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The Editorial on the Research Topic

The Evolving Telomeres

The study of the evolution of the end of chromosomes, or telomeres, has moved from the abstract
to molecular observations and mechanistic possibilities. Although successful end-replication and
end-protection are the primary driving forces acting at all telomeres (de Lange, 2009), the studies
presented in this issue reveal apparent similarities, surprising differences, and new functions for
telomere binding proteins (TeloBPs). These advances in molecular genetics of both common and
more diverse organisms should lead to specific hypotheses for the roles of these proteins both at
telomeres and throughout the genome and toward a broader view of how evolution solves different
problems that occur in biology. The next step will be the experimental testing of evolutionary
hypotheses.

As a reflection of the molecular advances, we framed the series “The Evolving Telomeres”. We
have covered information from multiple systems that use a variety of mechanisms. These include
studies in Neal Lue’s lab regarding the analysis of work in yeasts belonging to Saccharomycotina
involving the co-evolution of single-stranded and double-stranded sequence TeloBPs as a function
of telomeric sequence (Steinberg-Neifach and Lue). They find that proteins accommodate the
differing sequence through duplication and divergence of functional proteins, combinatorial
site recognition, and greater protein flexibility. David Shore’s laboratory reviewed the apparent
differences and similarities in the Rif1 protein (Mattarocci et al.) in yeasts and humans. Rif1 was first
defined in budding yeast as a negative regulator of telomere size that counteracted the activation
effects of Tel1 (ATM) binding to short telomeres (Hector et al., 2007; Sabourin et al., 2007). The
multi-functional Rif1, on the other hand, is delivered to the terminus in greater amounts in longer
telomeres that have a greater abundance of the major yeast TeloBP, Rap1, thereby displacing Tel1
(Chang et al., 2007; Hirano et al., 2009; Martina et al., 2012). These activities form a feedback
mechanism that protects the telomere against non-productive repair such as the formation of end-
to-end fusions. This dynamic homeostasis acts in a cap-like function, termed the anti-checkpoint
(Ribeyre and Shore, 2012). Feedback mechanisms seem to be ubiquitous among telomeres.

One major issue is the source of the many discontinuities in the evolution in plant, fungal, and
mammalian telomeres. Two studies probed some of the unique characteristics of plants. Dorothy
Shippen’s laboratory (Nelson and Shippen) studied the participation of long nuclear RNAs in plant
telomere regulation. Among these is the telomerase RNA and an entire group of related RNAs,
many of which act on telomerase, even as a negative regulator. These RNAs are absent from
metazoans, illustrating how the metaphyta have likely adapted the system of RNA-based regulation
to telomeres. This findingmay reflect the high predominance of RNA-based defensemechanisms in
plants, especially against transposons present in most of the genome (Shabalina and Koonin, 2008).
Karel Riha’s laboratory contributed an experimental study of another example of differing solutions
to end-protection (Fulcher and Riha). One issue in Arabidopsis and many other plants has been
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the lack of TRF-like (TRFL) factors that are so common
in vertebrate cells. The major telomere binding proteins in
vertebrates is TRF1, and often, TRF2. These proteins form
the backbone of the shelterin complex, involved in both end-
replication and protection (Karlseder et al., 2003; Wu and de
Lange, 2008). The strangest observation is that TRFL are present
and located at telomeres, but serve no obvious function. To
rule out the possibility of functional redundancy, the authors’
produced genetic knockouts of the possible functional TRF-like
proteins with no effect on telomeres or growth. This result is in
sharp contrast to the effects of TRF1 and TRF2 loss in vertebrates.
Their data all but eliminate the chance for the presence that a
homolog to the vertebrate telomere repeat factor (TRF1) that
is important at Arabidopsis telomeres (Shakirov et al., 2008).
Rather, a simple algal-related protein performs many of the
TRF1 functions in Arabidopsis (Mozgova et al., 2008), leading to
speculation on the odd rapid evolution of TeloBPs. Plants appear
to have adapted telomeres to physiological requirements since
the divergence of the original common ancestor that gave rise to
metazoans.

Some components of telomeres are conserved such as the
Mre11/Rad50/NBS complex and the Cdt1/Stn1Ten1 complex
that assist in end protection. However, many others rapidly
change with differing physiological and selective forces that
maintain genome stability and cell survival. Art Lustig presented
a hypothesis that evolution could cause rapid changes as a
consequence of formation and divergence of paralogs (Lustig).
The hypothesis argues that rapid evolution is driven by the
requirement for genomic stability and, in some cases, by telomere
stress response that increases the rate of paralogy and divergence.
In fact, this result helps to explain the TeloBP divergence among
fungal, invertebrates, vertebrate and plant species that have been
investigated.

Evolution has provided multiple solutions to the end-
replication problem of linear chromosomes besides telomerase
and even telomeres. Some bacteriophages replicate the end
by circularization or recombination (Lopes et al., 2010). Both
adenovirus and the bacterium that causes Lyme disease, Borrelia
burgdorferi, have chromosome ends capped by covalently bound
proteins (Chaconas, 2005), and Drosophila and other dipterans
have transposons at their chromosome termini (Villasante et al.,
2008). The role of non-LTR retro-transposition in the evolution
of telomerase has been controversial.

Indeed, in analyzing the origin of telomerase, (de Lange)
proposes a theoretical scheme for type II introns, coupled with
the formation of primitive t-loops, to evolve into telomerase,

independent of non-LTR retro-transpositions (Lambowitz and
Belfort, 2015). Nevertheless, the review by Servant and Deininger
focuses on the use in extant organisms of non-LTR retro-
transposition in telomerase-positive cells, providing an example
of a mechanism that persists and even co-exists with telomerase
through evolution. The bottom line of these studies is the
diversity of telomeric processes. This variety could be put into a
broader context by a more extensive study of diverse organisms.

A major future goal, at least for microbes, is to test hypotheses
regarding telomere evolution. These experiments use techniques
for growth of cells at a constant density. One of these instruments

used for these experiments is the turbidostat (Gresham and
Dunham, 2014; Matteau et al., 2015; Takahashi et al., 2015) that
can differentiate between the altered molecular changes that arise
during the evolution of cells. Another exciting aspect of this work
is that these experiments represent real-time (albeit manipulated)
evolution. The artificial evolutionary approach is having signs of
success in yeast and microbes under different conditions, such
as oxidative stress (Raso et al., 2012) and these successes will
undoubtedly continue.
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