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A theory of cortical map formation in the visual
brain
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The cerebral cortex receives multiple afferents from the thalamus that segregate by stimulus

modality forming cortical maps for each sense. In vision, the primary visual cortex maps the

multiple dimensions of the visual stimulus in patterns that vary across species for reasons

unknown. Here we introduce a general theory of cortical map formation, which proposes that

map diversity emerges from species variations in the thalamic afferent density sampling

sensory space. In the theory, increasing afferent sampling density enlarges the cortical

domains representing the same visual point, allowing the segregation of afferents and cortical

targets by multiple stimulus dimensions. We illustrate the theory with an afferent-density

model that accurately replicates the maps of different species through afferent segregation

followed by thalamocortical convergence pruned by visual experience. Because thalamo-

cortical pathways use similar mechanisms for axon segregation and pruning, the theory may

extend to other sensory areas of the mammalian brain.
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Brains segregate neuronal circuits by function. Neurons
responding to visual stimuli are located in different sensory
areas than those responding to touch or sound and, within

each sensory area, neurons responding to different stimulus
dimensions are located in different regions forming sensory maps.
In mammals, the map of primary visual cortex has a systematic
representation of stimulus spatial location, making nearby neu-
rons responsive to nearby stimuli and neurons that are far apart
responsive to stimuli that are also far apart. In mammals with
high visual acuity and binocular vision, the primary visual cortex
maps a more complex combination of stimulus dimensions that
include inter-related gradients for spatial position, eye input,
light-dark polarity, orientation, and spatial resolution1–5. Sur-
prisingly, although visual cortical maps are very diverse across
species, the mapping of stimulus orientation can be strikingly
similar in different mammalian orders such as primates, carni-
vores and scandentia1,3,6. This puzzling balance between map
similarity and diversity has been the topic of intensive research
over the past decades and inspired a large number of computa-
tional models7–16. However, while previous models were very
successful at simulating general map patterns for some stimulus
dimensions, they were challenged by the use of limited biological
constraints and the complexity of simulating inter-related topo-
graphies for a large number of stimulus dimensions that include
spatial position, eye dominance, light-dark polarity, orientation,
spatial resolution, stimulus selectivity, and receptive field
structure.

The image pattern of a map for stimulus orientation can be
simply simulated by filtering noise. However, simulating an image
pattern is very different from simulating a cortical map just as
simulating a grid pattern is very different from simulating a map
of a city street grid. Accurate geographical maps require repro-
ducing multiple inter-related geographical features to fully
describe a spatial location (e.g. the New York Public Library at the
west-south corner of 42nd street and 5th avenue in New York
City). Similarly, accurate simulations of visual cortical maps
require reproducing multiple stimulus dimensions and its rela-
tions. A major challenge in visual neuroscience is to understand
the functional organization of these multi-dimensional visual
cortical maps and their diversity across species. Here we intro-
duce a general theory of cortical map formation, whose main
proposal is that cortical map diversity originates from differences
in the afferent sampling density of sensory space across species.
The theory proposes that, as sampling density increases and more
afferents are available to sample each point of visual space, the
visual cortex increases the cortical area representing each point
and segregates afferents and cortical neurons by other stimulus
dimensions that are not just spatial position. We test and support
the theory with a computational afferent-density model that
accurately replicates a large body of experimental data including
new measurements that we obtained to test specific theory
predictions.

Results
Thalamic afferents sample visual space very differently across
species. Humans and macaques sample each visual point very
densely through a large number of afferents with overlapping
receptive fields that need to be accommodated in a large cortical
region. By comparison, mice sample visual space more sparsely
through a much smaller number of afferents that can be
accommodated in a much smaller cortical region. As the number
of thalamic afferents increases across species, the visual cortex
becomes larger17,18 allowing humans and macaques to have
much larger cortical areas per visual point than mice. The larger
number of afferents also allows humans and macaques to have

afferents with smaller receptive fields and perceive smaller visual
details than mice.

