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Abstract
With the in-depth understanding of programmed cell death 1 ligand 1 (PD-L1) in
non-small cell lung cancer (NSCLC), PD-L1 has become a vital immunotherapy target
and a significant biomarker. The clinical utility of detecting PD-L1 by immunohisto-
chemistry or next-generation sequencing has been written into guidelines. However,
the application of these methods is limited in some circumstances where the biopsy
size is small or not accessible, or a dynamic monitor is needed. Radiomics can nonin-
vasively, in real-time, and quantitatively analyze medical images to reflect deeper
information about diseases. Since radiomics was proposed in 2012, it has been widely
used in disease diagnosis and differential diagnosis, tumor staging and grading, gene
and protein phenotype prediction, treatment plan decision-making, efficacy evalua-
tion, and prognosis prediction. To explore the feasibility of the clinical application of
radiomics in predicting PD-L1 expression, immunotherapy response, and long-term
prognosis, we comprehensively reviewed and summarized recently published works in
NSCLC. In conclusion, radiomics is expected to be a companion to the whole immu-
notherapy process.
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INTRODUCTION

According to data released by the World Health Organiza-
tion (WHO), lung cancer is the most common cause of
cancer-related death, and it is reported that 1.8 million peo-
ple will die of lung cancer worldwide in 2021. Non-small cell
lung cancer (NSCLC) accounts for more than 85% of lung
cancers and is a fundamental social health problem.1

As an essential therapeutic drug, immune checkpoint
inhibitors (ICIs) have significantly improved the prognosis
of NSCLC patients after Food and Drug Administration
(FDA) approval. Especially in some tumor patients with
negative targeted driver mutations (EGFR, ALK, etc.), PD-1/
PD-L1 inhibitors have become the first-line treatment of
choice.2–5 In advanced NSCLC, the 5-year overall survival
(OS) rate has been reported to be 32% for patients in the
pembrolizumab arm compared to 16% in the chemotherapy

arm.6 It also indicates that treatment goals for advanced
patients have changed from short-term control and short-
term remission to long-term treatment.

It is believed that in the process of tumor immunity,
PD-1 is expressed on tumor-infiltrating immune cells, and
PD-L1 is mainly expressed on tumor cells and antigen-
presenting cells.7,8 The interaction of PD-L1 with PD-1
induces a conformational change in PD-1, which leads
to the phosphorylation of cytoplasmic immunoreceptor
tyrosine-based inhibitory motif (ITIM) and immunorecep-
tor tyrosine-based switch motif (ITSM) by Src family
kinases.9–11 When these tyrosine motifs are phosphory-
lated, SHP-2 and SHP-1 protein tyrosine phosphatases are
recruited to attenuate T cell activation signals.11–14 The
binding of PD-L1 to PD-1 alters T cell activity in multiple
ways, inhibiting T cell proliferation, survival, cytokine pro-
duction, and other effector functions.15–19
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However, not all patients are suitable for PD-L1 targeted
therapy, and pathological detection and immunohistochem-
istry are the gold standards for testing.20,21 Many studies
have shown that PD-L1 expression in NSCLC patients is
related to the prognosis of patients, and it may become a
biomarker for predicting the prognosis of patients.22–26 PD-
L1 expression has been evaluated according to tumor pro-
portion score (TPS), tumor cells (TC), tumor-infiltrating
immune cells (IC) and combined positive score (CPS).
Although there are various scoring methods, they all semi-
quantitatively calculate the expression of PD-L1. Among
them, TPS is widely used. It is generally believed that
TPS <1% is negative for expression and unsuitable for
treatment with anti-PD-L1 antibodies.27 In a randomized
controlled trial based on KEYNOTE-042, it was found
that patients with TPS ≥1% can also benefit, and in 2019,
the FDA approved the indication for the use of
TPS ≥ 1%.28 Before this, PD-L1 blockade therapy was
only recommended for patients with TPS ≥50%.29 There-
fore, evaluating PD-L1 expression is particularly critical
in the treatment process.27,30

In the course of clinical studies, it has been found that
found that some patients showed a certain initial sensitivity
to anti-PD-L1 antibodies at first and then developed drug
resistance, which increased the economic burden of patients
and contiiued disease progression. Ren et al. have summa-
rized the possible mechanisms: (1) T cell dysfunction,
(2) impairment of antigen recognition, (3) T cell activation
disorder, (4) reduced T cell infiltration, (5) T cell exhaus-
tion, and (6) changes in PD-L1 expression.31–38

In the process of PD-L1 blockade therapy, whether it is
to evaluate indications or reveal possible drug resistance
mechanisms, PD-L1 expression has a certain status. Many
studies have shown that patients with high PD-L1 expres-
sion predict better prognosis, so the dynamic assessment of
PD-L1 expression is critical.6,39 Although pathological
detection and immunohistochemistry are the gold stan-
dards for diagnosis, their invasive shortcomings are also
evident. Partial specimens obtained by surgery for immu-
nohistochemistry cannot fully reflect the tumor, resulting
in inaccurate diagnosis. Liquid biopsy can be considered
impermanent monitoring, but it cannot assess information
such as overall tumor size and location.40,41 Therefore,
there is an urgent need for a noninvasive diagnostic
method that can wholly and dynamically assess PD-L1
expression.

