008; Takahashi and Magee, 2009). Im-
portantly, such state-dependent plasticity in channel con-
ductances would not just reflect as changes in intrinsic
neuronal physiology, but also express as changes in the
amplitude and phase of local field potentials (LFP) and
associated neuronal spike phases (Buzsáki et al., 2012;
Schomburg et al., 2012; Einevoll et al., 2013; Reimann
et al., 2013; Sinha and Narayanan, 2015). Future studies
should test if such intrinsically-driven changes in LFP and
spike phase could potentially form a cellular substrate for
REM-shifting neurons (Mizuseki et al., 2011), a scenario
where the phase shift is a consequence of intrinsic plas-
ticity that occurred during an intervening switch to non-
REM activity (Figs. 7–9, 11). Finally, extrapolating from
recent studies that have demonstrated the importance of
dendritic nonlinearities to place cell formation (Bittner
et al., 2015; Sheffield and Dombeck, 2015), changes in
dendritic sodium/calcium/potassium/HCN channels would al-
ter the propensity for generating dendritic plateau potentials
(Golding et al., 1999; Gasparini and Magee, 2002; Gasparini
et al., 2004; Losonczy and Magee, 2006; Tsay et al., 2007;
Losonczy et al., 2008), potentially resulting in changes in the
place cell properties of the associated hippocampal neurons
(Bittner et al., 2015).

Implications for the assumption on a single
transcription factor
In our model, we have assumed that the channel conduc-
tances are regulated by a single transcription factor
(O’Leary et al., 2014), an assumption that significantly
oversimplifies the complexities of neuronal transcription,
where multiple transcription factors coexist (Bading et al.,
1993; Dolmetsch, 2003; Lein et al., 2007; Alberini, 2009).
This assumption implies that proportions of changes in
channel conductances are correlated (Fig. 3A), resulting in
correlated channel expression profiles (O’Leary et al.,
2014). Although this assumption was motivated by corre-
lated expression profiles of ion channels in certain neuro-
nal subtypes (Toledo-Rodriguez et al., 2004; Schulz et al.,
2006, 2007; Tobin et al., 2009; Amendola et al., 2012),
detailed quantitative analysis of channel conductances
and mRNA expression has not been performed in single
hippocampal neurons. In the absence of such experimen-
tal data, not just at the cell body, but across the somato-
dendritic arbor (Hanus and Schuman, 2013; Rathour and
Narayanan, 2014), model-based extrapolations about
correlations in expression profiles of hippocampal chan-
nels or mRNAs would be incorrect, because the model
outcome is just a direct consequence of the assumption
involving a single transcription factor. Therefore, we re-
strict our inferences from this simple model to: (1) variable
state-dependent plasticity of ionic conductances and in-
trinsic properties toward cell-autonomous maintenance of
calcium homeostasis and (2) significant dissociation be-
tween different forms of homeostasis (see below), which
also form testable predictions from our analysis. The

question on whether the expression profiles of different
channels/mRNAs are correlated or lack significant corre-
lation in the presence of multiple transcription factors
needs to be rigorously addressed both from experimental
as well as theoretical standpoints.

Incorporation of multiple transcription factors into a
model for cell-autonomous calcium homeostasis has
been reported to result in unbounded production of mR-
NAs and channels (“windup”), leading to eventual loss of
regulatory control (O’Leary et al., 2014). Although this
constitutes a significant impediment to the incorporation
of multiple transcription factors into models, this analysis
was performed in a manner where the different transcrip-
tion factors were independent of each other (O’Leary
et al., 2014). Future theoretical studies should explore the
possibility of avoiding such windup by coupling the mul-
tiple calcium sensors and multiple transcription factors
through established signaling motifs, including negative
feedback mechanisms (Thattai and van Oudenaarden,
2001; Losick and Desplan, 2008; Yu et al., 2008; Kotaleski
and Blackwell, 2010; Cheong et al., 2011). Experimental
studies should explore the relationships between the dif-
ferent transcription factors, mRNAs and channel conduc-
tances across the somatodendritic arbor of single
hippocampal neurons (Dolmetsch, 2003; Hanus and
Schuman, 2013).

