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Abstract

Background: Gillespie’s stochastic simulation algorithm (SSA) for chemical reactions admits three kinds of
elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. All other types of reaction processes,
for instance those containing non-integer kinetic orders or following other types of kinetic laws, are assumed to be
convertible to one of the three elementary kinds, so that SSA can validly be applied. However, the conversion to
elementary reactions is often difficult, if not impossible. Within deterministic contexts, a strategy of model
reduction is often used. Such a reduction simplifies the actual system of reactions by merging or approximating
intermediate steps and omitting reactants such as transient complexes. It would be valuable to adopt a similar
reduction strategy to stochastic modelling. Indeed, efforts have been devoted to manipulating the chemical master
equation (CME) in order to achieve a proper propensity function for a reduced stochastic system. However,
manipulations of CME are almost always complicated, and successes have been limited to relative simple cases.

Results: We propose a rather general strategy for converting a deterministic process model into a corresponding
stochastic model and characterize the mathematical connections between the two. The deterministic framework is
assumed to be a generalized mass action system and the stochastic analogue is in the format of the chemical
master equation. The analysis identifies situations: where a direct conversion is valid; where internal noise affecting
the system needs to be taken into account; and where the propensity function must be mathematically adjusted.
The conversion from deterministic to stochastic models is illustrated with several representative examples,
including reversible reactions with feedback controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif,
and stochastic focusing.

Conclusions: The construction of a stochastic model for a biochemical network requires the utilization of
information associated with an equation-based model. The conversion strategy proposed here guides a model
design process that ensures a valid transition between deterministic and stochastic models.

Background
Most stochastic models of biochemical reactions are
based on the fundamental assumption that no more
than one reaction can occur at the exact same time. A
consequence of this assumption is that only elementary
chemical reactions can be converted directly into sto-
chastic analogues [1]. These include: 1) zero-order reac-
tions, such as the generation of molecules at a constant
rate; 2) first-order reactions, with examples including

elemental chemical reactions as well as transport and
decay processes; and 3) second-order reactions, which
include heterogeneous and homogeneous bimolecular
reactions (dimerization). Reactions with integer kinetic
orders other than 0, 1 and 2 are to be treated as combi-
nations of sequential elementary reactions. The advan-
tage of the premise of non-simultaneous reaction steps
is that the stochastic reaction rate can be calculated
from a deterministic, equation-based model with some
degree of rigor, even though the derivation is usually
not based on first physical principles but instead
depends on other assumptions and on macroscopic
information, such as a fixed rate constant in the
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equation-based model. The severe disadvantage is that
this rigorous treatment is not practical for modelling
larger biochemical reaction systems. The reasons include
the following. First, in many cases, elementary reaction
rates are not available. Secondly, even in the case that
all reaction parameters are available, the computational
expense is very significant when the system involves
many species and reactions, and this fact ultimately
leads to a combinatorial explosion of required computa-
tions. Within a deterministic modelling framework, the
common practice in this situation is to fit the transient
and steady-state experimental data with a phenomenolo-
gical, (differential) equation-based model, which expli-
citly or implicitly eliminates or merges some
intermediate species and reactions. The best-known
examples are probably Michaelis-Menten and Hill rate
laws, which are ultimately explicit, but in truth approxi-
mate a multivariate system of underlying chemical
processes.
Similar model reduction efforts have been carried out

for stochastic modelling. For instance, the use of a com-
plex-order function (which corresponds to a reduced
equation-based model) was shown to be justified for
some types of stochastic simulations. A prominent
example is again the Michaelis-Menten rate law, which
can be reduced from a system of elementary reactions
to an explicit function by means of the quasi-steady-
state assumption (see Result section and [2,3]). However,
model reduction within the stochastic framework has
proven to be far more difficult than in the deterministic
counterpart. The difficulties are mainly due to the fact
that the reduction must be carried out on the chemical
master equation (CME). This process is nontrivial and
has succeeded only in simple cases.
In general, the construction of a stochastic model for

a large biochemical network requires the use of infor-
mation available from an equation-based model. In the
past, several strategies have been proposed for this pur-
pose and within the context of Gillespie’s exact stochas-
tic simulation algorithm (SSA; [1]) and its variants [4].
For example, Tian and Burrage [5] proposed that a sto-
chastic model could be directly formulated from the
deterministic model through a Poisson leaping proce-
dure. However, a rigorous mathematical justification for
such a conversion is lacking. Typical moment-based
approaches [6-8] derive ODEs for the statistical
moments of the stochastic model from an equation-
based model where the 0th, 1st and 2nd order reactions
follow mass action rate laws. More recently the moment
method was extended to cover models consisting of
rational rate laws [9]. Moreover, it was realized that the
moment method is complementary to, but cannot fully
replace, stochastic simulations, because it does not cover
situations like genetic switches [6,10].

In this article, we explore the mathematical connec-
tion between deterministic and stochastic frameworks
for the pertinent case of Generalized Mass Action
(GMA) systems, which are frequently used in Biochem-
ical Systems Theory (BST; [11-13]). Specifically, we
address two questions: First, under what conditions can
a deterministic, equation-based model be converted
directly into a stochastic simulation model? And second,
what is a proper way of implementing this conversion?
We will develop a method to answer these questions
and demonstrate it for functions in the canonical
power-law format of GMA systems. However, the
results are applicable to other functions and formats as
well, as we will demonstrate with several examples.

Representations of systems of biochemical reactions
Consider a well-stirred biochemical reaction system with
constant volume and temperature, where Ns different

chemical species {Ss}Ns
s=1 , interact through Nr unidirec-

tional reaction channels {Rr}Nr
r=1 . Each reaction channel

can be characterized as

Rr : v−
r1

S1 + . . . + v−
rNs

SNs

kr−→ v̄r1S1 + . . . + v̄rNs SNs ,

where v−
rs and v̄rs are the counts of molecular species

Ss consumed and produced due to reaction Rr, respec-
tively, and kr is the rate constant. The changed amount

of Ssvrs = v̄rs − v−
rs
, which is due to the firing of reaction

Rr, defines the stoichiometric coefficient of Ss in Rr. The
stoichiometric coefficients of all species can be summar-
ized according to each reaction Rr in the stoichiometric
vector

vr �

⎧⎪⎨⎪⎩
vr1
...

vrNs

⎫⎪⎬⎪⎭ ∈ �Ns .

The stoichiometric vectors of all reactions can further
be arranged as the stoichiometric matrix of the system

V � [v1, . . . , vNr ] ∈ �Ns×Nr .

The size of the system is defined as F = AU, where A
is the Avogadro number and U is the reaction volume.
The modelling of biochemical reaction networks typi-

cally uses one of two conceptual frameworks: determi-
nistic or stochastic. In a deterministic framework, the
state of the system is given by the a non-negative vector[
X(t)
]

=
[[

X1(t)
]

, . . . ,
[
XNs (t)

]]T ∈ �
Ns , where compo-

nent [Xs(t)] represents the concentration of species Ss,
measured in moles per unit volume. The temporal evo-
lution of the state of the system is modelled by a set of

Wu et al. BMC Systems Biology 2011, 5:187
http://www.biomedcentral.com/1752-0509/5/187

Page 2 of 21



ordinary differential equations, which in our case are
assumed to follow a generalized mass action (GMA)
kinetic law. By contrast, in a stochastic framework, the
state of the systems is characterized by a vector
x(t) = [x1(t), . . . , xNs (t)]T ∈ �Ns , whose values are non-
negative integers. Specifically, xs(t) = F [Xs (t)] is the
count of Ss molecules, which is a sample value of the
random variable Xs(t). The system dynamics of this pro-
cess is typically described with the chemical master
equation (CME). Both GMA and CME will be discussed
in detail in the following sections.

Motivation for the power-law formalism: reactions in
crowded media
Power-law functions with non-integer kinetics have pro-
ven very useful in biochemical systems analysis, and
forty years of research have demonstrated their wide
applicability (e.g., see [11-13]). Generically, this type of
description of a biochemical reaction can be seen either
as a Taylor approximation in logarithmic space or as a
heuristic or phenomenological model that has been
applied successfully hundreds of times and in different
contexts, even though it is difficult or impossible in
many situations to trace it back to first mechanistic
principles. A particularly interesting line of support for
the power-law format can be seen in the example of a
bimolecular reaction occurring in a spatially restricted
environment. Savageau demonstrated that the kinetics
of such a reaction can be validly formulated as a gener-
alization of the law of mass action, where non-integer
kinetic orders are allowed [14,15]. Neff and colleagues
[16-18] showed with careful experiments that this for-
mulation is actually more accurate than alternative
approaches.
Within the conceptual framework of power-law repre-

sentations, the rate of the association reaction between
molecules of species S1 and S2 is given as

k[X1(t)]f1 [X2(t)]f2 . Here, k is the rate constant and f1
and f2 are real-valued kinetic orders, which are no longer
necessarily positive integers as it is assumed in a mass
action law. As an example, consider the reversible bimo-

lecular reaction S1 + S2
kf

�
kb

S3 . Like Neff and colleagues

[17], we begin by formulating a discrete update function
for the population of S3 molecules as

x3(t + �t) - x3(t) = f ([X1], [X2])�t x1x2 - g([X3])�tx3. (1)

