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Abstract: Halloysite Nanotubes (HNT) are chemically similar to clay, which makes them incompatible
with non-polar rubbers such as natural rubber (NR). Modification of NR into a polar rubber is of
interest. In this work, Epoxidized Natural Rubber (ENR) was prepared in order to obtain a composite
that could assure filler–matrix compatibility. However, the performance of this composite was still
not satisfactory, so an alternative to the basic HNT filler was pursued. The surface area of HNT was
further increased by etching with acid; the specific surface increased with treatment time. The FTIR
spectra confirmed selective etching on the Al–OH surface of HNT with reduction in peak intensity in
the regions 3750–3600 cm−1 and 825–725 cm−1, indicating decrease in Al–OH structures. The use
of acid-treated HNT improved modulus, tensile strength, and tear strength of the filled composites.
This was attributed to the filler–matrix interactions of acid-treated HNT with ENR. Further evidence
was found from the Payne effect being reduced to 44.2% through acid treatment of the filler. As for
the strain-induced crystallization (SIC) in the composites, the stress–strain curves correlated well
with the degree of crystallinity observed from synchrotron wide-angle X-ray scattering.

Keywords: epoxidized natural rubber; halloysite nanotubes; acid treatment; tensile properties;
wide-angle X-ray scattering

1. Introduction

Filler has become a major ingredient in compounding rubber. The main reasons
for adding filler to rubber are to improve mechanical properties or thermal stability, and
to lower the manufacturing costs [1]. There are plenty of fillers available nowadays
in which special attention is given to the incorporation of nanofillers. This is simply
because these fillers effectively boost the performance of rubber even at very low contents.
This improvement comes from many factors such as the dispersibility, aspect ratio, and
orientation of the filler within the matrix [2]. Many types of nanofillers have been used in
preparing rubber composites. Here, Halloysite nanotubes (HNT) are the focus. HNT are
chemically similar to mineral clay. HNT have been studied in many interesting research
works; the applications of HNT are widely known. For example, the use of HNT as
drug deliverers, their function in controlled release [3], and other specific applications for
ion adsorbents, ceramic materials, especially biocompatible implants, and as templates
for the synthesis of rod-like nanoparticles [4]. HNT have also been incorporated into
a number of different types of matrices [5–7]. The chemical structure of HNT consists
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mainly of aluminosilicates, which make HNT incompatible with non-polar rubbers such as
natural rubber (NR). Thus, searching for a proper technique to address this drawback is
of keen interest. Recently, modified rubber as a matrix or compatibilizer has been used in
rubber/HNT composites. Surya et al. [5] prepared epoxidized natural rubber as matrix
and reinforced it with HNT. Paran et al. [6] also modified the properties of HNT composite
by grafting the HNT onto carboxylated nitrile butadiene rubber. From these works, it is
clear that higher composite performance is achieved by changing the polarity of the rubber
matrix. In this study, turning non-polar NR into a polar characteristic was given special
interest. NR was modified into an Epoxidized Natural Rubber (ENR) and was further
used as a matrix to assure HNT–rubber compatibility. This solution is well reported in
terms of performance [8]. However, it was still unsatisfactory, and the characteristics of
HNT themselves could be to blame; in particular, the interfacial filler–matrix adhesion. The
specific surface area of HNT controls their interfacial contact with the rubber matrix, so
increasing the surface area of HNT could improve the interfacial contact and adhesion.

The surface area of filler is an important factor in its interactions with a polymer
matrix. Zhang et al. [9] reported that the BET surface area and pore volume of HNT could
be increased by an acid treatment. It was found that the meso-pores were enlarged by
a continuous acid treatment, while the micro-porosity was restricted by the crystalline
structure. Abdullayev et al. [10] reported that sulfuric acid treatment was an effective
method for the controllable enlargement of the lumen diameters of HNT. Sulfuric acid was
selected to dissolve alumina sheets out of HNT. Selective etching started with the diffusion
of hydrogen ions into HNT pores, followed by interaction between alumina and hydrogen
ions and diffusion of the reaction’s product out of the pores. This produced HNT with
uniformly enlarged lumen diameters.

Therefore, the aim of this study was to increase the surface area of HNT by using
sulfuric acid and further incorporate it into an ENR matrix to test for improvement in
the overall properties of the composites. Hypothetically, the interfacial adhesion between
the HNT and the ENR would be improved while the rubber–filler interactions would
be assured by the polarity of the ENR. The filler modification was expected to improve
the compatibility and homogeneity of filler dispersion in the composites, and to thereby
enhance the reinforcing efficiency of HNT in filled ENR composites.

