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ABSTRACT

Summary: N-acetyltransferase-2 (NAT2) is an important enzyme
that catalyzes the acetylation of aromatic and heterocyclic amine
carcinogens. Individuals in human populations are divided into
three NAT2 acetylator phenotypes: slow, rapid and intermediate.
NAT2PRED is a web server that implements a supervised pattern
recognition method to infer NAT2 phenotype from SNPs found in
NAT2 gene positions 282, 341, 481, 590, 803 and 857. The web
server can be used for a fast determination of NAT2 phenotypes in
genetic screens.
Availability: Freely available at http://nat2pred.rit.albany.edu
Contact: ikuznetsov@albany.edu; rmoslehi@albany.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
N-acetyltransferase-2 (NAT2) is an important enzyme that catalyzes
the acetylation of aromatic and heterocyclic amine carcinogens
(Blum et al., 1990). Based on the level of NAT2 acetylator activity,
individuals in human populations are divided into three enzymatic
phenotypes: rapid (normal activity), intermediate and slow (reduced
activity) (Hein et al., 2000). Single nucleotide polymorphisms
(SNPs) within NAT2 determine the NAT2 acetylator phenotype. A
consensus has been reached on association between NAT2 genotype
and acetylator phenotype (Hein, 2006). Recently, we showed that
individuals with NAT2 SNP variants associated with the slow
phenotype were more susceptible to the effects of tobacco smoking
with respect to the risk of developing an advanced colorectal
adenoma (Moslehi et al., 2006). Several other studies have also
linked NAT2 gene variants and acetylator phenotypes to the risk of
several malignant and pre-malignant conditions (Brockton et al.,
2000; Hein, 2006; Potter et al., 1999; Tiemersma et al., 2004).
The identification of at-risk individuals is an important component
of cancer prevention. Current genotyping technologies are able to
determine which alleles are present at each locus, but do not provide
information about the phase of the alleles at different loci (i.e. do
not provide information about which alleles at adjacent loci occur on
the same chromosome). In order to assign an acetylator phenotype
to a particular individual, the NAT2 haplotypes for this individual
need to be determined by inferring the phase of the alleles. After

∗To whom correspondence should be addressed.

phasing, the acetylator phenotype is assigned manually based on
haplotypes (Supplementary Fig. 1). Phasing of alleles (i.e. haplotype
determination) is laborious. Experimental methods exist, but are
time-consuming and expensive. In most studies, computational
statistical methods are used, such as the algorithm implemented in
PHASE (Stephens et al., 2001). However, methods for statistical
determination of phase are computer intensive and require specific
data formatting steps. The goal of the present work was to develop
a web server that implements a supervised pattern recognition
approach to infer NAT2 acetylator phenotype (slow, intermediate
or rapid) directly from the observed combinations of NAT2 SNPs,
without taking the extra step of determining the haplotypes for each
individual.

2 METHODS
The dataset used in this work was obtained from the Prostate, Lung,
Colorectal and Ovarian (PLCO) cancer screening trial of the National Cancer
Institute (see Moslehi et al., 2006 for details). Genotyping for six NAT2
SNPs (C282T, T341C, C481T, G590A, A803G and G857A) was performed
using the TaqMan® (Applied Biosystems Inc., Carlsbad, CA, USA) kit. The
acetylator phenotypes were assigned in our previous study based on the
haplotypes determined from SNP genotyping data for each subject (Moslehi
et al., 2006). The dataset consists of 1377 subjects (see Supplementary
Table 1 for details and ethnic makeup). Prediction of the acetylator phenotype
from combinations of SNPs, as defined here, is a three-class classification
problem that can be addressed using a supervised pattern recognition method.
We used Support Vector Machine (SVM) as a method of choice (Vapnik,
1998). We constructed a three-class SVM predictor using the one-against-
one approach which was shown to perform better than other approaches
in multi-class SVMs (Hsu and Lin, 2002). We used SVM implemented in
the LIBSVM package (Chang and Lin, 2003) with the linear kernel. Each
NAT2 SNP was encoded using a set of three mutually orthogonal binary
vectors: homozygote for the most frequent allele (1,0,0), heterozygote for
the most frequent allele (0,1,0) and homozygote for the least frequent allele
(0,0,1). For a given subject corresponding vectors describing each of the
six observed SNPs were concatenated together, resulting in a final binary
feature vector of dimension 18. Thus, the SNP combination of each subject
was described by 18 binary variables. We used a 7-fold cross-validation to
test the SVM predictor of the acetylator phenotype. In this approach, the
dataset is randomly partitioned into seven groups, each containing 1/7 of the
dataset. At each cross-validation run, one group is removed and the predictor
is trained on the remaining observations and tested on the removed group.
The process is repeated seven times, so that each group is used for testing
once. In order to assess different aspects of classification quality, we used the
following performance measures: overall accuracy (ACC), sensitivity (SN)
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Table 1. The performance of NAT2PRED server