The first term on the right-hand side of this equation,
f ([X1], [X2])Δt x1x2, describes the production of S3: it
depends on the totality of possible collisions x1 x2 and
also on some fraction f ([X1], [X2])Δt that actually reacts
and forms the product. In a dilute environment, f ([X1],
[X2]) equals a traditional rate constant, and the reaction

obeys the law of mass action, while in a spatially
restricted environment, such as the cytoplasm, one
needs to take crowding effects into account. As shown
in Savageau [14,15], the desired fraction of a reaction in
a crowded environment becomes a rate function that
depends on the current concentrations of S1 and S2.
The second term, g ([X3]) Δtx3, describes the fraction g
([X3]) Δt of species S3 that dissociates back into S1 and
S2. This fraction may depend on some functional form
of [X3] because in a crowded environment the complex
may not be able to dissociate effectively. Thus, rate con-
stants in the generalized mass action setting become
rate functions (cf. [17]).
By taking the limit Δt ® 0, one obtains the differential

equation

dx3

dt
= f ([X1], [X2])x1x2 - g([X3])x3. (2)

Savageau used Taylor series expansion to approximate
the functions f and g in the logarithmic space (log [X1],
log[X2]) around some operating point (a, b). The result
for f is

log f ([X1], [X2]) � F(log[X1], log[X2])

= F(a, b) +
∂f ([X1], [X2])

∂[X1]

∣∣∣∣
(a,b)

(log[X1] − a)

+
∂f ([X1], [X2])

∂[X2]

∣∣∣∣
(a,b)

(log[X2] − b) + HOT

≈ kf + α log[X1] + β log[X2],

(3)

where kf, a, and b are constants related to the chosen
operating point (a, b). The final step is achieved by
ignoring all higher order terms (HOT) beyond the con-
stant and linear terms. Transformation back to the Car-
tesian space yields

f ([X1], [X2]) ≈ ka[X1]α[X2]β , ka = ekf . (4)

The same procedure leads to the power-law expres-
sion for the degradation term: g ([X3]) ≈ kd [X3]

g. By
combining constants we arrive at a power-law represen-
tation for the dynamics of species S3 as

d[X3]
dt

= ka[X1]α[X2]β[X1][X2] − kd[X3]γ [X3]

= ka[X1]a[X2]b − kd[X3]c,
(5)

where a = a + 1, b = b + 1, and c = g + 1. As long as
kf, kd, a, b and c remain more or less constant through-
out a relevant range, the power-law model is mathema-
tically well justified. In actual applications, the values of
rate constants and kinetic orders can be estimated from
experimental data [19]. When the functions f and g are
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originally not in power-law format, they can be locally
approximated by power-law functions with a procedure
similar to the one shown above (Equations (3) to (5)).
An illustration will be given in the example section.

The Generalized Mass Action (GMA) format
In the GMA format within Biochemical Systems Theory,
each process is represented as a univariate or multivari-
ate power-law function. GMA models may be developed
de novo or as an approximation of some other nonlinear
rate laws. GMA models characterize the time evolution
of the system state given that the system was in the
state X (t0) at some initial time t0. Generically, the state
of the system is changed within a sufficiently small time
interval by one out of the Nr possible reactions that can
occur in the system. The reaction velocity through reac-
tion channel Rr is:[

[X1(t)]′

vr1
= . . . =

[XNs (t)]′

vrNs

]
= kr

Ns∏
s=1

[Xs(t)]frs (6)

for those vrs = v̄rs − v−
rs

�= 0 , s = 1, ..., Ns. As shown in

the example of a bimolecular reaction, the kinetic order
frs associated with species Ss captures the effects of both
reactant properties (such as the stoichiometric coeffi-
cient vrs) and environmental influences (such as tem-
perature, pressure, molecular crowding effects, etc.).
Therefore frs does not necessary equal an integer vrs,
which is assumed to be the case in mass action kinetics,
but is possibly real-valued and may be negative. Sum-
ming up the contributions of all reactions, one obtains a
GMA model describing the dynamics of Ss as

d

dt
[Xs(t)] =

Nr∑
r=1

vrskr

Ns∏
s=1

[Xs(t)]frs (7)

for every s = 1, ..., Ns. Each reaction contributes either
a production flux or a degradation flux to the dynamics
of a certain species. Positive terms (vrs > 0) represent
the production of Ss, while negative terms (vrs < 0)
describe degradation. If frs is positive, then Ss accelerates
the reaction Rr; a negative value represents that Ss inhi-
bits the reaction, and frs = 0 implies that Ss has no influ-
ence on the reaction. The rate constant kr for reaction
Rr, is either positive or zero. Both, the rate constant and
the kinetic order, are to be estimated from data.

Proper use of equation-based functions for stochastic
simulations
The fundamental concept of a stochastic simulation is
the propensity function a(X), and a(X)dt describes the
probability that a reaction will change the value of a

system variable within the next (infinitesimal) time
interval (t, t +dt). While a formal definition will be
given later (Equation 18), it is easy to intuit that the
propensity function is in some sense analogous to the
rate in the corresponding deterministic model. In fact,
the propensity function is traditionally assumed to be a
(X) = fs(X), if the deterministic model is Xs’ = fs(X, t), s
= 1, ..., Ns. However, a proper justification for this com-
mon practice is by and large missing. Indeed, we will
show that the direct use of a rate function as the pro-
pensity function in a stochastic simulation algorithm
requires that at least one of the following assumptions
be true:

1) f is a linear function;
2) the reaction is monomolecular;
3) all Xi in the system are noise-free variables, i.e.,
without (or with ignorable) fluctuations, which
implies that the covariance of any two participating
reactants is zero (or close to zero).

Each of these assumptions constitutes a sufficient
condition for the direct use of a rate function as the
propensity function and applies, in principle, to GMA
as well as other systems. The validity of these condi-
tions will be discussed later. Specifically, the first con-
dition will be addressed in the Results section under
the headings “0th-order reaction kinetics” and “1st-
order reaction kinetics, “ while the second condition
will be discussed under the heading “Real-valued order
monomolecular reaction kinetics.” The third condition
will be the focus of Equations (29-36) and their asso-
ciated explanations.
In reality, the rates of reactions in biochemical systems

are commonly nonlinear functions of the reactant spe-
cies, and fluctuations within each species are not neces-
sarily ignorable. Therefore, to the valid use of an
equation-based model in a stochastic simulation man-
dates that we know how to define a proper propensity
function. The following section addresses this issue. It
uses statistical techniques to characterize estimates for
both the mean and variance of the propensity function,
and these features will allow an assessment of the valid-
ity of the assumption a(X) = fs(X) and prescribe adjust-
ments if the assumption is not valid.

Methods
Deriving the mean and variance of a power-law function
of random variables
Consider a generic power-law function of random vari-

ables Xs with the format PL(X) = k
Ns∏
s=1

Xfs
s . Estimates of

its mean μPL and variance sPL are given as
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μPL ≈ k
Ns∏
s=1

μ
fs
s exp

⎛⎝ Ns∑
i<j

fifj cov
[
log Xi, log Xj

]⎞⎠ (8)

σPL
2 ≈ μPL

2� (9)

(for details, see Additional file 1). Here,

� =
Ns∑
s=1

fsμ−2
s σ 2

s + 2
Ns∑
i<j

fifj cov
[
1ogXi, log Xj

]
(10)

and μs = E[Xs] and σ 2
s = E

[
(Xs − μs)

2
]
are the mean

and variance of random variable Xs, respectively. If we
choose to express cov [logXi, logXj] as a function of μs,
ss

2 and covariance sij = cov [Xi, Xj], using a Taylor
approximation, we obtain

μPL ≈ k
Ns∏
s=1

μ
fs
s exp

(
−1

2

Ns∑
s=1

fsσ 2
s

/
μ2

s +
1
2

�

)
(11)

σPL
2 ≈ μPL

2�, (12)

where

� ≈
Ns∑
s=1

fs(σs
/
μs)2 + 2

Ns∑
i<j

fifj
{
σij
/

(μiμj)

+
1
2

log(μi)
(
σj
/
μj
)2 +

1
2

log(μj)
(
σi
/
μi
)2

−1
4

(
σi
/
μi
)2(

σj
/
μj
)2} .

(13)

Since many biochemical variables approximately fol-
low a log-normal distribution [20-22], it is valuable to
consider the special situation where (X1, ..., Xs)is log-
normally distributed (i.e., (logX1, ..., logXs) is normally
distributed). In such a case, a simpler alternative way to
calculate cov [logXi, logXj] is

cov
[
1ogXi, log Xj

]
= log

(
1 +

σij

μiμj

)
. (14)

[23]. By substituting this result into (8)-(10), one
obtains

μPL ≈ k
Ns∏
s=1

μ
fs
s

Ns∏
i<j

(
1 +

σij

μiμj

)fifj

(15)

σPL
2 ≈ μPL

2�, (16)

where

� =
Ns∑
s=1

fs

(
σs

μs

)2

+ 2
Ns∑
i<j

fifj log
(

1 +
σij

μiμj

)
. (17)

The approximation formulae for μPL and sPL2 in eqns.
(8)-(10) provide an easy numerical implementation if
observation data are available to estimate cov [logXi,
logXj]. Furthermore, Equations (11)-(13) demonstrate
how μPL and sPL

2 are related to μs, ss2 and sij; however,
the price of this insight is paid by the possible inaccu-
racy introduced through the Taylor approximation.
Equations (15)-(17) also provide a functional depen-
dence of μPL and sPL

2 on (μs, ss
2, sij), but it is only

valid if the additional assumption of log-normality is
acceptable.

