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Abstract
We studied several methods for selecting single-nucleotide polymorphisms (SNPs) in a disease
association study. Two major categories for analytical strategy are the univariate and the set
selection approaches. The univariate approach evaluates each SNP marker one at a time, while the
set selection approach tests disease association of a set of SNP markers simultaneously. We
examined various test statistics that can be utilized in testing disease association and also reviewed
several multiple testing procedures that can properly control the family-wise error rates when the
univariate approach is applied to multiple markers. The set association methods were then briefly
reviewed. Finally, we applied these methods to the data from Collaborative Study on the Genetics
of Alcoholism (COGA).

Background
Due to the abundance and utility of single-nucleotide pol-
ymorphism (SNP) markers in the fine-mapping of com-
plex traits, a growing amount of current genetic research
focuses on the analyses of SNP data. Such analyses typi-
cally involve association, in which differences in allele or
genotype frequencies of SNPs near or within candidate
genes between affected and unaffected individuals are
tested. To localize disease susceptibility genes (loci), thou-
sands of SNPs are usually investigated and the main ques-
tion is how to identify disease-associated SNP markers
among a large pool.

A simple approach that is commonly used is to evaluate
one SNP at a time. In this analytical strategy, each SNP is
tested with appropriate testing procedures, such as Pear-
son's chi-square test and Cochran-Armitage (CA) trend
test, and those SNP markers with a significant disease
association are identified. Current technology, however,

can genotype on the order of 100,000 SNPs at a time.
Even with a preliminary genome scan, such as linkage
analysis, which can restrict the chromosomal region to
reduce the number of SNPs for investigation, often a large
number of SNPs are tested simultaneously. Therefore,
investigators are at great risk of false-positive findings.
Various methods for marker selection with consideration
of multiple comparisons are available. Dudoit et al. [1,2]
summarized a number of procedures that control differ-
ent type I error rates, such as family-wise error (FWER)
and false discovery rates (FDR) [3].

For a complex trait, however, several markers, each with a
rather small effect, might act together to contribute to dis-
ease susceptibility. In this case, marker-by-marker
approaches often fail to find significance. Recently, several
investigators incorporated the multigenic nature of com-
plex traits in selecting SNPs for association [4,5]. One
promising approach has been proposed by Hoh et al. [6],
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which performs a simultaneous significance test on a set
of possibly interacting SNP markers while controlling the
genome-wide significance level via permutation proce-
dures.

In this study, we describe different strategies for selecting
SNPs in a disease association study and apply them to the
Collaborative Study on the Genetics of Alcoholism
(COGA) data.

Methods
Measures for disease association
Allelic association and Hardy-Weinberg disequilibrium
To measure the extent of the association for a given SNP,
Hoh et al. [6] proposed a statistic that combines several
sources of information, such as allelic association (AA)
and Hardy-Weinberg disequilibrium (HWD). In a 2 × 2
table with rows corresponding to cases and controls, and
columns corresponding to SNP alleles, the χ2 statistic can
be utilized as a measure for AA. HWD can also be com-
puted using χ2 for deviation from Hardy-Weinberg equi-
librium based on the affected individuals only. Let ai and
ui be the AA statistic and HWD for association of the ith

SNP, respectively. The product of these two statistics, ai ×
ui, is used to measure the effects of AA and HWD for asso-
ciation. We denote this test statistic as AA × HWD. Hoh et
al. [6] used trimming for markers with extremely high val-
ues of HWD. They first find the number d of largest HWD
values (for example, using 99th percentile of the χ2 distri-
bution) based on control individuals, and d HWD values
are set to zero in the further analysis.