Dissociations between different forms of
homeostasis
It is clear from our analyses here, and from several others
in the literature, that there are significant dissociations
between different forms of homeostasis. First, homeosta-
sis in functional properties, including synaptic plasticity
profiles (Anirudhan and Narayanan, 2015), could emerge
with disparate conductance values for the constituent ion
channels and synaptic conductances (Golowasch and
Marder, 1992; Golowasch et al., 2002; MacLean et al.,
2005; Schulz et al., 2006, 2007; Taylor et al., 2009;
Rathour and Narayanan, 2012a, 2014), suggesting that
homeostatic maintenance of single channels at specific
conductance values is not essential for maintaining func-
tional or plasticity profile homeostasis. Second, for main-
tenance of calcium homeostasis across neurons in a
network (O’Leary et al., 2013), or in a neuron that receives
state-dependent switch in afferent activity (Figs. 3–11), it
is not essential that functional homeostasis across differ-
ent measurements is maintained. Specifically, despite
maintenance of calcium homeostasis across models re-
ceiving identical temporal evolution of afferent activity, we
noted that the conductance values (Figs. 3, 8) and phys-
iological measurements (Figs. 3–6, 9–11) were signifi-
cantly variable across these models, with some models
manifesting measurements beyond what is expected from
CA1 pyramidal neurons. Additionally, a significant propor-
tion of neurons did not restore their intrinsic properties
despite restoration of specific type of activity after an
intervening switch to a different type of activity (Figs.
9–11). Finally, although calcium homeostasis was
achieved across all neuronal models, there was significant
variability (across models) in the firing rate and in pattern
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of firing in response to the same afferent activity (Figs. 3,7;
O’Leary et al., 2013, 2014). Together, these results clearly
establish that maintenance of calcium homeostasis nei-
ther translates to nor follows from any of channel/
functional/firing-rate forms of homeostasis, outlining
critical dissociations between these forms of homeosta-
sis.

Future experiments should therefore explore the spe-
cific form of homeostasis maintained by individual neu-
rons and their dendritic arbor when subjected to
behavioral state-dependent afferent activity during differ-
ent stages of sleep and behavior. Do channel properties/
localization and intrinsic functional properties change in
the process of maintaining calcium homeostasis? Or, do
neurons implement a mechanism where all forms of ho-
meostasis—including that in spatially distributed channel
properties, intrinsic response properties, plasticity pro-
files, and calcium levels—are concurrently maintained
across all somatodendritic locations of the neuron, with
firing rate homeostasis emerging as an overall conse-
quence? Should a homeostatic mechanism account not
just for the average calcium level in a neuron, but also
make provisions for the homeostasis in input-output pro-
files, intrinsic response properties and synaptic/intrinsic
plasticity profiles of the neuron through synergistic inter-
actions between synaptic and intrinsic neuronal proper-
ties (LeMasson et al., 1993; Liu et al., 1998; Triesch, 2007;
Turrigiano, 2011; Honnuraiah and Narayanan, 2013;
O’Leary et al., 2014; Anirudhan and Narayanan, 2015)?
Finally, whereas homeostasis covers only one aspect of
neuronal function, the other core function (especially of
hippocampal neurons), is encoding of new information.
Juxtaposed against questions on various forms of ho-
meostasis is the fundamental issue of how neurons
change their properties toward encoding new information,
without jeopardizing any or some forms of homeostasis.
Therefore, further exploration into behavioral state-
dependent evolution of homeostasis should account for
encoding as a critical aspect of neuronal function that
depends on changes in intrinsic and/or synaptic proper-
ties (Narayanan and Johnston, 2012), apart from exploring
the relationships between different forms of homeostasis.
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