Deriving proper propensity functions for stochastic
simulations from differential equation-based models
Assuming that the GMA model faithfully captures the
average behaviour of a biochemical reaction system and

recalling
[
X(t)
]

=
([

X1(t)
]

, . . . ,
[
XNs (t)

])T , the expected

metabolite numbers are defined as the expectation

E [X] = [X] 	, (18)

where F is the system size as defined above.
To describe the reaction channel Rr stochastically, one

needs the state update vector vr and must characterize
the quantity of molecules flowing through of reaction
channel Rr during a small time interval. The key concept
of this type of description is the propensity function ar

(x), which is defined as

αr(x)dt = the probability that exactly one reaction

Rr will occur some where inside U within infinitesmal

interval (t, t + dt), given current state X(t) = x.

(19)

[1]. Because of the probabilistic nature of the propen-
sity function, X(t) is no longer deterministic, and the
result is instead stochastic and based on the transition
probability

P(x, t|x0, t0) = Prob{X(t) = x, given X(t0) = x0}, (20)

which follows the chemical master equation (CME)

∂P(x, t|x0, t0)
∂t

=
Nr∑
r=1

[αr(x + vr)P(x + vr , t|x0, t0)

− αr(x)P(x, t|x0, t0)]

(21)

Updating CME requires knowledge of every possible
combination of all species counts within the population,
which immediately implies that it can be solved analyti-
cally for only a few very simple systems and that
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numerical solutions are usually prohibitively expensive
[24]. To address the inherent intractability of CME, Gil-
lespie developed an algorithm, called the Stochastic
Simulation Algorithm (SSA), to simulate CME models
[1]. SSA is an exact procedure for numerically simulat-
ing the time evolution of a well-stirred reaction system.
It is rigorously based on the same microphysical premise
that underlies CME and gives a more realistic represen-
tation of a system’s evolution than a deterministic reac-
tion rate equation represented by ODEs. SSA requires
knowledge of the propensity function, which however is
truly available only for elementary reactions. These reac-
tions include: 1) 0th order reactions, exemplified with
the generation of a molecule at a constant rate; 2) 1st

order monomolecular reactions, such as an elemental
chemical conversion or decay of a single molecule; 3)
2nd order bimolecular reactions, including reactive colli-
sions between two molecules of the same or different
species. The reactive collision of more than two mole-
cules at exactly the same time is considered highly unli-
kely and modelled as two or more sequential
bimolecular reactions.
For elementary reactions, the propensity function of

reaction Rr is computed as the product of a stochastic
rate constant cr and the number hr of distinct combina-
tions of reactant molecules, i.e.

αr(x) = crhr(x), r = 1, . . . , Nr . (22)

Here hr(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ns∏
s=1

(
xs

v−
rs

)
≈

Ns∏
s=1

x
v−

rs
s

Ns∏
s=1

v−
rs

!

, for xs ≥ v−
rs

> 0

0, otherwise

,

where xs is the sample value of random variable Xs. The
approximation is invoked when xs is large and (xs - 1),
..., (xs - vrs + 1) are approximately equal to xs.
In Gillespie’s original formulation [1]cr is a constant

that only depends on the physical properties of the reac-
tant molecules and the temperature of the system, and
crdt is the probability that a particular combination of
reactant molecules will react within the next infinitesi-
mally small time interval (t, t + dt). The constant cr can
be calculated from the corresponding deterministic rate
constants, if they are known.
Since the assumption of mass action kinetics is not

valid generally, especially in spatially restricted environ-
ments and in situations dominated by macromolecular
crowding, we address the broader scenario where cr is
not a constant but a function of the reactant concentra-
tions. Thus, we denote cr as a stochastic rate function,
while retaining the definition of hr as above. Knowing
that any positive-valued differentiable function can be

approximated locally by a power-law function, we
assume the functional form of the stochastic rate func-
tion as

cr(x) = κr

Ns∏
s=1

xs(t)εrs . (23)

Here, �r and εrs are constants that will be specified in
the next section, and r = 1, ..., Nr. Note that εrs are now
real-valued. Once the stochastic rate function is deter-
mined (see below), the propensity function can be calcu-
lated as

αr(x) = cr(x)hr(x) =
κr

Ns∏
s=1

v−
rs

!

Ns∏
s=1

x
v−

rs
+εrs

s . (24)

In order to identify the functional expression for a sto-
chastic rate function, and thus the propensity function,
we consider the connection between the stochastic and
the deterministic equation models. By multiplying CME
with x and summing over all x, we obtain

d

dt
E
[
X(t)
]

=
Nr∑
r=1

vrE
[
αr(X(t))

]
. (25)

Similarly, the expectation for any species Xs(t) is given
as

d

dt
E
[
Xs(t)
]

=
Nr∑
r=1

vrsE
[
αr(X(t))

]
, s = 1, . . . , Ns. (26)

The details of these derivations are shown in Addi-
tional file 1.
We can use these results directly to compute the pro-

pensity function for a stochastic GMA model, assuming
that its deterministic counterpart is well defined. Specifi-
cally, we start with the deterministic GMA equation for
Xs,

d

dt

[
Xs(t)
]

=
Nr∑
r=1

vrskr

Ns∏
s′=1

[
Xs′ (t)

]frs′ , s = 1, . . . , Ns, (27)

where vrs, kr and frs’ are again the stoichiometric coef-
ficients, rate constants, and kinetic orders, respectively.

By substituting [Xs] =
E [Xs]

	
from Equation (18) into

this GMA model, we obtain a “particle-based” equation
of the format

d

dt

(
E [Xs]

	

)
=

Nr∑
r=1

vrskr

Ns∏
s′=1

(
E [Xs′ ]

	

)frs′

, s = 1, . . . , Ns.
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Elementary operations allow us to rewrite this equa-
tion as

d

dt
(E [Xs]) =

Nr∑
r=1

vrskr	
1−Fr

Ns∏
s′=1

E[Xs′ ]frs′ , s = 1, . . . , Ns, (28)

where Fr =
Ns∑

s′=1
frs′ . In this formulation, the differential

operator is justified only when large numbers of mole-
cules are involved. The assumption that the determinis-
tic equations precisely capture the average behaviour of
the biochemical reaction system directly equates the sto-
chastic CME (25) to the deterministic equation based
model (28)

E
[
αr(X(t))

]
= kr	

1−Fr

Ns∏
s′=1

E[Xs′ ]frs′ . (29)

Now we have two choices for approximating the
expectation of the propensity function on left-hand side
of equation (29):

1) adopt a zero-covariance assumption as was done
in [25], which implies ignoring random fluctuations
within every species as well as their correlations.
This assumption is only justified for some special
cases such as monomolecular and bimolecular reac-
tions under the thermodynamic limit (cf. [4,6]), but
is not necessary valid in generality. Here the thermo-
dynamic limit is defined as a finite concentration
limit which the system reaches when both popula-
tion and volume approach infinity. Under this
assumption, the left hand side of (29) becomes

E
[
αr(x)

]
= E

⎡⎢⎢⎢⎣ κr

Ns∏
s=1

v−
rs

!

Ns∏
s=1

x
v−

rs
+εrs

s

⎤⎥⎥⎥⎦
=

κr

Ns∏
s=1

v−
rs

!

Ns∏
s=1

E[Xs]
v−

rs
+εrs

(30)

for every r = 1, ..., Nr, and Equation (24) yields

εrs = frs − v−
rs

κr = kr	
1−Fr

Ns∏
s=1

v−
rs

!

cr(x) = kr	
1−Fr

Ns∏
s=1

v−
rs

!xεrs
s

(31)

and

αr−0(x) = kr	
1−Fr

Ns∏
s=1

xfrs
s . (32)

Here, the index r_0 is used to distinguish this 0-covar-
iance propensity function from a second type of propen-
sity in the next section.
With the zero-covariance assumption, one can substi-

tute (32) back into the equation for the expectation for
each species, which yields

d

dt
E
[
Xs(t)
]

=
Nr∑
r=1

vrskr	
1−Fs

Ns∏
s=1

μ
frs
s (33)

for every s = 1, ..., Ns.. Note that this result is exactly
equivalent to the equation-based model (27).
Equation (33) is based on assumption that both the

fluctuations within species and their correlations are
ignorable, which is not necessarily true in reality. If one
uses it in simulations where the assumptions are not
satisfied, it is possible that the means for the molecular
species are significantly different from the corresponding
equation-based model values. This discrepancy arises
because the evolution of each species in the stochastic
simulation is in truth affected by the covariance which
is not necessarily zero, as it was assumed. This phenom-
enon was observed by Paulsson and collaborators [26]
and further discussed in different moment-based
approaches [6,7]. To assess the applicability limit of the
propensity defined by (32), we can apply approximation
techniques as shown in eqns. (8)-(10) on the functional
expression of ar_0 and obtain mean and variance as

μαr−0 = E
[
αr−0(X(t))

]
≈ kr	

1−Fr

Ns∏
s′=1

E[Xs′ ]
frs′ exp

⎛⎝ Ns∑
i<j

frifrj cov
[
1ogXi, log Xj

]⎞⎠ (34)