ADVANTAGES OF RADIOMICS
IN NONINVASIVE AND REAL-TIME
DIAGNOSIS

The process of radiomics

The development of high-throughput computing allows us
to obtain a large amount of digitized information from
imaging data such as computed tomography (CT), positron

emission computed tomography (PET), and single-photon
emission computed tomography (SPECT). The process of
extracting and mining data from it is called radiomics. With
the help of radiomics, we can discover the potential of
reflecting biological processes from high-dimensional data
of medical images, which is very different from traditional
manual reading. Therefore, radiomics proposes that images
are not just pictures but data.42 Since tumor patients almost
always have one or more imaging examinations, the appli-
cation scope of radiomics in tumor diagnosis has also
been expanded. The analysis process of radiomics mainly
includes the following aspects: acquiring images, identify-
ing region of interest (ROI), computer-aided segmenta-
tion, extracting features, and mining the relationship
between features and biological behavior. In the mining
process, joint analysis can be carried out with clinical
information, genomic information, etc., and displayed
from multiple dimensions.43,44

Classification of radiomic features

The features extracted after segmentation can be divided
into the following categories: (1) Morphological features:
describe size features such as volume, diameter, etc.
(2) First-order grayscale histogram features: obtain relevant
statistical features, such as maximum value, minimum value,
standard deviation, etc., according to the different grayscale
frequency distributions in the segmented ROI. (3) Second-
order and higher-order texture features: describe the rela-
tionship between gray value and spatial distribution in an
image, such as absolute gradient, gray-level cooccurrence
matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level size zone matrix (GLSZM) and gray-level distance
zone matrix (GLDZM), neighborhood gray-tone difference
matrix (NGTDM), neighborhood gray-level dependence
matrix (NGLDM). (4) Other features based on filtering and
morphing.45,46

Application of radiomics in lung cancer
diagnosis

The earliest application of radiomics in lung tumors was
mainly used to distinguish benign from malignant and iden-
tify diseased tissue.47 For example, Maldonado et al. used
high-resolution CT to identify pulmonary nodules by radio-
mics.48 Later, it was gradually applied to predict tumor stag-
ing. Zhou et al. conducted a retrospective analysis of
348 patients with lung cancer and extracted 485 features
employing CT radiomics to predict the presence of distant
metastasis. The model was established with clinical charac-
teristics, and the AUC could reach 89.09%.49 With the wide
application of targeted therapy, radiomics has also been used
to diagnose molecular protein levels. We will discuss the
application of radiomics in PD-L1 blockade therapy in
this part.
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Applications of radiomics concerning PD-L1

To gain a more comprehensive understanding of the current
application of radiomics in assessing PD-L1 expression in
NSCLC and in NSCLC patients receiving PD-L1 blockade
therapy, PubMed, web of science, Embase, clinicaltrials.gov
and the Cochrane library were searched for available studies.
A total of 39 relevant studies were retrieved after checking
for duplication (Figure 1). According to the content, they
are divided into the following categories.

Prediction of PD-L1 expression by CT
radiomics

As mentioned above, the pathological gold standard uses TPS
calculated after immunohistochemistry as an indication for
PD-L1 blockade therapy. This part of the study mainly uses
CT imaging to extract features and predict the expression of
PD-L1. We collected a total of 11 studies through the search,
of which four set TPS = 50% as the cutoff value for prediction,
two set TPS = 1% as the cutoff value for prediction, and three
both performed TPS = 1% and TPS = 50%, and the other two
did not specify TPS in the article (Table 1).

TPS cutoff was 50%

Three of these were modeled solely using CT radiomics fea-
tures. Yoon et al. extracted 58 features from CT imaging
data from 153 NSCLC patients and screened four for estab-
lishing a model. The AUC was 0.661, the sensitivity was
0.528, and the specificity was 0.760.50 Wen et al. extracted
462 features from the CT data set of 120 NSCLC patients.