Theory of cortical map formation. The close relation between
afferent sampling density and cortical size is the main pillar of our
theory. The theory proposes that, as afferent sampling density
increases, the cortex becomes larger and segregates afferents by
other stimulus dimensions that are not just spatial position17. This
main proposition is best described with a cartoon of brain regions
receiving a limited number of thalamic afferents (Fig. 1a, b). In
this cartoon, a brain region receiving 32 afferents to sample eight
positions of visual space (Fig. 1a) only needs a small area of 32
cortical pixels to accommodate one afferent per cortical pixel
(Fig. 1b, left). Because there are four types of afferents (ON and
OFF from contralateral and ipsilateral eyes), this small 32-pixel
cortex can only use one afferent of each type to sample each
position of visual space. Therefore, the 32-pixel cortex can only
segregate afferents by spatial position (Fig. 1b, left). By compar-
ison, a brain region receiving 512 afferents needs a larger area of
128 cortical pixels to sample just two spatial positions (Fig. 1b,
right). Because this larger brain region samples each spatial
position with 64 afferents, it can segregate the afferents by posi-
tion, eye input (contralateral or ipsilateral) and ON-OFF polarity
(light or dark). This segregation replicates the pronounced ten-
dency of brains to sort neurons with different response properties
in different areas, layers or clusters. It also maximizes the response
synchrony of neighboring neurons to stimuli, helping them drive
their common cortical targets more effectively19 while minimizing
axon wiring20,21 (Fig. 1c). The primary visual cortex receives input
from many different types of afferents. However, for simplicity,
the theory considers only the four afferent types that are best
preserved across species, which are those that signal the onset of
light (ON) or dark (OFF) stimuli projected on the contralateral
and/or ipsilateral retinas.

The theory assumes that afferents are sorted following rules of
like-to-like connectivity that have been demonstrated in the
thalamocortical pathway of different species and sensory
systems22–27. The sorting makes the four types of afferents to
become organized in an eye-polarity grid5,28 (Fig. 1d) of OFF and
ON afferents from contralateral and ipsilateral eyes (OFF-contra,
OFF-ipsi, ON-contra, ON-ipsi), and makes cortical receptive
fields dominated by ON or OFF visual responses driven by either
eye (Fig. 1e). The theory puts forward several predictions, some of
which already have experimental support. For example, it predicts
that the size of the cortex should increase in proportion to the
number of afferents that it receives, which has been demonstrated
in different species17,18. It also predicts that retinotopy should
change slower across the contra-ipsi border than ON-OFF border
of the eye-polarity grid (Fig. 1e), a prediction that is consistent
with experimental measurements28–30. The theory also puts
forward predictions that have not been tested in experiments. For
example, it predicts that gradients for ON-OFF response balance,
orientation selectivity, spatial frequency selectivity, and spatial
resolution should be all correlated because changes in ON-OFF
response balance affect cortical stimulus selectivity. That is, as the
ON-OFF response balance increases, the dominant subregion of
the cortical receptive field should become more suppressed by the
stronger flank (Fig. 1f, top), increasing orientation selectivity
(Fig. 1f, bottom left), spatial frequency bandpass (Fig. 1f, bottom
right, see changes in low spatial frequency cutoff), and spatial
resolution (Fig. 1f, bottom right, see changes in high spatial
frequency cutoff). In the following sections of the paper, we
describe a computational model that simulates the cortical maps
predicted by the theory, compare model simulations with
experimental measurements, and summarize the main theory
propositions at the end.
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Main stages of the computational model. The computational
model has three main stages: retinal development, development
of the cortical subplate, and development of the visual cortex. In
the first stage, the model simulates mosaics of ON and OFF
retinal ganglion cells from two eyes projecting, through the tha-
lamus, to one brain hemisphere, ipsilateral to one eye and con-
tralateral to the other (Fig. 2a). The model uses these mosaics to
simulate the afferent sampling density, defined as the number of
thalamic afferents with overlapping receptive fields (Fig. 2b).
Future versions of the model could increase the afferent sampling
density by simulating retino-geniculo-cortical divergence/
convergence31,32 and/or including additional mosaics of retinal
ganglion cells33. However, for simplicity, all simulations reported
in the paper use only one set of ON-OFF mosaics for each eye.

The second stage of the model simulates the sorting of thalamic
afferents in the cortical subplate, an embryonic brain structure
that receives the afferents days or weeks before the cerebral cortex
is formed34,35 and that plays an important role in the
development of cortical maps36–38. The model sorts the thalamic
afferents first by retinotopy, then by eye input, and then by ON-
OFF polarity (Fig. 2c), replicating a developmental sequence
experimentally demonstrated in the ferret lateral geniculate
nucleus5,39, which is likely to be preserved across species (see
methods for details).