σαr−0
2 ≈ μαr−0

2�r , (35)

where

�r =
Ns∑
s=1

frsμ−2
s σ 2

s + 2
Ns∑
i<j

frifrj cov
[
1ogXi, log Xj

]
, (36)

for every s = 1, ..., Ns. These expressions demonstrate
that even with large numbers of molecules the mean of
CME does not always converge to the GMA model.
Indeed, the convergence is only guaranteed in one of
the following special situations: 1) the reaction is of 0th

order; 2) the reaction is a real value-order monomolecu-
lar reaction, with 1st order reaction as a special case; 3)
the covariance contribution in (34) is sufficiently small
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to be ignored for all participating reactant species of a
particular reaction channel. Except for these three spe-
cial situations, the covariance as shown in (34) signifi-
cantly affects the mean dynamics. Therefore, stochastic
simulations using zero-covariance propensity functions
will in general yield means different from what the
deterministic GMA model produces. How large these
differences are cannot be said in generality. Under the
assumption that the GMA model correctly captures the
mean dynamics of every species, this conclusion means
that ar_0 is not necessarily an accurate propensity func-
tion for stochastic simulations, and the direct conversion
of the equation-based model into a propensity function
must be considered with caution.
Moreover, there is no theoretical basis to assume that

there are no fluctuations in the molecular species or
that these are independent. Therefore, we need to con-
sider the second treatment of the expectation of the
propensity function and study the possible effects of a
non-zero covariance.

2) We again assume that the GMA model is well
defined, which implies that information regarding
the species correlations and fluctuations has been
captured in the parameters of the GMA model on
the left hand size of Equations (7) and (28). To gain
information regarding correlations, we use Taylor
expansion to approximate the propensity function
(see Additional file 1 for details):

E
[
αr(X(t))

]
= E

⎡⎢⎢⎢⎣ κr

Ns∏
s=1

v−
rs

!

Ns∏
s=1

X
v−

rs
s

+εrs

⎤⎥⎥⎥⎦
≈ κr

Ns∏
s=1

v−
rs

!

Ns∏
s=1

E[Xs]
v−

rs
+εrs

× exp

⎛⎝ Ns∑
i<j

(
v−

ri
+ εri

)(
v−

rj
+ εrj

)
cov
[
1ogXi, log Xj

]⎞⎠

(37)

After substitution of (37) in (29), one obtains

κr = kr	
1−Fr

Ns∏
s=1

v−
rs

! exp

⎛⎝−
Ns∑
i<j

frifrj cov
[
1ogXi, log Xj

]⎞⎠
εrs = frs − v−

rs
.

Given the state x of the system at time t, the stochas-
tic rate function of reaction Rr is

cr(x) = κr

Ns∏
s=1

xεrs
s

= kr	
1−Fr

Ns∏
s=1

v−
rs

!

× exp

⎛⎝−
Ns∑
i<j

frifrj cov
[
1ogXi(t), log Xj(t)

]⎞⎠ Ns∏
s=1

x
frs−v−

rs
s .

(38)

Here it is important to understand that although the
random variables {Xs}sÎS appear in the expression cr(x),
cr(x) is not a function of random variables but a deter-
ministic function. The reason is that the cov [logXi(t),
logXj(t)] in the composition of cr(x), which as the
numerical characteristic of the random variables {Xs}sÎS,
is deterministic. Therefore, the stochastic rate function
cr(x) is a well-justified deterministic function that is
affected by both the state of the system [x1, . . . , xNs ]
and cov [logXi(t), logXj(t)], the numerical characteristic
of fluctuations in the random variables {Xs}sÎS.
Given the expression cr(x), the propensity function is

αr(x) = cr(x)hr(x)

= kr	
1−Fr

Ns∏
s=1

xfrs
s

× exp

⎛⎝−
Ns∑
i<j

frifrj cov
[
1ogXi(t), log Xj(t)

]⎞⎠ .

(39)

These results are based on the assumption that there
are large numbers of molecules for all reactant species
participating in reaction Rr. For simplicity of discussion,
we define the propensity adjustment factor (paf) of reac-
tion Rr as

paf (t) � exp

⎛⎝−
Ns∑
i<j

frifrj cov
[
1ogXi(t), log Xj(t)

]⎞⎠ . (40)

paf is a function of time t and represents the contri-
bution of the reactants to correlations among species in
the calculation of the propensity function for reaction
Rr. We denote the propensity function in (39), which
accounts for the contribution of the covariance, as
ar_cov, in order to distinguish it from the propensity
function ar_0 (32), which is based on the assumption of
zero-covariance, i.e.,

αr−cov(x) = paf (t)kr	
1−Fr

Ns∏
s=1

xfrs
s . (41)

Remembering that cov [logXi(t), logXj(t)], which is a
component in both the stochastic rate function cr(x)
and now in the function paf(t), is a deterministic func-
tion rather than a function of random variables, paf(t) is
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a deterministic correction to the kinetic constant kr in
the construction of ar_cov in (41), which corrects the
stochastic simulation toward the correct average.
In contrast to the propensity function ar_0, ar_cov

leads to accurate stochastic simulations. To illustrate

this difference, we analyze
d
dt

E[Xs(t)] as follows: We

apply the approximation techniques in eqns. (9)-(11) in
order to obtain the mean and variance of the propensity
function ar_cov:

μαr−cov = E
[
αr−cov(X(t))

] ≈ kr	
1−Fr

Ns∏
s′=1

E[Xs′ ]frs′ (42)

σr−cov
2 ≈ μαr−cov

2�r. (43)

Here

�r =
Ns∑
s=1

frsμ−2
s σ 2

s + 2
Ns∑
i<j

frifrj cov
[
1ogXi, log Xj

]
. (44)

By substituting (42) back into the derivation of CME
(26), one obtains

d
dt

E
[
Xs(t)
]

=
Nr∑
r=1

vrsE
[
αr−cov(X(t))

]
≈

Nr∑
r=1

vrskr	
1−Fr

Ns∏
s′=1

μ
frs′
s′

(45)

for every s = 1, ..., Ns, which is equivalent in approxi-
mation to the GMA model (28). In the other words, the
mean of every molecular species obtained by using
ar_cov in the CME derived equation (27) is approxi-
mately identical to the corresponding macroscopic vari-
able in the GMA model.
Calculation of cov [logXi(t), logXj(t)]
When data in the form of multiple time series for all

the reactants are available, it is possible to compute cov
[logXi(t), logXj(t)] directly from these data. Once this
covariance is known, the function paf, ar_cov and the
mean dynamics can all be assessed. Alas, the availability
of several time series data for all reactants under com-
parable conditions is rare, so that cov [logXi(t), logXj(t)]
must be estimated in a different manner.
If one can validly assume that the covariance based on

ar_0 does not differ significantly from the covariance
based on ar_cov, one may calculate cov [logXi(t), logXj

(t)] by one of following methods.
Method 1:

One uses ar_0 to generate multiple sets of time series
data of all reactants and then computes cov [logXi(t),
logXj(t)].
Method 2:
First, cov [logXi(t), logXj(t)] is expressed as a function

of mean and covariance in one of the following ways;
either as

cov
[
1ogXi, log Xj

] ≈ σij
/

(μiμj) +
1
2

log(μi)
(
σj
/
μj
)2

+
1
2

log(μj)
(
σi
/
μi
)2 − 1

4

(
σi
/
μi
)2(

σj
/
μj
)2 (46)

or as Equation (14):

cov
[
1ogXi, log Xj

]
= log

(
1 +

σij

μiμj

)
.

The first functional expression of cov [logXi(t), logXj

(t)] is achieved by Taylor approximation, whereas the
second expression is obtained by the additional assump-
tion that the concentrations (X1, ..., Xs) are log-normally
distributed [8,23]. The consideration of a log-normal
distribution is often justified by the fact that many bio-
chemical data have indeed been observed to be log-nor-
mally distributed (e.g., [20-22]).
Second, one uses ar_0 to approximate the mean and

covariance either by direct simulation, as shown in
method 1, or by a moment-based approach, which is
explained in Additional file 2, and which yields the dif-
ferential equations

∂μs

∂t
≈

Nr∑
r=1

vr,s

{
αr−0(µ) +

1
2

Ns∑
m,n=1

∂2αr 0(µ)
∂Xm∂Xn

σmn

}

∂σij

∂t
≈

Nr∑
r=1

{
vr,i

Ns∑
s=1

∂αr 0(µ)
∂Xs

σjs + vr,j

Ns∑
s=1

∂αr 0(µ)
∂Xs

σis

+vr,ivr,j

[
αr−0(µ) +

1
2

Ns∑
m,n=1

∂2αr 0(µ)
∂Xm∂Xn

σmn

]}

For convenience of computational implementation, the
above equations can be written in matrix format

∂μ

∂t
≈ VT

(
α +

1
2

α′′ � σ

)
∂σ

∂t
≈ (σ (α′V

))T + σ
(
α′V
)

+ VT�V.