Robust linear trend tests-MERT and MAX

Two robust tests, the maximin efficiency robust test
(MERT) and the maximal test (MAX) are useful in detect-
ing disease-associated markers when the underlying
genetic model is unknown. Suppose we have a family of

optimal test statistics {Zi : i ∈ Λ}, where Λ = {1, 2, ..., k}is

an index of k underlying models. For example, using the
CA trend test, Zx, x = 0, 1/2, 1, are optimal test statistics for

the recessive, additive, and dominant models, respectively
[7]. Assume that under the null hypothesis, each Zi

asymptotically follows a standard normal distribution
and that their correlation matrix under the null hypo-
thesis of no disease association is given by

. Closed forms of the test statistics

and correlations for the CA-trend test in case-control stud-
ies can be found in Friedlin et al. [8]. From Gastwirth [9],
MERT can be written as a linear combination of two tests
with the minimum correlation. Suppose that the mini-

mum correlation  is reached at the two tests 

and , i1, i2 ∈ Λ. Then, a linear combination of the

extreme pair given by

which asymptotically follows a standard normal distribu-
tion under the null hypothesis.

When the minimum correlation ρ0 is small, MERT may

not be powerful. Freidlin et al. [10] suggested the use of a

maximal statistic (MAX) when ρ0 < 0.50 and showed that

the MAX and MERT have similar power when ρ0 ≥ 0.75.

Several versions of MAX tests are possible but here we

focus on ZMAX = max( , ZMERT, ) for a one-sided test

and ZMAX = max(| |, |ZMERT|, | |) for a two-sided test.

Multiple testing
Dudoit et al. [1] provided multiple testing procedures
which strongly control the FWER for gene expression data
and which are directly applicable to disease association
data with multiple markers. The Bonferroni single-step
adjusted p-value is a well known procedure for dealing
with multiple testing. While it is easy to calculate, this
method is extremely conservative. The improvement in
power can be achieved by step-wise procedures such as
Holm's procedure. To take into account the dependence
structure between test statistics, Westfall and Young's [11]
step-down minP or step-down maxT adjusted p-values are
useful. Since the joint distribution of the test statistics is
usually unknown, resampling methods can be used to
estimate these adjusted p-values.

Set association approach
Hoh et al. [6] provided a method that tests the disease-
association of a set of markers instead of testing each SNP
separately. In their method, the sum of test statistics over
a suitable set of markers is first formed to combine the evi-
dence for association. Permutation procedures are then
used to evaluate p-values associated with each sum and
the overall type I error. The following summarizes the set
association approach of Hoh et al. [6].

1) Order test statistics ti, i = 1, ..., m, so that |t(1)| ≥ |t(2)| ≥
... ≥ |t(m)|.

2) For a fixed N ≤ m, take sums with an increasing number
of terms, starting with the most significant markers, such
that S(n = 1) = |t(1)|, S(n = 2) = |t(1)| + |t(2)|, ..., S(n = N) =
|t(1)| + ... + |t(N)|.
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3) Generate the permutation samples from the original
sample (permuting labels of cases and controls) under the
null hypothesis of no association and evaluate the p-value
of each sum. Take the minimum p-value (minP).

4) Generate other permutation samples from the original
sample under the null hypothesis of no association. To
obtain the p-value corresponding to each permutation
sample, repeat the above 3 steps by regarding each permu-
tation sample as the original.

5) Evaluate the overall significance level of (minP).

Study subjects and genetic markers
The COGA data provide alcoholism diagnosis on 1,614
individuals from 143 families. We focus on two categories
for the alcoholism diagnosis (aldx1), "affected" as a case
and "purely unaffected" as a control, and we used all 609
cases and 261 controls whose SNP data were available.
From the preliminary genome scan by linkage analysis
(Lin and Wu [12]), one candidate gene cluster, alcohol
dehydrogenase, on chromosome 4 was identified. Alco-
hol dehydrogenase catalyzes the rate-determining reac-
tion in ethanol metabolism. Genetic studies of diverse
ethnic groups have firmly demonstrated significant allelic
associations between alcohol dehydrogenase genes and
alcoholism. Therefore, we restrict our analysis to SNPs
located near this gene cluster. Because the SNPs are evenly
distributed in the entire genome but not densely geno-
typed near any genes, we found two SNPs (rs749407,
rs980972) within the cluster and we selected two addi-

tional SNPs (rs1037475, rs1491233) flanking each side
from the Illumina SNP data.