This study also proposes methods for evaluating the reinforcing efficiency in compos-
ites using mechanical properties, dynamic properties and strain-induced crystallization
(SIC). The last method is considered interesting and not many reports have yet addressed
it. It can only be correlated for certain types of rubber, such as NR [11–13], because NR has
very long polymer chains that crystallize under stretching [14]. This ability to crystallize
under strain is due to the high regularity of the molecular structure, as the polymers consist
almost entirely of cis-1,4-polyisoprene units [15].

Many studies of NR have been carried out combining in situ deformation with X-ray
diffraction techniques. Tosaka et al. [16] studied the effects of different crosslink densities
on the strain-induced crystallization (SIC) of vulcanized rubber and found that crystallinity
developed more quickly in samples with higher crosslink density, but was limited in extent.
Toki et al. [17] indicated that the crystallinity increased with strain. They suggested that
stretched rubber could fall into three phases, namely a non-oriented amorphous phase, an
oriented amorphous phase, and a crystalline phase. SIC of unfilled and filled NR was also
assessed by Poompradub et al. [18], who found that the onset strain of SIC decreased after
adding filler. The degree of lattice deformation decreased with filler content, especially
in carbon black (CB) filled composites. Chenal et al. [19] further explained that different
fillers have different characteristics associated with the rubber–filler interactions/reactions.
This can either accelerate or slow down SIC depending on chemical crosslink density in the
NR matrix. A similar observation was reported in vulcanized NR containing CB particles
by Candau et al. [20].

Based on the reports above, rubber–filler interactions may speed up crystallization at a
certain crosslink density. In this report, we present parallel wide angle X-ray scattering and
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tensile measurements of ENR composites filled with acid-treated HNT. To date, no report
has been published with a detailed investigation concerning the relationship between
mechanical and dynamic properties and the SIC of rubber composites. The use of acid-
treated HNT reinforced the ENR composites. The results explored in this study give an
improved scientific understanding of the role of acid-treated HNT in affecting the overall
properties of ENR/HNT composites, and will be useful for the manufacturing of rubber
products based on ENR/HNT composites.

2. Experimental Details
2.1. Materials

High ammonia centrifuged latex (HA) with 60% dry rubber content (DRC) was used
to prepare ENR. This latex was centrifuged and supplied by Chalong Latex Industry
Co., Ltd., Songkhla, Thailand. The chemicals involved in the synthesis of ENR were
Teric N30 as non-ionic surfactant and formic acid and hydrogen peroxide for performic
acid reaction, purchased from Sigma Aldrich (Thailand) Co. Ltd., Bangkok, Thailand.
The HNT were supplied by Imerys Ceramics Limited, Matauri Bay, New Zealand. The
elemental composition of HNT was as follows: SiO2 (49.5 wt%), Al2O3 (35.5 wt%), Fe2O3
(0.29 wt%), TiO2 (0.09 wt%), as well as traces of CaO, MgO, K2O, and Na2O. Sulfuric acid
was supplied by RCI Labscan Ltd., Bangkok, Thailand. Stearic acid was purchased from
Imperial Industrial Chemicals (Thailand) Co., Ltd., Bangkok, Thailand. ZnO was supplied
by Global Chemical Co., Ltd., Samut Prakan, Thailand. N-cyclohexyl-2-benzothiazole
sulfenamide was provided by Flexsys America L.P., Akron, Ohio, USA, and soluble sulfur
was bought from Siam Chemical Industry Co., Ltd., Samut Prakan, Thailand.

2.2. Preparation of Epoxidized Natural Rubber

The synthesis of ENR was begun by diluting the latex to DRC 15%. Next, 1 phr
of non-ionic stabilizer (10% Teric N30) was added while stirring for 30 min at ambient
temperature to expel the ammonia dissolved in the HA. The epoxidation was performed
using formic acid and hydrogen peroxide at 50 ◦C in a 10-L glass container at a stirring
rate of 30 rpm. The total reaction time was fixed to obtain ENR with 20 mol% epoxide.
The epoxide level was characterized as stated in our previous report [8]. The resulting
ENR was coagulated with methanol and then washed with water. Finally, it was dried in a
vacuum oven at 50 ◦C prior to use.