Here for r = 1, ..., Nr, and s, m, n = 1, ..., Ns,

μ =
(
μ1, . . . , μNs

)T , (V)rs = vrs, α = (α1, ..., αNr )
T ,

(α
′′
r )mn =

∂2αr(X)
∂Xm∂Xn

, (α
′′
r )mn =

∂2αr(X)
∂Xm∂Xn

,

α
′′ � σ �

(
α

′′
1 � σ , . . . , α

′′
Nr

� σ
)T

,
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αr
′ =
(

∂αr(µ)
∂X1

, . . . ,
∂αr(µ)
∂XNs

)T

, α′ = (α1
′, . . . , αNr

′) ,

αr
′ =
(

∂αr(µ)
∂X1

, . . . ,
∂αr(µ)
∂XNs

)T

, and Λ is a diagonal

matrix with (�)rr = αr(µ) +
1
2

Ns∑
m,n=1

∂2αr(µ)
∂Xm∂Xn

σmn .

Statistical criteria for propensity adjustment
Suppose an equation-based model captures the average
behavior of a stochastic system and one intends to find
the propensity function for a stochastic simulation that
will reproduce that means. One can use the 95% confi-
dence interval to evaluate the need for a propensity
adjustment. Specifically, for stable systems that will
reach a steady state, we use the reversible reaction
model as an example. If the steady state of the ODE xst
is within the 95% confidence interval of n runs of sto-
chastic simulations, i.e.

xst ∈
[
μst − 1.96

δst√
n

, μst + 1.96
δst√

n

]
, then the rate

function in the original ODEs can be used as the pro-
pensity without adjustment; otherwise propensity adjust-
ment is needed. Here μst and δst can be attained from
either a moment-base method or from n independent
runs of stochastic simulations using propensity without
adjustment. An example discussing a reversible reaction
with feedback controls can be found in the results
section.
For other systems that do not reach a steady state, but

where instead transient characteristics are of the highest
interest, one can judge the need of propensity adjust-
ment by whether the pertinent characteristics of the
ODEs are within the 95% confidence interval of the cor-
responding characteristic, which is given by a prediction
from the moment-based method or from n runs of sto-
chastic simulations. The Repressilator example in the
result section will serve as a demonstration.

Results
Generic special cases
It is generally not valid to translate a rate from a deter-
ministic biochemical model into a propensity function
of the corresponding stochastic simulation without
adjustment (see Equations. (34)-(36)). However, in some
situations, the propensity adjustment (e.g., Equations
(40)-(44)) is not needed, and in some other cases it
becomes relatively simple.

1) 0th-order reaction kinetics

Consider a very simple equation-based model of the
type

d
[
Xs(t)
]

dt
= kr or

dE
[
Xs(t)
]

dt
= kr	, (47)

for all s = 1, ..., Ns, frs = 0. According to Equations
(40)-(44), one obtains

�r = 0

σαr
2 ≈ 0

μαr ≈ exp
(
log (kr	)

)
= kr	

i.e. E
[
αr(X)

] ≈ αr (E [X])

αr cov ≈ kr	 = αr 0.

Thus, for a 0th-order reaction, its rate equation can be
taken directly as the propensity function in stochastic
simulations.

2) 1st-order reaction kinetics

Direct application of Equations (40)-(44) yields

d
[
Xi(t)
]

dt
= kr
[
Xj(t)
]

or
dE
[
Xi(t)
]

dt
= krE

[
Xj(t)
]

,

(48)

frs = δsj, i, j = 1, ..., Ns. Therefore, according to Equa-
tions (40)-(44)

�r =
(
σj
/
μj
)2(

σαr

/
μαr

)2 =
(
σj
/
μj
)2

μαr ≈ exp
(
log
(
krμj
))

= krμj

i.e. E
[
αr(X)

] ≈ αr
(
E[X]
)

αr−cov(X) ≈ krXj = αr−0(X).

Thus, for 1st-order reactions, the rate equation can
again be taken directly as the propensity function in sto-
chastic simulations.

3) Real-valued order monomolecular reaction
kinetics

Consider a reaction with kinetics of the type

d
[
Xi(t)
]

dt
= kr
[
Xj(t)
]frj

or
dE
[
Xi(t)
]

dt
= kr	

1−frjE
[
Xj(t)
]frj , (49)

frj ≠ 0, frs = 0, for any s ≠ j, s = 1, ..., Ns. Equations
(40)-(44) lead to

Wu et al. BMC Systems Biology 2011, 5:187
http://www.biomedcentral.com/1752-0509/5/187

Page 10 of 21



�r =
(
σj
/
μj
)2(

σαr

/
μαr

)2 =
(
σj
/
μj
)2

μαr ≈ kr	
1−frjμ

frj
j i.e. E

[
αr(X)

] ≈ αr
(
E[X]
)

αr−cov(X) ≈ kr	
1−frj X

frj
j = αr−0(X).

Thus, for reaction kinetics involving a single variable
and a real-valued order, the rate equation can again be
taken as the propensity function in stochastic simula-
tions.

4) 2nd-order reaction kinetics

This type of reaction can be expressed as

d
dt

[
Xs(t)
]

= kr
[
Xi(t)
] [

Xj(t)
]

or
dE
[
Xs(t)
]

dt
= kr	

−1E
[
Xi(t)
]
E
[
Xj(t)
]

,

(50)

i, j Î {1, ..., Ns}, i ≠ j, fri = frj = 1, and frs = 0, for all s
≠ i, j. Therefore, according to Equations (40)-(44)

�r =
(
σi
/
μi
)2 +
(
σj
/
μj
)2 + 2cov

[
1ogXi, log Xj

]
=
(
σi
/
μi
)2 +
(
σs
/
μs
)2 + 2

{
cov
[
Xi
/
μi, Xj

/
μj
]

+
1
2

log(μi)
(
σj
/
μj
)2

+
1
2

log(μj)
(
σi
/
μi
)2 − 1

4

(
σi
/
μi
)2(

σj
/
μj
)2}

(
σαr

/
μαr

)2 = �r

∂ =
(
σi
/
μi
)2 +
(
σj
/
μj
)2 + 2cov

[
1ogXi, log Xj

]
μαr ≈ kr(NAV)−1μiμj

αr−cov(X) = kr	
−1XiXj exp

(−cov
[
1ogXi, log Xj

]) �= αr−0(X).

Thus, the proper propensity function for 2nd-order
reactions is different from the rate equation. The differ-
ence can be ignored only if the contribution from the
covariance is insignificant. In general, the rate equation
yields only an approximate propensity function for sto-
chastic simulations, and the approximation quality must
be assessed on a case-by-case basis.

5) Bimolecular reaction with real-valued order
kinetics

This type of reaction can be formulated as

d
[
Xs(t)
]

dt
= kr
[
Xi(t)
]fi[Xj(t)

]fj
or

dE
[
Xs(t)
]

dt
= kr	

1−fi−fjE
[
Xi(t)
]fiE[Xj(t)

]fj , (51)

i, j Î {1, ..., Ns}, i ≠ j, fri, frj ≠ 0, and frs = 0, for all s ≠
i, j. According to Equations (40)-(44) we obtain

�r =
(
σi
/
μi
)2 +
(
σj
/
μj
)2 + 2fifj cov

[
1ogXi, log Xj

]
=
(
σi
/
μi
)2 +
(
σj
/
μj
)2 + 2fifj

{
cov
[
Xi
/
μi, Xj

/
μj
]

+
1
2

log(μi)
(
σj
/
μj
)2

+
1
2

log(μj)
(
σi
/
μi
)2 − 1

4

(
σi
/
μi
)2(

σj
/
μj
)2}

(
σαr

/
μαr

)2 = �r

=
(
σi
/
μi
)2 +
(
σj
/
μj
)2 + 2fifj cov

[
1ogXi, log Xj

]
μαr ≈ kr	

fi+fj−1μ
fi
i μ

fj
j

αr−cov(X) = kr	
fi+fj−1Xfi

i X
fj
j exp

(−fifj cov
[
1ogXi, log Xj

])
�= αr−0(X).

For bimolecular reactions of complex order, the pro-
pensity function is different from the rate equation. The
difference can be ignored only if the contribution from
the covariance is insignificant.

Power-law representation of a reversible reaction with
feedback controls
We consider a reversible reaction with feedback controls
(see Figure 1) whose average behaviour is accurately
described by the following GMA model

dx1

dt
=

dx2

dt
= −dx3

dt

= −kf 	
1−f1−f2−f3 xf1

1 xf2
2 xf3

3 + kb	
1−g1−g3 xg1

1 xg3
3 .

(52)

Here S3 feeds back to inhibit the forward reaction and
S1 feeds back on the reverse reaction and accelerates it.
The task is to develop a stochastic model whose perfor-
mance converges to that of the deterministic GMA
model. We can see from equations (52) that three vari-
ables x1, x2 and x3 contribute to the forward flux

kf 	
1−f1−f2−f3 xf1

1 xf2
2 xf3

3 and two variables x1 and x3 contri-

bute to the backward flux kb	
1−g1−g3xg1

1 xg3
3 . Because sev-

eral variables are involved, their covariance has the
potential of affecting the forward and the backward pro-
pensity functions in a stochastic simulation. To obtain
the covariance information, we formulate the moment
equations (53) from the ODE model (52).

Figure 1 Scheme of reversible reaction with feedback controls.
S3 inhibits the forward reaction and S1 activates the reverse
reaction.
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To simplify the calculation, as explained in detail in
Additional file 2, we set the third central moment to
zero and obtain a closed-form set of ODEs. Expressed
differently, the rate of change in mean and covariance
depends only on the functions of mean and covariance
themselves, but not on higher-order moments. Thus,

∂μ

∂t
≈ VT

(
α +

1
2

α′′ � σ

)
∂σ

∂t
≈ (σ (α′V

))T + σ (α′V) + VT�V.