At the third and last developmental stage, the afferents grow
into an immature visual cortex and start spreading their axonal
arbors. The axon arbor spread provides each cortical region with
convergent input from multiple thalamic afferents while

preserving the dominance by eye input and ON-OFF polarity
from the afferent sorting (Fig. 2d, e). The thalamocortical
convergence of ON and OFF afferents makes each cortical region
orientation selective, generating a primordial orientation map
(Fig. 2f). At the end of development, visual experience optimizes
the primordial map by maximizing the coverage and binocular
match of stimulus orientation (Fig. 2g). In the next section of the
paper, we describe each stage of our afferent-density model and
the associated theory predictions in greater detail (see methods
for a mathematical description of the model and use our graphical
user interface40 to perform customized stimulations).

Model stage 1. Retinal development. The theory predicts that
the organization of a visual cortical map should be determined by
the retinal position of ON and OFF ganglion cells sampling visual
space with the two eyes, as proposed by previous retinal
models8,12,15,41,42. However, unlike previous retinal models, the
theory does not require (and does not rely on) a Moire inter-
ference of ON and OFF retinal arrays to generate orientation
maps. The theory predicts that nearly all ON-OFF mosaic geo-
metries should be able to generate an orientation map as long as
the afferent sampling density is high. Conversely, it predicts that
orientation maps will not form if the afferent sampling density is
low, regardless of the ON-OFF mosaic geometry. Several factors
can make the afferent sampling density low, including a small eye,
a small number of retinal ganglion cells, a small visual thalamus,
and/or a small number of retinal ganglion cells projecting to the
visual thalamus.
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Fig. 1 Theory of cortical map formation. a Cartoon illustrating 8 adjacent positions in visual space that can be discriminated as separate by visual cortex
(e.g. two stimuli are perceived as separate only if they fall in different squares). The theory assumes that each square position is sampled by four different
types of thalamic afferents that signal the onset of light (ON: red) or dark stimuli (OFF: blue) projected on the contralateral (contra: high contrast) or
ipsilateral retina (ipsi: low contrast). The size of the squares represents the visual resolution (receptive field size) of the thalamic afferents. b Cartoon
illustrating a small cortex sampling each spatial position with four afferents (left) and a larger cortex sampling each spatial position with 64 afferents
(right). c Cartoon illustrating the afferent sorting. d The theory assumes that the visual cortex sorts afferents with overlapping receptive fields by eye input
and contrast polarity, forming an eye-polarity grid with separate regions for ON-contra, OFF-contra, ON-ipsi, and OFF-ipsi afferents that are linked by iso-
orientation lines. e This afferent sorting makes cortical receptive fields become dominated by eye input and ONOFF polarity. Because afferents with
different eye input are better matched in retinotopy than afferents with different polarity, retinotopy changes slower with cortical distance across the eye
than ONOFF polarity border (circles and crosslines at panel outer borders illustrate changes in receptive field position). f The theory predicts that increases
in ONOFF response balance are associated with increases in stimulus selectivity. The top panel shows an increase in ONOFF response balance from ON
dominated to equal ON and OFF subregion strength. The bottom panel illustrates how the increase in ONOFF response balance increases orientation
selectivity (left), bandpass tuning and spatial resolution (right).
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To simulate these theory predictions, the afferent-density
model can generate a large variety of retinas with different sizes,
sampling densities, retinotopic distances between ON and OFF
afferents, and asymmetries in retinal ganglion cell density across
retinotopic axes and/or cell types (Fig. 3a). It can also simulate
ON-OFF retinal mosaics of different species by finely adjusting
the retinal-distance distributions of each pair combination of
ON-OFF cell types (Supplementary Fig 1, see methods for
details). To simulate a retina, the model makes grids of retinal
ganglion cells for each type with a fixed cell density (Fig. 3a, left).
Then, it randomizes the location of each cell with a jitter value
multiplied by the cell separation (Fig. 3a, middle). Then, it applies
an ON-OFF interaction factor that prevents two cells from
occupying the same retinal position (Fig. 3a, right). All
subsequent stages of the model, from the afferent sorting to the
synaptic competition are fully determined by the ON and OFF
retinotopy from the two eyes. Therefore, two model simulations
that use exactly the same retinas (and thalamic afferents) will
perform exactly the same afferent sorting (by retinotopy, eye
input and ONOFF polarity), and generate exactly the same visual
cortical maps (Fig. 3b).