2.3. Selectively Etching of HNT by Sulfuric Acid

The acid treatment of HNT was conducted according to Zhang et al. [9]. First, a 10 g
sample of HNT was added to 100 mL of 3M H2SO4 solution. The mixture was heated at
70 ◦C for 2, 4, 6, or 8 h. The acid-treated HNT were then filtered, washed, neutralized for
pH, and dried in an oven at 70 ◦C until reaching a constant weight. The acid-treated HNT
was ground in a mortar prior to use in compounding. The surface area of acid-treated HNT
was then characterized by BET analysis.

2.4. Preparation of ENR/HNT Composites

The recipe for the preparation of ENR/HNT composites is given in Table 1. ENR
with 20 mol% epoxide (ENR 20) was compounded with 5 phr of HNT (e.g., untreated
or acid-treated HNT depending on the formulation) and the other ingredients except for
the curatives (CBS and sulfur) in a Brabender plasticorder (Brabender GmbH & Co. KG,
Duisburg, Germany). The fixed amounts of mol% epoxide and HNT were chosen based
on the optimum properties obtained from our previous reports [8,21]. The initial mixing
temperature was set at 50 ◦C with a rotor speed of 60 rpm. The compound was then sheeted
on a two-roll mill while the curatives were incorporated. Finally, samples of the variously
treated composites were tested for curing characteristics.



Polymers 2021, 13, 3536 4 of 18

Table 1. Formulation of ENR composites filled with untreated and acid-treated HNT.

Raw Material Amount (phr)

ENR 20 100.0
Stearic acid 1.0
Zinc oxide 5.0

HNT * 5.0
CBS 2.0

Sulfur 2.0

Remark: * HNT was acid-treated with various treatment times.

2.5. Measurement of Curing Characteristics

The curing properties of the composites were measured according to ASTM D5289
using a moving die rheometer (Rheoline, Mini MDR Lite, Prescott Instruments Ltd., Tewkes-
bury, UK). The operating temperature was set at 150 ◦C. The data in terms of torque, scorch
time (ts2), and curing time (tc90) were recorded as the median values of three repeated tests.
The ts2 and tc90 were used in calculating the curing rate index (CRI) as follows:

CRI =
100

tc90 − ts2
(1)

2.6. Fourier Transform Infrared-Spectroscopic Analysis (FT-IR)

The changes in functionality of acid-treated HNT and its corresponding composites
was confirmed by Fourier transform infrared spectroscopy (FTIR) using FTIR spectroscope
model TENSOR27 (Bruker Corporation, Billerica, MA, USA). The spectra were recorded in
transmission mode with a 4 cm−1 resolution over 4000–550 cm−1.

2.7. X-ray Diffraction Analysis (XRD)

The XRD analysis of acid-treated HNT and its corresponding composites was car-
ried out using PHILIPS X’Pert MPD (Eindhoven, Netherlands) with CuKα radiation
(λ = 0.154 nm) at 40 kV and a current of 30 mA, as well as a Bruker D2 Phaser (Billerica,
Massachusetts, USA) with CuKα radiation source (λ = 0.154 nm) and a current of 10 mA.
The diffraction patterns were scanned for diffraction angles 2θ at 5–30◦ with a step size of
0.05◦ and 3◦/min scan speed. The d-spacing of HNT layers in filler particles was estimated
using Bragg’s equation.

2.8. Measurement of Mechanical Properties and Hardness

Tensile properties were measured according to ASTM D412. The samples were
punched with Die C into a dumbbell shape. A universal testing machine (Tinius Olsen,
H10KS, Tinius Olsen Ltd., Surrey, UK) was selected to perform the tensile test at a crosshead
speed of 500 mm/min. The determinations recorded were the moduli at 100% (M100) and
300% (M300) elongations, tensile strength, and elongation at break. The tear strength of
the various composites was tested using the same machine according to ASTM D624. A
type C (right angle) test piece was selected for the tests. The last measurement was for the
hardness, performed according to ASTM D2240 using a Shore A type manual durometer.
The values reported in this section were averages of five repeated tests for each composite.