(53)

Here μ = (μ1, μ2, μ3)
T, V =

[−1 −1 1
1 1 −1

]
,

α = (α1, α2)T =

[
kf 	

1−f1−f2−f3 xf1
1 xf2

2 xf3
3

kb	
1−g1−g3xg1

1 xg3
3

]
.

Moreover, for r = 1, 2 and m, n = 1, 2, 3,

(α
′′
r )mn =

∂2αr(X)
∂xm∂xn

, a“ = (a1“, a2“)
T, σ =

⎡⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤⎦ ,
α

′′
r � σ �

3∑
m,n=1

∂2αr(X)
∂xm∂xn

|X=µσmn , a“⊙s ≜ (a1“⊙ s, a2“⊙

s)T, a’ = (a1’, a2’), αr
′ =
(

∂αr(µ)
∂x1

,
∂αr(µ)

∂x2
,
∂αr(µ)

∂x3

)T

,

and � =

⎡⎢⎢⎣α1(µ) +
1
2

3∑
m,n=1

∂2α1(µ)
∂xm∂xn

σmn 0

0 α2(µ) +
1
2

3∑
m,n=1

∂2α2(µ)
∂xm∂xn

σmn

⎤⎥⎥⎦ .
Two initial conditions are chosen for representative

simulations; they differ by a factor of 20 in species
populations and reaction volume between the upper and
lower panels of Figure 2. The purpose is to observe the
thermodynamic limit of the systems: both scenarios
have the same initial concentrations, but the system in
the lower panel case has a larger species populations
and reaction volume and can thus be regarded as the
thermodynamic limit sample of system in the upper
panel. As demonstrated by the figures in the first col-
umn, the moment approach predicts that for both popu-
lation sizes the average trajectories of the stochastic
model (without propensity adjustment) dynamics is
lower than that of the equation-based model: the differ-
ences are about 10% of the steady-state value of the
equation-based model in the upper figure and 1% in the
lower figure; for 100 runs of the stochastic simulation,

Figure 2 Comparative simulation results for a reversible reaction with feedback controls. In all panels, the x-axis denotes time in seconds
and the y-axis represents the number of molecules of species S1. The upper and lower panels use two different sets of initial numbers of
molecules, namely: (x1(0), x2(0), x3(0), U) = (5, 5, 6, 1μm3) and (x1(0), x2(0), x3(0), U) = (100, 100, 120, 20μm3), respectively. Other simulation
parameters are (f1, f2, f3, g1, g3, kf, kg) = (1.3, 1.8, -1, 1, 1, 0.5, 0.5). In both the upper and lower panels, the first column compares the time
evolution of S1 molecules by different methods: the black line shows the ODE solution of Equation (52) for x1 ; the blue lines are the solutions of
Equation (53) for μ1 and for μ1 ± s1, respectively. The red dotted lines framing the mean indicate the 95% confidence interval. The second
column shows the propensity adjustment functions for the forward reaction (solid line) and the backward reaction (dashed line). The third
column shows 100 independent stochastic simulations with propensity adjustment (blue means and error bars), in comparison with the ODE
(Equation (52)) prediction (black line). The fourth column shows a second set of 100 independent stochastic simulations without propensity
adjustment (blue means and error bars), in comparison with the ODE (Equation (52)) prediction (black line). The red dotted lines framing the
mean in columns 3 and 4 again indicate the 95% confidence intervals.

Wu et al. BMC Systems Biology 2011, 5:187
http://www.biomedcentral.com/1752-0509/5/187

Page 12 of 21



the steady-state value of the equation-based model lies
outside the 95% confidence interval in the upper figure,
while it is inside the interval in the lower figure. There-
fore, we can expect that the propensity adjustment will
significantly contribute to the stochastic simulation for
the upper case while not for the lower case. This expec-
tation is confirmed by the simulation results in the third
and fourth columns. With the common assumption that
the deterministic equations precisely capture the sys-
tem’s average behaviour, the case in the upper panel
represents the situation where propensity adjustment is
needed, while the lower panel represents the situation
that a propensity without adjustment is sufficient when
the system approaches its thermodynamics limit. This
example furthermore demonstrates that either the
moment approach or the stochastic simulations without
propensity adjustment can be used to estimate whether
there is a need to construct a propensity adjustment
function for stochastic simulations.

Repressilator
Interestingly, a propensity function may even be
obtained through power-law approximation of some
function that describes complex transient behaviours of
a reaction network. As an example, consider the so-
called Repressilator [27], which is a three-component
genetic circuit where each component represses its
downstream neighbour. More specifically (as shown in
Figure 3), gene G1 codes for protein x1, whose dimer y1
subsequently represses the transcription of the gene G2.
Similarly, y2, the dimer of gene G2’s protein product x2,
represses the transcription of gene G3, and y3, the dimer
of gene G3’s protein product x3, represses the transcrip-
tion of gene G1. The corresponding differential equation
model following mass action kinetics is given by [28]

xi
′ = −2κ+x2

i + 2κ−yi + σmi − γpxi

yi
′ = κ+x2

i − κ−yi − k+yid0,j + k−dr,j

d0,i
′ = −k+ykd0,i + k−dr,i

dr,i
′ = k+ykd0,i − k−dr,i

mi
′ = d0,i − γmmi,

(54)

where i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2; the rate con-
stants are explained in the diagram below

xi + xi
κ+�
κ−

yi

d0,i + yk
κ+�
κ−

dr,i

d0,i
α−→ d0,i + mi

mi
α−→ mi + xi

xi
γp−→ φ

mi
γm−→ φ

Assuming that the reversible dimerization and the dis-
sociation/association of a protein dimer from/to the pro-
moter are much faster than other processes, the full
systems can be reduced to

xi
′ = σp(xi)−1mi − γpp(xi)−1xi

mi
′ =

αd

1 + cdcpx2
k

− γmmi
(55)

[28]. Here F = 1, p(xi) = 1 + 4cpxi +
4cdcpdxi

(1 + cdcpx2
i )2 , cp

= �+/�-, cd = k+/k- and d = d0, i + dr, i for i = 1, 2, 3. It
has been shown that the simplified ODEs rather accu-
rately approximate the transient dynamics of the full
system by retaining the original oscillation period and
amplitude.

Figure 3 Reaction scheme of the Repressilator. Gene G1 codes for protein x1, whose dimer y1 represses the transcription of gene G2. Similarly,
y2, the dimer of gene G2’s protein product x2, represses the transcription of gene G3, and y3, the dimer of gene G3’s protein product x3, represses
the transcription of gene G1.
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In [28], the system (55) is further rescaled by setting
t̃ = γmt, x̃i =

√
cdcpxi and m̃i =

(
σ

√
cdcpmi

)/
(γmβ) ,

which yields

dx̃i

dt̃
= βp(x̃i)−1m̃i − βp(x̃i)−1x̃i

dm̃i

dt̃
=

κd′

1 + x̃2
k

− m̃i.
(56)

Intriguingly, one makes the following observation. The
scaled ODE system (56) is consistent with the original
system (55) in oscillation amplitude and period. How-
ever, its corresponding stochastic model produces
results that deviate substantially from the average
responses. To see the effects of the transition from a
deterministic to a stochastic model, we apply SSA to the
scaled system (56). The main result is that the oscilla-
tion periods of both xi and mi are reduced to half (Fig-
ure 4). The reason is that, in the stochastic simulation,
the oscillation period is very sensitive to the ratio of xi
and mi, which has been altered by the scaling operation.
Therefore, in general one needs to pay attention to how
scaling may affect the stochastic performance when the
model is generated through the conversion of an ODE
model.
We can see from equations (55) that two variables xi

and mi contribute to the production of xi; hence, their
covariance could affect the propensity function of xi in
the production reaction of a stochastic simulation. Simi-
lar to the example of a reversible reaction (Equation 52),
it is therefore necessary to evaluate covariance effects
and to judge whether the propensity function needs
adjusting. Thus, we need to compare the difference
between the dynamics of the phenomenological model
(55) and the dynamics under the influence of covar-
iance, which can be produced by either stochastic simu-
lation or the moment approach.