Our afferent-density model can generate cortical orientation
maps with any retina that, through visual thalamus, provides the
cortex with a large number of afferents with overlapping receptive
fields. For example, the theory predicts that an animal with an
ON-OFF retinal mosaic of a mouse diverging extensively in a
large visual thalamus of a cat will have a cortical orientation map
because the large thalamus provides the cortex with high afferent
sampling density. Conversely, an animal with an ON-OFF retinal
mosaic of a cat but a small visual thalamus of a mouse will not
have a cortical orientation map because the small thalamus
provides low afferent sampling density (Fig. 3c). Although these
chimera animals may not exist in nature, the retinal/thalamic cell-
density ratios vary greatly across species. For example, rabbits
have a larger number of retinal ganglion cells than cats17 but a
much smaller visual thalamus and, as the theory predicts, rabbits
do not have cortical orientation maps. The theory also predicts
that animals sampling the binocular field more densely with one

eye than the other will only form cortical orientation maps with
the eye that has sufficiently large afferent sampling density (the
dominant eye). Only at later stages of development, when the
maps are binocularly matched by visual experience (see below),
cortical neurons driven by the non-dominant eye will form weak
orientation clusters to match the orientation preferences of the
dominant eye (Fig. 3d). This prediction is consistent with
experimental measures in tree shrews, an animal that samples
the binocular field more densely with the contralateral than
ipsilateral eye43. All published orientation maps in tree shrews
were obtained through stimulation of the contralateral eye; the
maps cannot be measured through stimulation of the ipsilateral
eye3,44. Notice that the afferent sampling density of visual space
from our theory is very different from the cortical sampling of
ON-OFF retinal geometry previously proposed45 and leads to
opposite predictions (i.e. the sampling of ON-OFF retinal
geometry predicts that orientation maps in tree shrews should
be weaker for the dominant than non-dominant eyes because the
cortical/retinal ratio is lower for the dominant eye).

Model stage 2. Development of the cortical subplate. The the-
ory predicts that species sampling visual space with a large
number of thalamic afferents will have large cortical regions
representing each visual point and many afferents with over-
lapping receptive fields. In turn, the large number of afferents
with overlapping receptive fields should make the afferents seg-
regate in cortex by other stimulus dimensions besides spatial
position. For simplicity, the model simulates the sorting of
afferents in the cortical subplate (i.e. before axon arbor spread);
however, the sorting could also occur in visual cortex through
molecular gradients and/or synaptic competition. The most
important requirement of both theory and model is that afferents
are sorted by spatial position (retinotopy), eye input and ON-OFF
polarity, regardless of the sorting mechanism. The model per-
forms the retinotopic sorting by assigning nearby positions of the
cortical subplate to afferents with nearby retinotopy. It performs
the ocular and ON-OFF sorting by convolving a difference-of-
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Gaussians function (afferent sorting filter) with a cortical subplate
made of random binary values. The afferent sorting filter provides
a simple approach to adjust the shape and size of the afferent
clusters and iso-retinotopic domains based on visual sampling29

(see Supplementary Fig 2). However, the model can use any other
sorting filter that segregates afferents by retinotopy, eye input and
ON-OFF polarity as long as the sorting maximizes the coverage of
all stimulus dimensions per visual point.

The only role of the afferent sorting filter is to find the best
local movement of an afferent to join afferents of the same type
(Fig. 4a). During the ocular sorting, afferents move to regions

with the same eye input and retinotopy (Fig. 4b) and, during the
ONOFF sorting, they move to regions with the same retinotopy,
eye input and ON-OFF polarity (Fig. 4c, left). This simple
algorithm is very effective at sorting afferents by type (Fig. 4c,
left). Moreover, because the sorted afferents have similar
retinotopy, the retinotopic map is preserved (Fig. 4c, right).

The theory predicts that visual retinotopic maps will not form
if thalamic afferents are not sorted by retinotopy (Fig. 4d), ocular
dominance maps will not form if afferents are not sorted by eye
input (Fig. 4e), and ON-OFF maps will not form if afferents are
not sorted by ON-OFF polarity (Fig. 4f). In addition, the theory

b Same retina + high afferent density = same multi-dimensional cortical map
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predicts that any disruption of afferent sorting will affect the
maps for stimulus dimensions originating from thalamocortical
convergence such as orientation and spatial frequency (Fig. 4d–f).
In the model, random mapping of retinotopy, eye input and/or
ON-OFF polarity leads to random mapping of stimulus
orientation, even if the afferent sampling density is high. Without
afferent sorting, cortical neurons with different orientation
preference (e.g. vertical or horizontal) and orientation selectivity
(e.g. narrow or broad bandwidth) become neighbors (Fig. 4f).