Results
Table 1 presents the results from the univariate method
for testing association using four test statistics, χ2, AA ×
HWD, MERT, and MAX. The unadjusted p-values for AA ×
HWD were obtained via permutation with 20,000 repli-
cates and the p-values for MAX were calculated based on
20,000 simulations. In Hoh et al. [6], unusually large
HWD values were trimmed based on HWD in control
individuals. Because we did not find any SNP markers
whose HWD value was larger than their suggested cut-off
value (the 99th percentile for a χ2 distribution with 1
degree of freedom) we did not need trimming in our anal-
ysis. The disease-association of rs1037475 is significant
based on most of the test statistics with correction for mul-
tiple testing. The smallest correlations between linear
trend tests for recessive and dominant models for all four
SNP markers were less than 0.4, and therefore MAX may
be more efficient than MERT [10]. As expected, Westfall
and Young's step-down method is less conservative than
Holm's method, which in turn is less conservative than
the Bonferroni correction. One exception is found when
we used AA × HWD. We found that even though
rs1037475 has the maximum observed test statistic
(19.685), other markers have a larger chance of having a
test statistic greater than 19.685 in the permutation sam-
ples. We do not know why this happened, but it shows
that the test statistic AA × HWD is rather unstable in the
permutation procedure. The SNP marker rs1037475

Table 1: Results from the univariate methods

rs1037475 rs1491233

χ2 AA × HWD Z2
MERT Z2

MAX χ2 AA × HWD Z2
MERT Z2

MAX

Test 
statistic

9.299 19.685 4.234 8.842 0.620 1.301 0.380 0.616

p-value1 0.010 0.002 0.040 0.007 0.734 0.587 0.537 0.674
p-value2 Bon3 0.040 0.008 0.160 0.028 1.000 1.000 1.000 1.000

Holm 0.040 0.008 0.160 0.028 1.000 0.742 0.888 1.000
wy4 0.037 0.076 0.141 0.025 0.920 0.680 0.542 0.886

rs749407 rs980972

Test 
statistic

0.619 0.929 0.586 0.586 4.900 5.244 3.848 4.820

p-value1 0.734 0.371 0.444 0.684 0.086 0.136 0.050 0.060
p-value2 Bon3 1.000 1.000 1.000 1.000 0.344 0.544 0.200 0.240

Holm 1.000 0.742 0.888 1.000 0.258 0.408 0.160 0.180
wy4 0.730 0.526 0.670 0.689 0.234 0.224 0.135 0.156

p-value1: Unadjusted p-value
p-value2: Adjusted p-value
Bon3: Bonferroni single-step correction
wy4: Westfall and Young's maxT step-down correction.
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shows a significant disease association using the χ2 and
MAX tests. The other three markers failed to show a signif-
icant association.

Figure 1 summarizes the result from the set association
approach. Because there were only four markers under

investigation, we considered the sum of test statistics up to
all four SNP markers. We performed 20,000 permutations
to obtain corresponding p-values for each of 10,000 per-
mutation samples. The order of SNP markers included in
the sum statistics based on the univariate test statistics is
rs1037475, rs980972, rs1491233, rs749407, except for

Significance level of the set association approach using different test statisticsFigure 1
Significance level of the set association approach using different test statistics. S(n = 1): SNP marker rs1037475 S(n 
= 2): SNP markers rs1037475, rs980972 S(n = 3): SNP markers rs1037475, rs980972, rs1491233 S(n = 3)*: SNP markers 
rs1037475, rs980972, rs749407 S(n = 4): all four markers
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MERT, where rs1491233 and rs749407 are switched.
Using χ2, MERT, and MAX, the smallest p-value is reached
at S(n = 2), which is the sum statistic of rs1037475 and
rs980972. For AA × HWD, the smallest p-value is obtained
at S(n = 1). The overall significance levels of these smallest
p-values (adjusted for multiplicity) are 0.0396, 0.0097,
0.0839, and 0.0225 for χ2, AA × HWD, MERT, and MAX,
respectively. Only MERT failed to reach the global signifi-
cance level. Using univariate analyses, rs980972 has
rather negligible effect. However, the effect of rs980972
combined with rs1037475 became significant using the
set association approach.