The influence of the covariance on the dynamics of
the stochastic simulation is relatively easy to assess: we
simply use the terms on the right-hand side of the dif-
ferential equations (54) as the propensity functions in
SSA and obtain simulation results shown in the 2nd and
the 4th panels of Figure 5. Obtaining the covariance-
influenced dynamics with the moment-based approach
is more complicated, and we need to discuss some
implementation issues.
First, the moment-based approach requires informa-

tion regarding the first and the second derivatives of p
(xi)

-1, which have rather complicated functional forms.
To simplify the calculation, we replace the function p
(xi)

-1 with an approximating power-law function. Speci-
fically, suppose the original parameter values are �+ = k

+ = 5, �- = k- = 100 and d = 20. Plotting the data (xi, p
(xi)

-1)in log-log space (Figure 5) indicates that the origi-
nal function is represented well by a straight line:

log yi = log 3.5188 − 0.9384 log xi.

for xi Î [30, 300]. In Cartesian space, this line corre-
sponds to the power-law function

yi = 3.5188x−0.9384
i ,

which models the original function very well (see Fig-
ure 5). For xi Î [1,30], this power-law function does not
fit the original function precisely; the effect of this
imprecision can be evaluated later at after we use this
power-law function in the moment-based method.
Moreover, using the truncated moment equations to
estimate the mean and variance involves multiple
approximations: First, the function p (xi)

-1 on the right-
hand side of (55) is replaced by a power-law function
(see Figure 5). Second, the result is approximated by
Taylor expansion to the second order. Third, similar to
the example of a reversible reaction, the central moment

Figure 4 Scaling of the Repressilator equations changes the oscillation period in the stochastic simulation. Solid lines represent solutions
of ODEs (56), while dotted lines are trajectories of a stochastic simulation; blue lines represent x1 and black lines represent m1.
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of the third degree is assumed to be zero, which leads to
a closed-form ODE for the first two moments.
Solving the technical issues as described, one obtains

the corresponding moment-based model of (55) (not
shown) with results shown in Figure 6. Suppose one is
particularly interested in the period and amplitude of

the oscillation within a time interval between 0 and 400
seconds. As shown in Figure 6, the GMA approximation
(black dashed line) fits the original ODEs (55) (bold
black solid line) very well at the beginning, but as time
goes on, the approximation error accumulates. As seen
in the time interval [350, 400], the GMA approximation

Figure 5 Power-law approximation of p(xi)
-1. Left panel: Approximation of yi = p(xi)

-1 by a straight line in log-log space. Right panel:
Corresponding power-law function in Cartesian space. Both axes are unitless.

Figure 6 Comparison of the dynamics of the Repressilator models using the original ODEs (55), the GMA approximation, and the
moment approach based on the GMA approximation. The mean of the moment approach based on the GMA approximation fits the
original ODEs (55) very well up to about t = 400 s. Black bold line: solution of the original ODEs (55); black dashed line: the GMA approximation;
Red line: mean of the moment approach based on the GMA approximation; red dashed lines framing around the red line: mean ± standard
deviation, which were produced with the moment approach. x-axis is time in second, y-axis is the number of x1 molecules (unitless).
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deviates from the original ODEs significantly. However,
this does not mean that the GMA approximation cannot
be used as a propensity function for stochastic simula-
tions; the moment-based method with the GMA
approximation shows that, when the GMA approxima-
tion is used as propensity function (without adjustment)
for stochastic simulations, the resulting mean (red solid
line) consistently fits the trajectory of the original ODEs
(bold solid black line) very well up to about t = 400 sec-
onds. The oscillation period and amplitude in the sto-
chastic simulation based on the GMA approximation
(without adjustment) are almost identical to those of the
original ODEs. Therefore, a propensity adjustment for
the GMA approximation is not needed, and the GMA
approximation can be used as a propensity function for
stochastic simulations. In other words, a stochastic
model for the Repressilator system can be generated by
using the scheme in (32) without propensity adjustment.
Moreover, the imprecision caused by the power-law
approximation can be tolerated when its corresponding
moment-based mean matches the original ODEs suffi-
ciently well with respect to the features of highest
interest.

Enzymatic reaction using a quasi-steady state assumption
(QSSA)
We consider an enzymatic reaction following the
Michaelis-Menten mechanism:

E + S
k1�

k−1

ES
k2−→ P + E.

Here enzyme E reacts with substrate S through a
reversible reaction to form complex ES, which can pro-
ceed to yield product P and to release the enzyme E. By
assuming the law of mass action for the reaction
kinetics we obtain a set of differential equations for the
system dynamics:

d[S]
dt

= k−1[ES] − k1[S]([E]0 − [ES])

d[ES]
dt

= k1[S]([E]0 − [ES]) − (k1 + k2)[ES]

d[P]
dt

= k2 [ES],

(57)

where the total amount of enzyme in the form of free
enzyme and complex [E]0 ≜ [E] + [ES] is assumed to be
constant. In addiction, by making the so-called quasi
steady state assumption (QSSA) [29,30], assuming that
the complex ES is essentially in steady state, we can

assert
d[ES]

dt
≈ 0 . As it has been discussed many times

in the literature, QSSA reduces the system and leads to
the approximate form

d[S]
dt

= − Vmax[S]
Km + [S]

d[P]
dt

=
Vmax[S]
Km + [S]

,
(58)

which is known as Michaelis-Menten kinetics [30]. The
characterizing parameters are Vmax = k2[E]0 and Km =
(k-1 + k2)/k1.
Applying QSSA, Rao and Arkin [2] were able to

reduce the CME of S and ES to a CME only containing
S. For the reduced CME, the propensity function for the
overall reaction S ® P is

α(s) =
Vmaxs

Km + s
, (59)

where the volume was scaled so that F = 1 and the
lower-case letter s denotes the molecule count of species
S. Instead of reviewing the relatively complicated manip-
ulations with CME, we show in the following that the
techniques described above lead directly from the equa-
tion-based model to the propensity function for the
reduced system.
First, we recast the equation-based model into the

GMA format [31], by introducing an auxiliary variable
[T] ≜ Km + [S]. The result,

d[S]
dt

= −Vmax[S][T]−1

d[T]
dt

=
d[S]
dt

= −Vmax[S][T]−1
(60)

is exactly equivalent to the reduced system in (58)
with the initial condition [S]0 and [T]0 = Km + [S]0. The
corresponding stochastic model has only one reaction
channel and the propensity function is

α(s, t) = Vmaxst
−1. (61)

The propensity adjustment factor can be set to 1
because T is a function of s and its covariance with s is
therefore 1. By applying t = Km + s, the propensity func-
tion can be simplified as

α(s, t) = Vmaxst
−1 = Vmaxs(Km + s)−1 = α(s). (62)

Thus, we arrive at the propensity function for the
reduced system, which is identical to the result of Rao
and Arkin obtained through manipulations of CME.
In the above derivation, we used the simplest type of

recasting, where a new, auxiliary variable simply consists
of an old variable plus a constant. This reformulation of
the Michaelis-Menten process as a pair of GMA equa-
tions is a special case of a much more general recasting
technique that permits the equivalent conversion of any
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system of ordinary differential equations into a power-
law format [31]. However, this equivalence transforma-
tion imposes constraints on the variables of the GMA
equations, and it is at this point unclear whether there
are mathematical warranties ensuring that the proposed
transition from differential to stochastic equations in
general preserves these constraints in all cases. This
question will require further investigation.

Stochastic Focusing
Stochastic focusing [26] describes the phenomenon that
the fluctuations of a chemical species can drive the sys-
tem to reach a different steady state than what a deter-
ministic ODE model predicts. To demonstrate the utility
of propensity adjustment, we derive a stochastic model
which produces consistent results with those of the
deterministic model.
Following [32], we consider the following reactions

system

φ
k1−→ I

k2−→ P
k3−→ φ

I + S
k4−→ S

S
k6�
k5

φ

(63)

This system can be interpreted as follows: the inter-
mediate species I is produced at constant rate k1 from
some source F and degrades with rate k4 through the
catalysis with signalling molecule S; the end product P
is converted from species I at rate k2 and degrades at
rate k3; the signalling molecule S is produced and
degrades at rates k5 and k6, respectively. Moreover, the
value of k5 is reduced to half at a certain time point to
achieve a significant divergence effect. In order to cap-
ture the average dynamics of the system accurately, we
use a power-law model in GMA format instead of the
mass action rate law in [32].

di
dt

= k1 − k2i − k4ifI sfS

dp
dt

= k2i − k3p

ds
dt

= k5 − k6s

(64)

The system size is set to 1. We can see from equa-
tions (64) that two variables i and s contribute to the
degradation of I and that their covariance could there-
fore affect the propensity function of I in the degrada-
tion reaction of a stochastic simulation. To calculate the
propensity adjustment function paf4(t) = exp (-fI fS cov

[log I(t), log S(t)]) for reaction R4 : I + S
k4−→ S , we for-

mulate equations (cf. (60)) for the moments as

∂μ

∂t
≈ VT

(
α +

1
2

α′′ � σ

)
∂σ

∂t
≈ (σ (α′V))T + σ (α′V) + VT�V.

(65)

Here μ = (μI, μP, μS)
T, V =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 1 0
0 −1 0

−1 0 0
0 0 1
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

α =

⎡⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

α5

α6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

k1

k2i
k3p

k4ifI sfS

k5

k6s

⎤⎥⎥⎥⎥⎥⎥⎦ .
Moreover, for r = 1, ..., 6 and m, n = i, p, s,

(α
′′
r )mn =

∂2αr

∂m∂n
, a“ = (a1“, ..., a6“)

T,

α
′′
r � σ =

∑
m,n=i,p,s

∂2αr(µ)
∂m∂n

σmn ,

α
′′
r � σ =

∑
m,n=i,p,s

∂2αr(µ)
∂m∂n

σmn , a“⊙ s ≜ (a1 “⊙ s, ...,

a6“⊙ s)T, a’ = (a1’, ..., a6’), αr
′ =
(

∂αr

∂i
,
∂αr

∂p
,
∂αr

∂s

)T

,

and the diagonal matrix Λ is defined by

(�)rr = αr +
1
2

∑
m,n=i,p,s

∂2αr

∂m∂n
σmn .