After screening, five features were used for modeling. The
AUC was 0.839, the sensitivity was 0.917, and the specificity
was 0.481.51 From this, there is heterogeneity in the predic-
tion effect of radiomics. There are apparent differences in
the number of features extracted by different institutions for
the same issue, and there are also significant differences in
the bias of the prediction results. Similar problems exist in
the subsequent analysis. After discussion, we believe that
there are several factors: (1) Data standardization: The
parameters of the imaging instrument manufacturers, the
manually segmented ROI, and the operating software used
in each center are different. (2) Statistical methods are dif-
ferent in the modeling process. This study can corroborate
the second of these points, Shiinoki et al. extracted 1130 fea-
tures from CT data of 203 NSCLC patients. After screening,
three machine learning methods were used for modeling
(LightGBM, SVM: Support vector machine and LR: Logistic
regression), of which LightGBM had a better effect, the
training set AUC was 0.95, and the test set was 0.79. The
effect of SVM was the worst; the AUC in the training set
was only 0.50.52

In the other studies with PD-L1 expression as the cutoff
value of 50%, further information was included in addition
to radiomics information to form a combined model. Bracci
et al. extracted a total of 48 features from CT of 72 NSCLC
patients and screened four features combined with clinical
data to construct a prediction model jointly. The model had
an AUC of 0.811 in the training set and 0.789 in the valida-
tion set, with a sensitivity of 83% and a specificity of 75%.53

Also a study that combined clinical information by Sun
et al. extracted 200 features from the CT imaging data of
390 patients. They selected nine features and combined
them with clinical information to build and train the model.
The training set AUC was 0.829, validation set AUC was

F I G U R E 1 Screening process and key points of studies included. A total of 83 articles were included through the retrieval of the above five databases.
Finally, 39 papers were screened to meet the requirements. They all use radiomics to process imaging data to guide various aspects of immunotherapy
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0.848, sensitivity was 0.833, and specificity was 0.724.54 Wang
et al. combined the deep learning part. They collected 873 cases
of NSCLC patients, extracted 1247 radiomics features from
their chest CT, and divided the final model into multiple parts
(including deep learning, radiomics and combinatorial part)
for the classification task of EGFR and PD-L1 expression sta-
tus, respectively. In the radiomics module, the AUC of the
training set was 0.819, AUC of the validation set was 0.795,
sensitivity was 0.795, and specificity was 0.716.55

TPS = 1% used as cutoff value

Bracci et al. also rescreened the 48 previously extracted fea-
tures in the study mentioned above and combined the clini-
cal data with the six screened features for modeling. The
AUC in the training set was 0.763, and the validation was
0.806. The sensitivity was 100%, and the specificity was
58.8%.53 Wang et al. also screened and modeled from the
1247 features extracted above. In the radiomic module, the
AUC on the training set was 0.884, the validation set was
0.836, the sensitivity was 0.744, and the specificity was
0.917.55 Shiinoki et al. rescreened 1130 features for model-
ing, and LightGBM performed the best among the three
modeling methods, with an AUC of 0.98 on the training set
and 0.76 on the validation set.52 Jiang et al. collected chest
CT data of 125 patients with NSCLC, extracted 1287 fea-
tures from it with the help of ITK-SNAP software, used
Ridge regression to screen for potential features, and finally
selected nine features for modeling, which are on the train-
ing set. The AUC was 0.96, the validation set was 0.85,
the sensitivity was 0.913, and the specificity was 0.6364.56

Few studies have taken 1% of PD-L1 expression alone,

which may be related to the therapeutic effect of ICIs. The
KEYNOTE-042 experiment demonstrated that patients with
PD-L1 expression greater than 1% might benefit from using
the corresponding blocker, but patients with PD-L1 expres-
sion greater than 50% may benefit significantly.28

In order to simultaneously construct a prediction model of
PD-L1 expression and prognosis, Wang et al. also
used radiomics combined with 3D ResNet to construct a PD-
L1ES model based on the information of 1135 patients to com-
plete the three-classification task and prognosis prediction. Its
AUCs for PD-L1ES <1%, 1%–49%, and ≥50% in the prediction
validation cohort were 0.950, 0.934, and 0.946, respectively.57

In addition, there are two studies in which the cutoff value
for evaluating PD-L1 expression by immunohistochemical stain-
ing of pathological tissues of NSCLC patients was not noted.
Wang et al. combined traditional radiomic methods with con-
volutional neural networks to simultaneously predict PD-
L1 and EGFR expression to complete the four-
classification task. Modeled on retrospective data from
1262 NSCLC patients, the AUC was 0.96 in the training
and 0.8 in the validation set, with a sensitivity of 0.48 and a
specificity of 0.84.58 Wen et al. extracted 127 features from
CT of 96 NSCLC patients and finally screened eight for
modeling with a validation set AUC of 0.628.59

From the results of the above reports, radiomics is a
potential method to predict the expression status of PD-L1
in NSCLC patients, but the accuracy of the prediction effect
is not consistent among different centers. The results of
multiple studies also suggest that comodeling of radiomic
data with other dimensional data may achieve better results.
For example, combining patients’ clinical information or
radiomics and artificial intelligence methods can signifi-
cantly improve the AUC, sensitivity and specificity.51,53–55