2.9. Determination of Crosslink Density

The crosslink density of the composite was determined by the equilibrium swelling
method as described in ASTM D6814. The specimens were cut into a circular shape and
weighed before and after immersion in toluene for 72 h. The modified Flory–Rehner
equation was implemented for calculating the cross-link density (υ) [22]:

ν =
1

2Mc
(2)
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Mc =
ρ ·V0 ·

(
V1/3

r − Vr/2
)

ln(1−Vr) + Vr + µ ·V2
r

(3)

where Mc is the number-average molecular weight of the rubber chains between crosslinks,
µ is the parameter for rubber–toluene interactions (µ = 0.42), ρ is the bulk density of the
specimen, V0 is the molar volume of the toluene (V0 = 106.2 cm3/mol), and Vr is the
volume fraction in the swollen specimen, defined as follows:

Vr =
(D− FT) · ρ−1

(D− FT) · ρ−1 + A0 · ρ−1
s

(4)

where T is the weight of the specimen, D is the weight of the de-swollen specimen, F
is the weight fraction of the insoluble parts, A0 is the weight of the toluene absorbed
by the swollen specimen, ρ is the density of the specimen, and ρs is the density of the
toluene (0.886 g/cm3). The values were reported as averages of five repeated tests for
each composite.

2.10. Scanning Electron Microscopy

The freshly fractured surfaces of samples from tensile testing were used to observe the
dispersions of untreated and acid-treated HNT in the rubber matrix. The morphology was
imaged using a scanning electron microscope (SEM; FEI Quanta FEG 400, Thermo Fisher
Scientific, Waltham, MA, USA). Specimens were sputter coated with gold/palladium to
eliminate charge buildup during imaging.

2.11. Dynamic Properties

The dynamic properties of the composites were implemented in this study to evaluate
the rubber–filler interactions through the Payne effect. It was carried out using a Rubber
Process Analyzer (RPA), model D-RPA 3000 (MonTech Werkstoffprüfmaschinen GmbH,
Buchen, Germany). First, the tested samples were cured at 150 ◦C based on the tc90 as
tested using the same RPA. The samples were then cooled down to 60 ◦C. At this time, at a
fixed frequency of 10 Hz, the strain was increased from 0.5 to 90%. This was to determine
the storage modulus (G’) as function of strain for the composites. The raw G’ record was
further used to study the filler–filler interactions via the so-called Payne effect. The Payne
effect was quantified as follows:

Payne effect = G’I − G’f (5)

where G’i and G’f were the G’ at 0.5% and 90% strains, respectively. A larger Payne effect
indicates weaker rubber–filler interactions. The values were reported in averages of five
repeated tests for each composite.

2.12. Wide-Angle X-ray Scattering

The SIC of the composites was correlated with their stress–strain curves. SIC and
other related results were obtained via a synchrotron wide-angle X-ray scattering (WAXS)
analysis. The experiment was carried out using Beamline 1.3 W at the Siam Photon
Laboratory, Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand.
The distance between sample and detector was 115.34 mm, measured using a wavelength
of 0.138 nm. A CCD detector (Rayonix, SX165, Rayonix, L.L.C., Evanston, IL, USA) with
a diameter of 165 mm was used to capture the WAXS profile. The scattering angle was
calibrated using 4-Bromobenzoic acid as the standard material.

Prior to testing, a Die C type dumbbell specimen was placed in the grips of a stretching
apparatus. The sample was stretched at a crosshead speed of 50 mm/min to a given strain
and was then relaxed in the deformed state for 30 s. WAXS was recorded and stretching
then continued to the next predetermined strain, repeating until the characterization was
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complete. The degree of crystallinity (Xc) was calculated based on data obtained from the
WAXS profiles as follows:

Degree of crystallinity (Xc) =

(
Ac

Ac + Aa

)
× 100 (6)

where Ac and Aa are the areas under the crystalline peak of interest and the amorphous
halo, respectively.

The orientation parameter (OP) was determined from the Hermann equation, as follows:

OP =
3[cos 2φ]− 1

2
(7)

where ϕ is the azimuthal angle related to the direction of strain. The mean value of cos2 ϕ
is calculated as follows:

[cos 2φ] =

∫ π
0 Ic(φ) · cos2φ · sin φ · dφ∫ π

0 Ic(φ) · sin φ · dφ
(8)

where Ic (ϕ) is the scattering intensity of the crystal at ϕ. Ic (ϕ) is normalized by sub-
tracting the minimum scattering intensity of the amorphous component of the original
WAXS intensity [23,24]. The data reported in this section were the median values of three
repeated tests.