We carried out an additional analysis on a total of 8 SNPs
in the nearest area including the above four SNPs. Using
the univariate method with Bonferroni and Holm's meth-
ods, only AA × HWD found rs1037475 to be significant.
None of the methods found significant markers based on
Westfall and Young's method. In the set association
approach, the smallest p-values were reached at S(n = 1)
using χ2 and AA × HWD, and at S(n = 2) using MERT and
MAX, where S(n = 1) corresponds to rs1037475 and S(n =
2) is the sum of rs1037475 and rs980972. The overall sig-
nificance levels of these smallest p-values were 0.094,
0.022, 0.226, and 0.074, respectively. Again, only AA ×
HWD reached the overall significance at α = 0.05. When
we included more SNPs in the analysis (a total of 28),
none of the methods found significant markers. By adding
SNPs which may not be in linkage disequilibrium with
the mutation, the method became extremely conservative.

Conclusion
In this paper, we studied different strategies to select dis-
ease-associated SNP markers when multiple markers are
tested. Various test statistics can be utilized to measure the
degree of individual association, and using these statistics,
the univariate approach combined with an appropriate
correction for multiple testing can identify significant
markers. However, if several markers are acting together to
contribute to the susceptibility of the disease, the set asso-
ciation approach may be useful. In the application to the
COGA data, we observed different results using the uni-
variate and set association approaches, that is, a SNP
marker with a rather negligible effect using the univariate
approach is picked up by the set association approach. An
added advantage of the set association methods is their
ability to detect interacting loci, though we do not inves-
tigate that property here. For a rigorous comparison of the
performances between different approaches, further
investigation with simulated data would be necessary.

We used only four SNPs in our analysis. In principal, these
procedures can also be applied to testing thousand of
SNPs as in a genome-wide association study. However, for
testing a very large number of SNPs, these procedures can

be extremely conservative and computationally intense.
As we include more SNPs in the analysis, the methods
tend to become very conservative and fail to find any sig-
nificance. Reducing the number of tests by restricting
areas of investigation is one common approach to address
the multiple testing problems in genome-wide associa-
tion studies and the methods described here may be opti-
mal with the reduced data. To take full advantage of the
abundant information from a genome-wide SNP map,
alternative approaches such as a method for controlling
FDR and a sequential type analysis [13] are possible.

The choice of test statistics has a great impact on the test-
ing results. The CA trend test is usually preferable to the χ2

test [14,15] and two robust tests, MERT and MAX, provide
protection against model misspecification [7,8]. AA ×
HWD [6] showed quite consistent result using different
numbers of SNPs in the analysis. However, its perform-
ance was unstable in the permutation procedure. The
properties of these test statistics under a variety of genetic
models may need further investigation.

The case-control dataset used in this study is a family data-
set in which cases and controls could be biologically cor-
related. The effect of correlated structures between family
members in statistical testing leads to an inflated variance
due to the positive correlation. Therefore, without consid-
ering this factor, inflation in type I error rates may result.
In one of our studies using the same dataset [16], we
applied the method of Slager and Schaid [17] with modi-
fication, in which the correlations of related individuals
are incorporated into the CA trend test. While adjusting
for the correlations is desirable, we found that the vari-
ance inflation is rather minor, and thus in this study, we
ignored family structure. The test statistics which incorpo-
rate the correlations between family members can also be
utilized in the univariate and set association approaches
described in this study.

Abbreviations
AA: Allelic association

CA: Cochran-Armitage

COGA: Collaborative Study on the Genetics of Alcohol-
ism

FDR: False discovery rates

FWER: Family-wise error rate

HWD: Hardy-Weinberg disequilibrium

MAX: Maximal text
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