T A B L E 1 Ten studies on PD-L1 expression prediction (CT)

Year Authors
NSCLC
stage

Sample
size

Radiomics features
in final model

PD-L1 TPS
cutoff Clinical question

2017 Wen et al. NA 96 8 NA Predict PD-L1, CD8 + TILs
and Foxp3 + TILs expression

2020 Yoon et al. IIIB–IVC 153 4 50% Predict PD-L1 expression

2020 Sun et al. I–IV 390 9 50% Predict PD-L1 expression

2021 Bracci et al. IIIA–IV 72 Six features for TPS ≥1%;
4 features for TPS
≥50%

1% & 50% Predict PD-L1 expression

2021 Jiang et al. Tis–III 125 9 1% Predict PD-L1 expression

2021 Shiinoki
et al.

NA 203 NA 1% & 50% Predict PD-L1 expression

2021 Wang et al. I–IV 1262(EGFR &

PD-L1)

NA NA Predict EGFR and PD-L1
expression

2021 Wen et al. III–IV 120 6 50% Predict PD-L1 expression and TMB

2022 Wang et al. I–IV 3816(EGFR & PD-
L1)

100-dimensional features 1% & 50% Predict EGFR and PD-L1
expression

2022 Wang et al. I–IV 1135 NA 1% & 50% Predict PD-L1 expression and OS

Abbreviations: OS, overall survival; TMB, tumor mutational burden.
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Predicting response to PD-L1 blockade therapy

The studies on the application of radiomics during PD-L1
blockade therapy can be roughly divided into three catego-
ries (Table 2). The first is to predict whether hyperprogres-
sion occurs. Hyperprogression here refers to the paradoxical
phenomenon of accelerated disease progression after initia-
tion of immunotherapy. This is undoubtedly a fatal blow for
cancer patients. According to the available reports, among
patients receiving immunotherapy, the proportion of this
phenomenon fluctuated from 8% to 25.7%.60–63 The patho-
physiological mechanism of this phenomenon is still
unclear. Therefore, if it can be identified, the worse situation
may be avoided. Here, we have collected two related studies.
Tunali et al. retrospectively collected data from 214 NSCLC
patients receiving PD-1/PD-L1 blockade therapy. The three
CT radiomics features were screened from it. Combined
with the clinical information on age, its AUC reached
0.70.64 Also, Tunali et al. analyzed the phenotype of rapidly
progressive disease by time to progression (TTP) and/or
tumor growth rate (TGR) based on information from
228 patients treated with PD-1/PD-L1 blockade. In conclu-
sion, the AUROC derived from the clinical-radiological
model for TTP <2 months and TTP ≥ 2 months was 0.804.
The AUROC score for the clinical-radiological hyperpro-
gressive disease (HPD) versus non-HPD models was
0.865.65 Vaidya et al. extracted 198 features to model and
identified hyperprogression with an AUC of 0.85 on the
training set and 0.96 on the validation set.63

The second category is to predict the response to PD-L1
blockade therapy. A total of four studies used CT radiomics
to predict the therapeutic effect of PD-L1 blockade therapy.

The impact of a malignant tumor on the patient itself and
the aggravation of the economic burden on the patient’s
family are obvious. Ineffective immunotherapy can exacer-
bate this burden, so some researchers have focused on pre-
dicting response to PD-L1 blockade therapy. Tunali et al.
collected before immunotherapy data of patients with stage
III/IV NSCLC who received PD-1/PD-L1 from 13 different
institutions. They finally screened four radiomic features to
establish a model to distinguish progressive disease
(PD) and patients with partial response (PR) or (complete
response CR), PD vs PR/CR. The ROC curve was drawn,
and the calculated AUC was 0.79.66 Yang et al. combined
radiomics and deep learning to predict immunotherapy
responders and nonresponders with an AUC of 0.80 on data
from 200 patients with advanced NSCLC treated with PD-1/
PD-L1. At the same time, the model was used to divide the
patients into two groups according to the risk score.67 Dif-
ferent from other radiomics methods, Alilou et al. collected
CT imaging data of 80 patients who received PD-1/PD-L1
blockade therapy and performed airway reconstruction pre-
processing to extract airway features. They screened four out
of 14 features for modeling to distinguish responders from
nonresponders, with an AUC of 0.63 in the test set.68

Since studies have reported that lung tumor evolution
during immunotherapy reflects the efficacy of immune-
related drugs, Gong et al. hypothesized that changes in
intratumoral CT radiomics features during short-term
immunotherapy may improve predictive performance.69,70

They retrospectively collected CT data before and after ICIs
in 224 patients with stage III or IV NSCLC from two cen-
ters, and defined PR and CR as the “responder group”, sta-
ble disease (SD) and PD as “nonresponders”. In particular,