3. Results and Discussion
3.1. BET Surface Area of HNT

The main reason to treat the HNT with acid was to increase their specific surface area
in order to gain improved contact with the rubber matrix. To assess this expectation, the
surface area of acid-treated HNT was measured via the BET technique. The BET surface
areas of raw HNT and acid-treated HNT are presented in Figure 1. The BET surface area
of HNT increased from 25.83 to 57.83 m2/g with acid treatment time. The larger specific
surface area found was attributed to etching by H2SO4, and specifically to the leaching
of Al3+ ions from the octahedral layer due to hydrolysis under acidic conditions. The
reaction between kaolinite and sulfuric acid, according to Makó et al. [25], can be expressed
as follows: Al2O3·2SiO2·2H2O + 3H2SO4 → Al2(SO4)3 + 2SiO2 + 5H2O. The etching of
HNT surfaces by sulfuric acid also reduced hydroxyl groups attached on the Al–OH inner
surfaces of HNT, due to the penetration of sulfuric acid into the inner layers of HNT.
The possible etching mechanism of sulfuric acid on HNT is illustrated in Figure 2. This
mechanism is further correlated with the FTIR results in the following section.

3.2. FT-IR Analysis

To confirm the structure of HNT before and after acid treatment, FTIR spectra of
raw HNT and acid-treated HNT were captured and are shown in Figure 3. In the O–H
stretching region, the untreated HNT and acid-treated HNT showed bands at 3694 cm−1

and 3622 cm−1, which correspond to inner surface and outer surface hydroxyl groups
stretching, respectively. The acid treatments applied to the HNT did not show significant
variation in FTIR patterns. In the fingerprint region, the HNT showed a series of bands
with peaks at wavenumbers 908 cm−1, 798 cm−1 and 752 cm−1 that can be assigned to the
Al–Al–OH, Al–Mg–OH and Si–O–Al vibrations in the HNT sheet. The strong bands in the
1120–1000 cm−1 region were due to Si–O stretching, which was observed for both untreated
and acid-treated HNT [26]. The reductions in peak intensity in the regions 3750–3600 cm−1

and 825–725 cm−1 were attributed to decreased numbers of Al–OH structures, while the
increased absorption intensity in the region 1250–1100 cm−1 was associated with silicon-
rich nanoparticles [27] formed after the destruction of HNT structures by acid treatment.
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Such richness in Si–O possibly increased the interaction with ENR, which will be discussed
further in the following section.
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Figure 4 displays the FTIR spectra in the wavenumber range 4000–550 cm−1 for
ENR/HNT composites filled with untreated and acid-treated HNT. The important ab-
sorption peaks indicating stretching vibrations of C=C bonds, bending vibrations of CH2
and CH3 groups, and out of plane deformation of =C-H groups were found at 1662 cm−1,
1448 cm−1 and 1375 cm−1, and 837 cm−1 respectively. The absorption peaks at 873 cm−1

and 1250 cm−1 indicated the epoxide rings in ENR. The hydroxyl group formed from the
ring-opening of ENR is shown in the broad peak region at approximately 3400 cm–1 [28,29].
The peaks at approximately 1100–1020 cm−1 and 912 cm−1 are assigned to stretching
vibrations of Si–O bonds and Al–OH, respectively. The shifting of peaks from 1076 cm−1

to 1079 cm−1 (see the enlarged image) indicates some interactions caused by hydrogen
bonding between ENR and hydroxyl groups on the edge of HNT.
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3.3. X-ray Diffraction Analysis

Figure 5 shows the XRD profiles of untreated and acid-treated HNT. The untreated
HNT showed reflections at 2θ of 12.05◦ and 24.68◦, which correspond to a d001 basal
spacing of 7.33
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[26]. Generally, the XRD pattern can change after acid treatment, as
verified in the study by Makó et al. [21]. As the structure of HNT was destroyed, there
was a change in the crystal structure of HNT. However, this change was small. The minor
change might be ascribed to the use of a low acid concentration [30]. Moreover, the original
HNT phase (001) became thinner when compared to untreated HNT, as also reported by
Panda et al. [26], since low concentration acid was applied to kaolinite. The narrowing of
the peak may be related to the increase in crystallite size of the HNT structure.
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3.4. Curing Characteristics