The stochastic focusing model without propensity
adjustment yields results quite different from those of
the deterministic model, as is illustrated in Figure 7. In
this figure, the blue lines in the 1st panel are predicted
from the moment equations (65) and the blue error bars
for μP in the 2nd panel are obtained from ten indepen-
dent stochastic simulations. Both diverge systematically
from the black line predicted by ODE model (64). By
contrast, the stochastic model with propensity adjust-
ment produces results consistent with the deterministic
model, as shown by the 4th panel.

Discussion
It is often implicitly assumed that the rate of a dynamic
process can be directly taken as the propensity for a
corresponding stochastic process. We have shown here
that this is sometimes, but not always, true. Our results
fall into three categories. The first develops conditions
for a valid conversion of a rate to a propensity, the sec-
ond presents a general conversion procedure, and the
third discusses computational issues of propensity
adjustment.
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Conditions for the direct use of a rate constant (function)
as propensity function
We have shown that the direct use of a rate constant or
a rate function f as the propensity function in a stochas-
tic simulation algorithm requires that at least one of the
following assumptions be true:

1) f is a linear function; this assumption has been
validated in the Results sections addressing 0th-order
and 1st-order reaction kinetics.
2) the reaction is monomolecular; this assumptions
was evaluated in the Results section describing real-
valued order monomolecular reaction kinetics.

3) all Xi in the system are noise-free variables, i.e.,
without (or with ignorable) fluctuations; this
assumption implies that the covariance of any two
participating reactants is zero (or close to zero). This
assumption is assessed in equations (29 - 36).

Each of these three conditions is a sufficient condition
for the direct use of a rate function f as the propensity
function. Moreover, these statements are valid for func-
tions of a general format, not just for GMA. This is so
because the functional formats in cases 1 and 2 above
are special cases of the GMA format. For the third case,
a formal proof is only given for functions in GMA for-
mat, because this structured format allows us to give an

Figure 7 Stochastic focusing. The first panel from the top compares the time evolution of product molecules P obtained with different
methods: the black line represents the solution of ODE model (64) for P; the blue solid line and blue dashed lines are the solutions of the
moment-based model (65) for μP and μP ± sP, respectively. The second panel indicates that the stochastic simulations without propensity
adjustment (blue error bar) diverge from the prediction by the ODE model (64) (black line). The third panel shows the propensity adjustment
function paf4(t) = exp(-fI fS cov [log I(t), log S(t)]) for the reaction R4 : I + S

k4−→ S . The bottom panel demonstrates that the propensity
adjustment function paf4 achieves convergence between the stochastic simulation and the ODE model (64) (black line): the blue error bars were
computed from 100 independent stochastic simulations with propensity adjustment paf4. The simulation parameters are (i(0), p(0), s(0), k1, k2, k3,
k4, k5, k6, fI, fS) = (0, 10, 100, 104, 103, 1, 9.9 × 103, 104, 103, 1.1, 0.9); at t = 0.1, the value of k5 changes from 104 to 0.5 ×104.
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explicit estimation on how the covariance can affect the
average behavior of a stochastic simulation through
equation (34). For functions not in GMA format, the
conclusion is still holds, although an analogous explicit
estimation is lacking. The argument is as follows. The
bimolecular reaction E[ar(X(t))] contains at least one
quadratic moment of the form E[Xi(t)Xj(t)] (cf. [4] and
page 38). Therefore, by definition of the covariance, E[Xi

(t)Xj(t)] = E[Xi(t)]E[Xi(t)] + cov (Xi(t), Xj(t)), we obtain

E
[
Xi(t)Xj(t)

]
= E
[
Xi(t)
]

E
[
Xj(t)
]⇔ cov

(
Xi(t), Xj(t)

)
= 0.

This result implies the following: If the covariance
between every pair of random variables is zero (or
ignorable), we have E[Xi(t)Xi(t)] = E[Xi(t)]E[Xi(t)] and
therefore E[ar(X(t))] = ar(E[X(t)]). Expressed in words,
the expectation of the propensity function on left-hand
side of equation (29) equals its rate function, and the
rate function can be directly used as propensity function
in stochastic simulations.
If at least one of the three assumptions is satisfied, the

stochastic simulation algorithm (SSA) is applicable with-
out changes.

A general procedure for converting an equation-based
model into a stochastic analogue
In the past, efforts have been made to manipulate the
chemical master equation (CME) in order to achieve a
proper propensity function for a reduced system (e.g.,
see [2]). However, manipulations of CME are usually
complicated, and successes have been modest and rare.
Here we propose an alternative strategy for converting a
reduced dynamical model into a stochastic analogue. To
achieve this conversion, we addressed two fundamental
issues: First, under what conditions can a deterministic,
equation-based model be validly used in stochastic
simulations? And second, what is a proper strategy to
implement such a conversion?
To address the first question, we showed that the fol-

lowing steps are necessary:

(1) A concentration-based model needs to be con-
verted into a particle-based model by accounting for
the size of the system; if the concentration-based
model is scaled (as was illustrated with the repressi-
lator example), it may first have to be un-scaled in
order to render the conversion valid;
(2) The difference between the mean of a stochastic
model without propensity adjustment and the corre-
sponding quantities of the equation-based model
should be evaluated. The mean of the stochastic
model is obtained either through stochastic simula-
tions or through a moment-based approach. If the
difference is significant, then an adjustment of the

propensity function for a non-elementary reaction is
necessary.

To answer the second question, we need to execute
the following steps

(3) Compute a propensity adjustment function,
either through simulated or experimental data or
through a moment-based approach, in order to
achieve the corrected propensity function (41);
(4) Apply SSA or one of its variants using a propen-
sity function with adjustment to obtain valid simula-
tion trajectories.

Computational issues of propensity adjustments
When the propensity needs adjusting, an accurate pro-
pensity adjustment function (paf) is essential for obtain-
ing the proper correction of the propensity. It is usually
impossible to compute paf exactly, which necessitates a
suitable approximation. The approximation error in paf
originates from the following sources:

1) The expression of paf in Equation (40) is a func-
tion of the mean, variance, and covariance, which
are computed with a 2nd-order Taylor expansion in
log space.
2) The moment-based approach, from which the
functions of mean, variance and covariance are
usually derived, is an approximation method that
yields a closed ODE system for the moments. In the
method used here, the propensity function is
approximated by a 2nd-order Taylor expansion, and
the moments up to a certain degree (2 in our treat-
ment) are retained, while all higher moments are
assumed to be zero. One might expect that a higher-
order Taylor expansion would improve the accuracy
of paf, but it would come with a much higher com-
putational cost. The error control of paf and the
relative computational issues should be addressed in
future studies.

Since computation cost is a major concern with the
stochastic simulation of large biochemical reaction net-
works, another issue has yet to be addressed. Namely,
how does the propensity function of a reduced system
affect the accuracy and efficiency of various leaping
methods that have been proposed to speed up SSA?
Moreover, the question of molecular population sizes
requires further analysis. Our derivation assumed large
reactant populations, but simulations of a reversible
pathway indicated that the method works rather well
even for small populations. A more careful investigation
of this issue of population size in different scenarios is
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still needed and should be the subject of further
research.

Conclusions
Gillespie’s stochastic simulation algorithm (SSA), as well
as later variants, permits three kinds of elementary reac-
tions to be modelled: 0th, 1st and 2nd order reactions
that are assumed to follow the law of mass action. All
other types of reactions, containing non-integer kinetic
orders and/or following other types of kinetic law, are
assumed to be convertible to one of these three kinds,
so that SSA can validly be applied. However, the conver-
sion to elementary reactions is often difficult, infeasible,
or simply impossible. First, the kinetic parameters of the
underlying elementary reactions are in many cases
unknown for a complex-order reaction. Second, even
when all elementary kinetic parameters are available, the
multitude of reaction channels and participating species
creates a combinatorial complexity that renders SSA
simulations computationally impractical. Within a deter-
ministic framework, model reduction is a possible and
often-used strategy to address such challenges. For
example, a reduced mechanistic model, such as the
Michaelis-Menten rate law, is often proposed to fit the
experimental data, at the cost of sacrificing the original
mechanistic interpretation. The reduction in these cases
simplifies the original formulation by approximating,
merging, or omitting intermediate reaction steps and
reactants.
In this article, we propose a rather general strategy for

converting a deterministic process model into a corre-
sponding stochastic model and characterize the mathe-
matical connections between the two. The deterministic
framework is assumed to be a generalized mass action
system and the stochastic analogue is in the format of
the chemical master equation. The analysis identifies
situations: where a direct conversion is valid; where
internal noise affecting the system needs to be taken
into account; and where the propensity function must
be mathematically adjusted. The conversion from deter-
ministic to stochastic models is illustrated with several
representative examples, including reversible reactions
with feedback controls, Michaelis-Menten enzyme
kinetics, a genetic regulatory motif, and stochastic focus-
ing. The construction of a stochastic model for a bio-
chemical network requires the utilization of information
associated with an equation-based model. The conver-
sion strategy proposed here guides a model design pro-
cess that ensures a valid transition between
deterministic and stochastic models.

Additional material

Additional file 1: Derivation of the mean and variance of a power-
law function of random variables.

Additional file 2: Computation of approximate mean and
covariance for a generic propensity function to be used in
stochastic simulations.
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