T A B L E 2 Ten studies to predict response to PD-L1 blockade therapy (CT)

Year Authors
NSCLC
stage Sample size

Radiomics features
in final model Clinical question

2017 Tunali et al. NA 214 3 Predict patients at risk of HPD

2017 Tunali et al. III–IV 71 Three models (2/4/1) distinguish PD and PR or CR (PD vs. PR/CR)

2018 Tang et al. NA 290 4 Identify responders and nonresponders and predict prognosis

2019 Tunali et al. NA 228 4 for TTP <2 months vs. TTP
≥2
months 1 for HPD vs.
non-HPD

Predict rapid disease progression

2020 Chen et al. NA 82 7 Distinguishing pneumonitis from radiation
therapy or ICIs

2020 Vaidya, et al. I–IV 109 3 Predict patients at risk of HPD

2021 Alilou et al. NA 80 4 Predict response and OS

2021 Yang et al. IIIB and IV 200 107 dimensions features Identify immunotherapy responders and nonresponders

2022 Cheng et al. NA 73 3 kinds of features Differentiate between CIP and RP

2022 Gong et al. III-IV 224 7 (preradiomics model);
4(delta-radiomics model)

Predict response to immunotherapy and PFS and OS

Abbreviations: CIP, immune checkpoint inhibitor-related pneumonitis; CR, complete response; HPD, hyperprogressive disease; OS, overall survival; PD, progressive disease; PFS,
progression-free survival; PR, partial response; RP, radiation pneumonitis.
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Delta radiomics features, that is, changes in CT radiomics
features before and after treatment, are proposed. The AUC
of the model built from the delta radiomics features was sig-
nificantly higher than that built with the preimmunotherapy
radiomics features, from 0.64 and 0.52 to 0.82 and 0.87 in
the two validation cohorts, respectively. The model also has
predictive significance for prognosis.70

The third is to predict whether complications will
occur during treatment. For cancer patients, the response
of their immune system is different from that of normal
people, and some patients have received a variety of treat-
ments. They may develop fatal complications such as
pneumonia during treatment. Chen et al. collected CT
imaging data of 82 NSCLC patients who received radio-
therapy, immunotherapy or both. After screening, seven
features were included in the modeling to distinguish
whether it was pneumonia caused by radiotherapy or
immune checkpoint inhibitors. The AUC on the training
set was 0.79. The validation set’s accuracy was 77%, and
the AUC was 0.84.71

Immunotherapy after radiotherapy is currently the stan-
dard for patients with stage III unresectable NSCLC. How-
ever, it is difficult for clinicians to differentiate between
immune checkpoint inhibitor-related pneumonitis (CIP)
and radiation pneumonitis (RP).72,73 Cheng et al. retrospec-
tively collected CT images and clinical data of pneumonia
patients treated with ICIs alone (28 cases), radiotherapy
(RT) patients (31 cases), and ICIs + RT patients (14 cases).
Three features were screened to establish models, respec-
tively, and the one with the best effect was selected to distin-
guish CIP from RP. The AUC, in its verification, can reach
0.896.74

For patients ready to receive ICIs, several questions need
to be answered when making predictions: (1) Will the
patient respond to ICIs and accelerate disease progression?
(2) Are there possible adverse reactions during the treat-
ment? Based on the advantages of radiomics being noninva-
sive and not increasing the financial burden of patients,
it may be more acceptable to evaluate patients before treat-
ment. The application of radiomics in treating PD-L1 is still
in its infancy, and there are few related studies.

Prognostic prediction associated with PD-L1
blockade by CT radiomics

Approving immune checkpoint inhibitors for treating
patients with NSCLC is a milestone. In particular, for some
patients whose tumors cannot be surgically removed, receiv-
ing ICIs can improve the prognosis.75,76 However, how long
has the patient’s prognosis improved based on this part?
What is the quantitative benefit of receiving immune check-
point inhibitor therapy? How long to live? Individualized
answers to these questions are not yet available. A literature
search found that studies in this area related to radiomics
can be divided into the following categories (Table 3).