Rheometric curves of ENR/HNT composites filled with untreated and acid-treated
HNT are shown in Figure 7, and the raw outputs obtained from those curves are summa-
rized in Table 2. The scorch time (ts2) and cure time (tc90) decreased considerably, which
reflected an increase in CRI. According to Zhang et al. [9], treatment of HNT with acid
increases the amount of silanol groups on the outer layer of HNT. The epoxide groups
available on the ENR backbone can interact more easily with silanol groups. The accelerator,
which is most likely to be adsorbed on the HNT surfaces, acted efficiently during the vul-
canization process. The ML of the composites filled with untreated and acid-treated HNT
reduced with treatment time. Since the ML correlates with the viscosity of the compound,
it can be said that the destruction of HNT by acid-etching may have affected the viscosity
of the compounds. However, MH and MH-ML tended to increase with acid treatment time.
In composite materials, the MH usually indicates the stiffness of cured compounds and
reflects their crosslinking and/or interactions. This is considered a preliminary indicator of
interactions between ENR and acid-treated HNT, which were already confirmed by the
previous FTIR and XRD results.
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Table 2. Scorch time (ts2), cure time (tc90), minimum torque (ML), maximum torque (MH),
delta torque (MH–ML), and CRI for the ENR/HNT composites produced with untreated or
acid-treated HNT.

Sample Ts2 (min) Tc90 (min) ML
(dN·m)

MH
(dN·m)

MH–ML
(dN·m)

CRI
(min−1)

E20 2.29 4.75 0.76 8.40 7.64 40.65
E20A2 1.11 3.15 0.81 8.53 7.72 49.02
E20A4 1.10 3.05 0.77 8.58 7.81 51.28
E20A6 1.07 3.01 0.75 8.63 7.88 51.55
E20A8 1.05 2.92 0.74 8.88 8.14 53.48
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3.5. Dynamic Properties

One approach to assessing possible interactions in a composite is by use of the dy-
namic mechanical properties. In this study, storage modulus and the Payne effect of the
ENR/HNT composites filled with untreated or acid-treated HNT filler were analyzed to
assess the rubber–filler interactions. The results are presented in Figure 8. The storage
modulus (G’) of the composites was constant in the low strain region but slightly decreased
with strains larger than 50%. This is common for a viscoelastic material and is due to the
molecular stability of rubber. It is noticeable that the G’ increased with acid treatment time,
indicating interactions between acid-treated HNT and ENR that resulted in a stronger
elastic response. There were two factors determining the increase in G’: better interfacial
adhesion of HNT facilitated by acid treatment, together with improved interactions be-
tween polarity matching HNT and ENR. The interactions between ENR and acid-treated
HNT are made clear by the mechanisms illustrated in Figure 9. The interactions were
through hydrogen bonds between epoxide groups and/or ring openings, and the silanol
and siloxane groups of HNT, respectively. The interactions between acid-treated HNT and
ENR were clearly supported by the previous FTIR and XRD observations. The shifting of 2θ
due to a change in HNT basal spacing together with the shifting of peaks from 1076 cm−1

to 1079 cm−1 significantly indicated certain interactions between ENR and hydroxyl groups
on the edge of HNT. Furthermore, the Payne effect relates to the rubber–filler interactions
in the composite, and its measure here was the difference in G’ between low and high
strain [34]. Higher values of delta G’ indicates higher Payne effect which later reflects to
lesser rubber–filler interactions. It was found that the Payne effect decreased with treatment
time, where the value of the Payne effect was found to be reduced to 44.2% after treatment
with sulfuric acid for 4 h. This might be due to stable rubber–filler interactions involving
acid-treated HNT filler in the ENR matrix.
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3.6. Mechanical Properties and Corresponding Morphologies

Figure 10 shows the stress–strain curves of the ENR composites filled with untreated
and acid-treated HNT. The stress–strain curves show the SIC. A higher stress response was
found for the composites filled with acid-treated HNT, suggesting that the samples became
stronger when using acid-treated HNT. Improved compatibility of ENR with acid-treated
HNT is responsible for these findings. Further, the area underneath the stress–strain curve
was examined to confirm the compatibility of the rubber and the filler. This indicates
the toughness of a material [35]. A larger area underneath the curve corresponds to
greater toughness. The acid-treated HNT composites showed a greater area underneath
the stress–strain curve than the untreated counterpart, and therefore greater toughness.
The curves shown are further discussed regarding crystallization behavior.