NAT2 phenotype Sensitivity (SN) Specificity (SP)

Rapid 99.6% 100%
n = 84 (93.4%) (90.1%)

Intermediate 100% 99.7%
n = 503 (94.0%) (95.4%)

Slow 100% 100%
n = 790 (92.5%) (93.1%)

The total number of cases for a given phenotype is shown in a corresponding row
name. The SVM penalty parameter C was set to 3 (an optimal value determined using
a grid search). Numbers in parenthesis show the results of prediction based on non-
synonymous SNPs.

for class i (SNi) and specificity (SP) for class i (SPi) (Baldi et al., 2000):

ACC=100%×
∑

i
z[i,i]

N
(1)

SNi =100%× z[i,i]

x[i]
SPi =100%× z[i,i]

y[i]
(2)

x[i]=
∑

j

z[i,j], y[i]=
∑

j

z[j,i] (3)

where Z is a 3 × 3 confusion (contingency) matrix, in which an element z[i,j]
represents the number of times objects from class i are predicted to be in
class j; N is the total number of objects (N = 1377 in this work).

3 RESULTS
The results of the cross-validation are shown in Table 1. If all six
SNPs are used, the predictor of the NAT2 acetylator phenotype
achieves a nearly perfect accuracy of 99.9% (Equation 1) and nearly
perfect class-specific sensitivities and specificities (Equation 2)
between 99.6 and 100%. Such a well-balanced performance is
observed despite the highly unbalanced nature of the dataset,
meaning that the number of subjects with the slow phenotype is
almost an order of magnitude larger than that of subjects with the
rapid phenotype. Importantly, individuals with the slow phenotype,
who are at increased risk of developing tumors, are identified with
100% SN, meaning that no at-risk individuals are missed. If data
on two synonymous SNPs (C282T and C481T) are removed and
only non-synonymous SNPs are used, the accuracy of the prediction
drops from 99.9 to 93.2%, with similar declines in SN and SP
(Table 1). We therefore conclude that all six SNPs used in the present
study are required to reliably assign the acetylator phenotype.

The web server implementation of the SVM predictor of the
NAT2 acetylator phenotype was trained using the data on all 1377
subjects. It has a simple intuitive user interface .The user is asked
to select a genotype for each of the six SNP loci using radio buttons
(Supplementary Fig. 2). There are three possible genotypes for each
SNP locus, which corresponds to three radio buttons per locus.
After the genotype is selected, the user can click ‘Submit’ button
and immediately obtain an inferred NAT2 acetylator phenotype.

The output page displays the selected genotype and the probabilities
of each of the three acetylator phenotypes (slow, intermediate
and rapid) for these genotypes (Supplementary Fig. 3). The
final prediction is the phenotype with the highest probability.
There is also an option for a batch submission of genotypes for
multiple individuals. Detailed instructions and information about
the methodology and output format can be found by clicking the
corresponding help hyperlink located on the input page. To the best
of the authors’ knowledge, NAT2PRED is the only existing web
server for inferring NAT2 acetylator phenotypes from genotyping
data. NAT2PRED was developed on a dataset where majority
of subjects are Caucasian (94%). However, the prediction model
utilizes generally observed linkage disequilibrium between the six
NAT2 SNPs and can be applied to individuals from any ethnicity.
The web server is publicly available at http://nat2pred.rit.albany.edu.
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