First, for patients treated with PD-L1 blockade therapy,
prognostic indicators such as OS, objective response rate
(ORR), and progression-free survival (PFS) were predicted
from their CT data. Tonneau et al. collected CT information
of 299 patients before receiving immunotherapy and com-
bined it with their clinical baseline characteristics to build a
multivariate model. The results also showed improved pre-
dictive power for prognosis when combined with radiomic
information.77 Jazieh et al. included 133 patients who
received PD-L1 blockade therapy after chemoradiotherapy
(CRT), extracted and screened their CT, and finally estab-
lished a risk score by Cox regression to predict PFS and
OS.78 Ackermann et al. collected 16 histologically confirmed
TPS ≥ 50% stage IIIB/IV NSCLC patients treated with pem-
brolizumab. With the help of PyRadiomics, 47 features were
extracted, and LASSO screened five features for predicting
the overall response, and its AUC was 0.83. Three features
were screened for predicting OS by Cox regression.22

With the advent of next-generation sequencing technol-
ogy, tumor mutational burden (TMB) is a hot spot in tumor
immunity. Currently, TMB is able to predict the response to
PD-1/PD-L1 blockade in NSCLC patients.79,80 He et al. col-
lected two datasets, TMB (n = 327) and immunotherapy
dataset (n = 123), and developed and validated the TMB
radiomic biomarker (TMBRB) through convolutional neural
networks. The results showed that the immunotherapy data-
set could be divided into two groups based on TMBRB.
There were significant differences in OS (HR: 0.54, 95% CI:

T A B L E 3 Seven studies for prognostic prediction (CT)

Year Authors
NSCLC
stage Sample size Radiomics features in final model Clinical question

2018 Mazzaschi et al. NA 60 NA Predict OS

2018 Patil et al. I–II 166 3 Predict risk of recurrence and OS

2019 Ackermann et al. IIIB/IV 16 5 for best overall
response; 3 for OS

Predict response and survival

2019 Mazzaschi et al. NA 100 13 Predict OS and DFS

2020 He et al. III–IV 327 1020 Distinguish high TMB from low TMB

2021 Tonneau et al. Advanced 299 NA Predict ORR, PFS at 6 months, OS at 1 year

2022 Jazieh et al. III 133 NA Predict PFS and OS

Abbreviations: DFS, disease-free survival; OS, overall survival; PFS: progression-free survival; TMB, tumor mutational burden.
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0.31 to 0.95; p = 0.030) and PFS (HR: 1.78, 95% CI: 1.07 to
2.95; p = 0.023) between the two groups.81

Second, the PD-L1-related radiomics features were used to
predict the prognosis of patients, such as OS and recurrence.
Mazzaschi et al. analyzed 60 NSCLC patients who received sur-
gical treatment and constructed a model based on the postop-
erative pathological tumor microenvironment (TME),
including PD-L1 expression and 841 features extracted by 3D
slicer, which can be used to predict patient prognosis.82 In
addition to the above studies, Mazzaschi et al. in another study,
combined histological tumor immune microenvironment anal-
ysis with radiomics. In this study, TME was classified accord-
ing to PD-L1 and tumor-infiltrating lymphocytes (TILs) levels
and was further defined as hot, intermediate, or cold according
to the relative contribution of effector and inhibitory pheno-
types. Additionally, a model was constructed to predict patient
survival.83 Tang et al. proposed a model that predicts CD3
counts and percent PD-L1 expression with the help of radio-
mics signatures and predicts patient outcomes.84

For tumors at an early stage, in addition to paying atten-
tion to survival, clinicians are more concerned about the
recurrence of postoperative patients who have undergone
surgical treatment. Patil et al. collected 166 patients with
stage 1 and 2 NSCLC who underwent surgery. A total of
248 features were extracted. Through screening the features
associated with PD-L1, a prediction model was established,
which can predict whether a patient has recurrence
(AUC = 0.73), overall survival (p < 0.001) and recurrence-free
survival (p < 0.001).85 CT data is clinical information that
almost all cancer patients will have. It is easier to accept if radio-
mics can effectively predict survival and prognosis guidance.

Application of PET/CT radiomics in PD-L1

As one of the most commonly used methods in tumor imag-
ing, 18F-FDG-PET/CT can reflect the relevant characteristics

of the tumor microenvironment utilizing glucose metabo-
lism pathways.86,87 Radiomics is a new modality focused on
quantitatively extracting and analyzing medical images. Our
literature search also found 12 studies using radiomics to
analyze the PD-L1 association in tumors by PET/CT
(Table 4). Similar to the CT methods analyzed previously,
they are mainly divided into three categories.

The first category has more studies than the other two,
using PET/CT to predict the expression of PD-L1. Zeng
et al. collected 45 patients with unresectable NSCLC who
received chemotherapy and demonstrated that PD-L1
expression was correlated with the number of features based
on their PET/CT-extracted features (p = 0.017).88 Mu et al.
retrospectively included 837 NSCLC patients and divided
them into training, validation, and test sets. A prediction
model was constructed by an artificial intelligence algorithm
using PET/CT images and clinical information, and the
AUC was 0.89, 0.84 and 0.82, respectively.89 CD8+ tumor-
infiltrating lymphocytes are also critical throughout the PD-
1/PD-L1 axis. Zhou et al. analyzed 103 NSCLC patients
divided into four groups according to the expression of
pathological PD-L1 and CD8+ tumor-infiltrating lympho-
cytes. The prediction effect of the composite model com-
bined with clinical information has improved. In the
training set, the AUC increased from 0.800 to 0.838; in the
validation set, the AUC increased from 0.794 to 0.811.90 Li
et al. extracted 80 features from the PET/CT of 255 NSCLC
patients and combined them with clinical information. The
results showed that when PD-L1 expression was more than
1% and 50% predicted using radiomics alone, the AUC was
0.754 and 0.762, respectively. The AUC for predicting PD-
L1 expression above 1% and 50% after incorporating clinical
informative features were 0.762 and 0.814, respectively.91