Table 3 summarizes the raw data obtained from tensile, tear and hardness measure-
ments. The tensile and tear strengths changed with the modification of HNT over the
duration of acid treatment. The tensile strength with untreated HNT was 33.67 MPa and
increased to 35.45 MPa on treating HNT for 4 h. The tear strength of the reference sample
increased from 38.29 N/mm to 38.38, 39.60, 37.51, and 35.96 N/mm at 2, 4, 6 and 8 h respec-
tively. Acid treatment of HNT evidently improved interfacial adhesion via the increased
specific surface area of HNT. Evidence of such boosting has already been shown in the
previous sections (refer to the Payne effect). The decrease in tensile and tear strengths
with treatment times over 4 h may be due to some damage to the HNT from the etching
process, as seen in SEM images. The SEM images (see Figure 11a–d) show that there was
little damage to the HNT surface at 4 h of treatment, while the HNT was well distributed
throughout the ENR matrix. However, with a longer acid treatment, severe destruction
of HNT was seen (Figure 11c,d), together with some agglomeration of HNT filler into the
ENR matrix. These observations match the reduced tensile strength of the composites
observed with prolonged acid etching treatments.
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Table 3. Modulus at 100% (M100), 300% (M300), tensile strength (TS), elongation at break (EB), tear strength (Ts), and
hardness of ENR/HNT composites filled with untreated and acid-treated HNT.

Sample M100 (MPa) M300 (MPa) TS (MPa) EB (%) Ts (N/mm) Hardness
(Shore A)

E20 0.86 ± 0.03 2.25 ± 0.03 33.67 ± 1.61 717 ± 10 38.29 ± 0.94 39.3 ± 0.3
E20A2 0.89 ± 0.02 2.50 ± 0.07 34.84 ± 0.90 676 ± 30 38.38 ± 0.90 41.4 ± 0.5
E20A4 0.92 ± 0.02 2.59 ± 0.08 35.45 ± 0.90 658 ± 22 39.60 ± 0.60 42.1 ± 0.2
E20A6 0.93 ± 0.02 2.62 ± 0.12 32.15 ± 0.40 655 ± 25 37.51 ± 1.21 42.8 ± 0.8
E20A8 0.95 ± 0.02 2.72 ± 0.05 31.00 ± 0.37 652 ± 26 35.96 ± 1.08 43.2 ± 0.4

The significant change in the rubber–filler interactions of ENR and HNT can be also
verified from the stresses at 100% (M100) and 300% (M300) strains (see Table 3). It can be
seen that the M100 and M300 increased with acid treatment time. As HNT with longer
treatment times was introduced to the rubber, stronger interactions occurred, resulting
in harder and stiffer composites. This finding is clearer when examining the M300. The
results match well the reduction in elongation at break of the composites, which was due
to lower flexibility of molecular chains contributed by the filler–matrix interactions. The
observed modulus trend well matches the hardness observations where similar discussion
can be implemented.

3.7. Wide-Angle X-ray Scattering

In the section on mechanical properties, the stress–strain behavior of the composites
was associated with strain induced crystallization (SIC). Since the nominal strain rates for
tensile measurement and SIC study are not similar (e.g., 0.42 s−1 and 0.042 s−1 for tensile
test and WAXS, respectively), the correlation was made for stress versus crystallinity only.
Previously, it was clear that the treatment of HNT with acid influenced the mechanical prop-
erties. The main factor was definitely the improved compatibility between the ENR matrix
and the acid-treated HNT filler. The degree of crystallinity (Xc) versus strain deformation
is shown in Figure 12. Crystallinity was estimated from the areas in diffraction patterns
for 200 and 120 plane reflections [36,37]. The Xc increased with strain due to molecular
chain orientation, as expected. The onset strain for SIC was determined from intercept of
a regression line for Xc as a function of strain (see the data embedded in Figure 12). The
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onset of SIC for acid-treated HNT filler was observed to decrease as acid treatment was
prolonged. The interaction that takes place in the presence of acid-treated HNT can help
pull the surrounding molecular chains and speeds up the crystallization process.
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When considering the Xc and the stress propagation obtained via tensile measurement
(see Figure 10), it is clear that the Xc corresponded well with stress, and the trend of
the curves was also similar over treatment time. From the stress–strain curves, it is
obvious that the stress began to increase as treatment time increased. This is attributed
to interfacial contacts, as discussed earlier. An earlier onset of SIC is usual for filled
composites. Poompradu et al. [19] reported that the lateral crystallite size decreased, but the
orientational fluctuation increased upon inclusion of filler. The lattice of the SIC changed
almost linearly with the nominal stress. In addition, the degree of lattice deformation
decreased with the filler content, especially in the CB-filled system. In addition to this,
onset of SIC was dependent on the filler characteristics. Ozbas et al. [38] compared the
SIC of graphene and CB-filled composites. They found that the onset of SIC occurred at
significantly lower strain for graphene-filled NR samples compared with CB-filled NR,
even at low loadings. Chenal et al. [20] further explained that the onset of SIC is ruled
by the strain amplification induced by the filler. Moreover, additional interactions in the
rubber network are responsible for either accelerating or slowing down the crystallization
rate, depending on rubber matrix chemical crosslink density. Ozbas et al. [38], together
with the report of Candau et al. [39], further emphasized that rubber–filler interactions may
hasten SIC at low crosslink density. This is because high crosslinking may interfere with
the chain orientation and reduce SIC. Therefore, the crosslink density of this composite was
also reported (see the data embedded in Figure 12). It can be seen that the crosslink density
observed was fairly constant across the cases. This is a good indication that network chain
density was not involved in the development of SIC, regardless of the treatment time. As a
consequence, the change in SIC is attributed to rubber–filler interactions.