Mu et al. divided 697 NSCLC patients into three cohorts,
two retrospective cohorts for model building and training
and a prospective cohort for external validation. Based on
PET/CT and clinical information combined with a

T A B L E 4 Twelve studies for application of PET/CT radiomics in PD-L1

Year Authors NSCLC stage Sample size Radiomics features in final model Clinical question

2020 Mu et al. IIIB–IV 400 NA Predict DCB, PFS, OS

2020 Mu et al. IIIB–IV 146 5 Predict irSAEs

2020 Jiang et al. I–IV 399 24 (models based on CT-,
PET-, PET/CT-derived)

Predict the expression of PD-L1 (1% & 50%)

2020 Mu et al. IIIB–IV 194 8 Predict DCB

2021 Li et al. I–IV 255 for 1%: 12(PET) + 6(CT)
for 50%: 3(PET) + 4(CT)

Predict the expression of PD-L1 (1% and 50%)

2021 Zeng et al. IIB–IIIB 45 NA Predict patient prognosis (OS, PFS, LRC)

2021 Mu et al. I–IV 697 NA Predict PD-L1 expression, DCB, PFS and OS

2021 Mu et al. NA 837 NA Predict the expression of PD-L1 and EGFR

2021 Zhou et al. I-IV 103 3(PET) + 1(CT) Predict tumor microenvironment immune types

2021 Mu et al. IIIB and IV 210 9 Predict risk of cachexia, DCB, PFS and OS

2022 Forouzannezhad et al. IIB–IIIB 45 Various Predict patient prognosis

2022 Monaco et al. I–IV 265 3 Predict the expression of PD-L1 (50%)

Abbreviations: DCB, durable clinical benefit; irSAEs, immune-related adverse events; LRC, locoregional control; OS, overall survival; PFS, progression-free survival.
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convolutional neural network, a deep learning score was
constructed to evaluate the expression of PD-L1 and predict
patients’ clinical benefit and survival. In all three cohorts,
the negative and positive expressions of PD-L1 could be sig-
nificantly distinguished, and the AUCs were all greater than
0.82.92 Monaco et al. extracted 527 features from 86 NSCLC
patients’ PET/CT. Three radiomics features were screened
for modeling. The AUC of PD-L1 expression greater than
50% was predicted to be 0.84.93

While exploring this issue, Jiang et al. discussed the pre-
dictive performance of separate and combined modeling of
PET and CT features. Twenty-four (PET and CT features)
features related to PD-L1 expression were extracted from
PET/CT. Three models were established respectively: one
based on CT features, one based on PET features, and the
third incorporating both features. The prediction effects of
the three in predicting PD-L1 expression exceeding 1% and
50% were discussed, and all results were positive. The inter-
esting point is that the prediction effect of adding PET fea-
tures to the mixed model is not as good as the prediction
effect of the model that simply uses CT features.94

The second category predicts patient prognosis by ana-
lyzing PD-L1-related radiomic features. Forouzannezhad
et al. prospectively collected FDG-PET, CT and SPECT
examination information at various treatment time points in
45 patients with unresectable NSCLC. They were treated
with radiotherapy and PD-L1 blockade. Models were con-
structed to predict survival from three imaging tests. In the
results, FDG-PET information alone was the best predictor of
OS (c-index = 0.71). It is worth noting that the model predic-
tion effect was not improved after the multitask combination.95

Mu et al. combined their self-established PD-L1 deep learning
scoring system, PET and CT multiparametric radiomic model
and basic clinical information to construct a Cox multivariate
regression model for predicting patients’ PFS and OS. Valida-
tion was performed in an externally validated set of 48 patients,
and its conclusions were mentioned to provide individualized
clinical decision support.96 The effect of immunotherapy is
often related to patient prognosis. Mu et al. collected
194 patients with histologically confirmed stage IIIB–IV
NSCLC with PET/CT images before ICIs. According to its
modeling prediction of durable clinical benefit (DCB), the
AUC in the training, validation and test sets were 0.86, 0.83
and 0.81, respectively. Also, in these three cohorts, nomogram
models achieved C-indices of 0.74, 0.74, and 0.77 to predict
PFS, and C-indices of 0.83, 0.83 and 0.80 to predict OS.97