The orientation parameter (OP) indirectly indicates the molecular chain orientation
and alignment and can be estimated from the Herman equation [23,24]. The OP for the
composites is shown in Figure 13. Completely oriented molecular chains would have an
OP of one [40]. Here, the OP for the composites was smaller at low strain and grew with
increasing strain, confirming that stretching oriented the molecular chains. The composites
filled with acid-treated HNT showed higher OP values at low strain, indicating that the
acid modification of HNT increased rubber–filler interactions, and accordingly, stronger
molecular chain orientation was found for composites filled with acid-treated HNT.
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Based on the above findings, the correlation between the SIC and corresponding
interactions between ENR and untreated or acid-treated HNT are represented in the
schematic model of Figure 14. Referring to the scheme, nothing happened when the sample
was not stretched; the ENR matrix may have been in contact with the HNT due to the
interfacial interactions resulting from the unique characteristics of the HNT and the polar
sites of ENR. When strain was applied to the sample, crystallization of the ENR was
induced (SIC), and the crystallinity increased in association with the orientation of the
HNT. HNT were oriented and aligned to the stretching direction. This always happened
regardless of whether untreated or acid-treated HNT was used. This is usual for filled
composites, as has been reported elsewhere [20,38,39]. However, it is interesting to note that
the crystallinity of the ENR matrix increased steadily due to the collaborative crystallization
of ENR and acid-treated HNT. Higher rubber–filler interactions, as indicated by a lower
Payne effect, were responsible for this change. The presence of the acid-treated HNT played
an important role in pulling the surrounding molecular chains. Thus, a significant increase
in crystallization was observed at larger strains, and this is in agreement with the results
from stress–strain behavior and WAXS profiles.
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4. Conclusions

Selectively etched HNT were successfully prepared using sulfuric acid. This was con-
firmed by FTIR and XRD. At first, the specific surface area of HNT was found to increase
with treatment time. This was seen from BET surface analysis, increasing from 25.83 m2/g
to 57.83 m2/g with increasing acid treatment time. The FTIR showed a decrease in Al–OH
structures, as indicated by reduced peak intensities in the regions 3750–3600 cm−1 and
825–725 cm−1. Upon using acid-treated HNT, there was a shift of the XRD peak from
12.05◦ (d-spacing is 7.33
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was enlarged, possibly enabling intercalation by rubber and other ingredients. The mod-
ification of HNT with acid resulted in accelerated ts2, and tc90, MH and MH–ML were
influenced by the improved interactions between the ENR matrix and the acid-treated HNT
filler. Increased tensile strength and tear strength were also observed due to the improved
filler–matrix interfacial adhesion with acid-treated HNT in the rubber matrix. The percent-
age increments of tensile and tear strengths for the composites filled with untreated HNT
and acid-treated HNT (4 h) were 5.3% and 3.4% respectively. This was further confirmed
by the dynamic properties of the composites, as the value of Payne effect was clearly
reduced to 44.2% when using HNT treated for 4 h. The SIC in the composites exhibited a
clear change, as the strain upturn occurred at a lower strain during stretching, indicating
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faster crystallization caused by better interfacial interactions within the composites. The
Xc was directly observed with XRD during stretching, and corresponded well with the
tensile moduli of the composites. Based on the observations overall, it can be concluded
that a treatment of HNT with sulfuric acid for 4 h is highly advantageous for preparing
composites with an ENR matrix, improving filler–matrix compatibility and strength of the
composite vulcanizates. In addition, treatment of HNT by sulfuric acid can be the solution
of choice for boosting ENR–HNT interactions. It can promote these improvements without
requiring the use of complicated and costly silane coupling agent systems.
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