The third category predicts whether adverse reactions
will occur during ICIs treatment. According to current
reports, the incidence of immune-related adverse events
(irAEs) is between 7% and 43%.98–100 Their appearance
delays tumor treatment and worsens the patient’s condition.
Similarly, Mu et al. used the method mentioned above to
build a model of the five PET/CT-related features screened
out. The AUC in the training set, internal test, and external
prospective validation set were 0.92, 0.92, and 0.88, respec-
tively.100 Cachexia, a complex metabolic syndrome in which
the body’s tissues are depleted, occurs in approximately 50%

of cancer patients and accounts for 20% of cancer-related
deaths. However, early identification of possible patients
and intervention can reduce cachexia.101–103 A retrospective
analysis of PET/CT and clinical data before immunotherapy
in 210 NSCLC patients from two institutions was per-
formed. Using PET/CT images to predict the occurrence of
cachexia, AUC was ≥ 0.74 in the training set, test and exter-
nal test cohorts.104

Given the unique imaging principle of PET/CT, 18F-
FDG can detect the energy metabolism of tumor cells and
other cells in the tumor microenvironment. Although the
molecular mechanism between glucose metabolism and
PD-L1 has not been revealed, multiple studies have shown
that the different expression distribution of PD-L1 in
tumor tissues may lead to different metabolic distribu-
tions.105,106 Therefore, models based on PET may predict
better.

LIMITATIONS AND CHALLENGES

Although the development of radiomics has achieved
certain progression in the diagnosis, prognosis, and therapy
response prediction of NSCLC patients, some general prob-
lems are arising. One of the recognized challenges is the sta-
bility and reliability of the constructed models. As in the
studies we mentioned above, there are obvious differences in
models’ construction across different centers, even for the
same aim. In this regard, we summarized the potential chal-
lenges of applying radiomics in further clinical practice.

First, during the medical image collection process, het-
erogeneous images can lead to irreproducible results.107,108

There are many parameters during image acquisition
including pixel pitch, slice thickness, reconstruction kernel
and application of contrast agent, etc. Intra- and interscan-
ner parameter heterogeneity may exist between different
centers or different instruments at the same center. The
solution to this pain point is to develop a normalization pro-
tocol for images.109,110 Second, during the region of interest
(ROI) selection and segmentation, in most cases, this part of
the work is done by experienced radiologists who have done
an excellent job of identifying and “indexing” lesions. How-
ever, studies have shown that manual segmentation leads to
intraobservable variation and consumes much time.111

Kalpathy-Cramer et al. showed that semi- or fully auto-
mated segmentation can make the process repeatable and
improve robustness.112 Third, in the feature extraction pro-
cess, many software, terminology, and algorithms are avail-
able to assist, which is also a cause of heterogeneity. The
image biomarker standardization initiative (IBSI) is an inter-
national collaborative initiative dedicated to standardizing
the extraction of image biomarkers.113 Part of the interoper-
ability issue is addressed by providing image biomarker
nomenclature and definitions, benchmark datasets and
benchmark values to validate image processing. Fourth, fea-
ture selection, model training and validation. A very high
number of radiomic features are extracted from medical
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images and improper modeling can lead to overfitting.114

Ideally, multiple modeling approaches should be tested to
choose the best one.115 In terms of validation, multiple repli-
cate cross-validation should be considered if performed on
cohorts from a single institution. However, utilizing multi-
center and prospectively collected datasets is the best way to
verify and avoid spurious results.107

In addition, with the advancement of computer technol-
ogy, the emerging method of artificial intelligence has
attracted much attention. Because of its high efficiency and
automation advantages, there is a strong trend in the medi-
cal field to address visual information. However, it is not
comparable to radiomics in terms of model interpretabil-
ity. These AI systems are like a “black box” that lacks
transparency on how various tasks are performed. Users
may never understand how these networks work, and AI
may identify patterns humans cannot explain. Although
some scholars believe that a highly accurate opaque model
is better than a less accurate transparent model. But inter-
pretability is important when considering the use of AI
imaging biomarkers to optimize clinical decision-
making.116,117

In conclusion, we believe that applying radiomics in PD-
L1-related imaging in NSCLC patients is promising. Radio-
mics features obtained by various imaging methods (CT,
PET, SPECT, etc.) can predict PD-L1 expression, predict
prognosis through PD-L1-related features, and assist in
guiding immunotherapy and monitoring adverse reactions.
To realize this vision faster, we must solve several problems,
including the standardization of high-quality data and image
data, the effective combination of multiple imaging
methods, and the problem of prospective verification. Based
on the well-established diagnostic utility, radiomics will pro-
mote personalized medical services and blaze a unique path
in precise diagnosis and treatment.
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