Model stage 3. Development of visual cortex. After the afferent
sorting is complete, the model simulates the spread of the afferent
axonal arbors in visual cortex. The axonal arbor is modeled as a
Gaussian function centered at the main axon trunk of each
afferent. It has a maximum synaptic weight of one at its center
and a minimum of zero at its edges (Fig. 5a, radius: 10 cortical
pixels). The spread of the axonal arbors provides each cortical
pixel of 50 × 50 microns with convergent input from multiple
afferents. Therefore, simulations within each cortical pixel can be

interpreted as averages of multiple neighboring neurons con-
tained within a 50 × 50 microns of cortex that can be measured
with multiunit activity28,46. The convergent thalamocortical input
includes the main thalamic afferent that reached the cortical pixel
first (during the development of the cortical subplate) and other
afferents with diverse properties that reached the cortical pixel
later through axon arbor spread.

The spread of the axonal arbors makes multiple thalamic
afferents to converge at the same cortical pixel and compete for
cortical space. To simulate the synaptic competition, the model
calculates the dominant receptive field of each cortical pixel
(Fig. 5b, left) as the weighted receptive field average of all
thalamic afferents with the ON-OFF polarity of the afferent that
reached the cortical pixel first, before axon arbor spread. Then,
the model changes the synaptic weights of the afferents with
opposite polarity that have receptive fields overlapping the
dominant receptive field. The synaptic weights of these non-
dominant afferents become zero if their receptive fields fully
overlap the dominant receptive field (Fig. 5b middle and right,
central red dots) but can approach the maximum value of one if

d No retinotopic sorting

f No ON-OFF sorting

a

Original 
position

Sorting a single afferent

Possible 
moves

Final 
position

Afferent switching positions

Development
Step 0

b Sorting all afferents by eye input

...

Development
Step 1

Development
Step 10

Afferent from contralateral eye
Afferent from ipsilateral eye

Sorting all afferentsc
Afferent

retinotopy

ON-OFF
polarity

Ocular 
dominance

No eye-input sorting
Retinotopy

gradient ( , )x0 x1

Ocular 
dominance

ON-OFF
polarity

x0 x1
y1 y0

OFF-contra-ipsi
ON-contra-ipsi

OFF-contra-ipsi
ON-contra-ipsi

Ocular 
dominance

Contra
Ipsi

ON-OFF
polarity

OFF-contra-ipsi
ON-contra-ipsi

OFF-contra-ipsi
ON-contra-ipsi

Afferent
eye-polarity

Contra
Ipsi

Contra
Ipsi

Contralateral 
eye

Contralateral 
eye

Contralateral 
eye

Orientation 
preference (          )

Retinotopy 
( , )x  y0 1 x ,y1 0

Orientation 
preference (          )

Contralateral 
eye

Contralateral 
eye

Retinotopy
gradient ( , )x0 x1

Ipsilateral 
eye

Retinotopy
gradient ( , )x0 x1

Orientation 
preference (          )

Orientation 
preference (          )

Contralateral 
eye

Ipsilateral 
eye

Orientation
selectivity (0 1)

Contralateral 
eye

Ipsilateral 
eye

Orientation
selectivity (0 1)

e

Fig. 4 Second model stage. Afferent sorting in the cortical subplate. a The model sorts afferents by retinotopy, eye input and ONOFF polarity. The sorting
by eye input is done by performing a convolution between an afferent sorting filter and a binary randomized cortical subplate that assigns values of 1 to
afferents from the contralateral eye (black pixels) and -1 to afferents from the ipsilateral eye (white pixels). The model selects an afferent (left, red outline)
and computes the convolution at 9 neighboring positions (middle). Then, it selects the position that gives the highest convolution value (right), which is the
position where the afferent is surrounded by the largest number of afferents of the same type. b Sorting of afferents by eye input in a larger cortical plate.
The afferent sorting is performed in 10 developmental steps based on the convolutions with the afferent sorting filter (concentric purple and orange circles
on the left). The afferents are randomly organized at step 0 (left), start segregating at step 1 (middle) and the segregation is complete at step 10 (right).
c The same sorting method is used for ONOFF polarity. At the end of the sorting process, afferents are segregated by eye input and ONOFF polarity (left)
in addition to retinotopy (right). d Random afferent sorting by retinotopy causes random mapping of all stimulus dimensions in simulated visual cortex.
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by eye input causes random mapping of all stimulus dimensions except retinotopy in simulated cortex. From left to right, normal cortical retinotopy and
random mapping for ocular dominance, ONOFF polarity and orientation preference. f Random afferent sorting for ONOFF polarity causes random cortical
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the receptive field overlap is minimal (Fig. 5b right, red dots at the
edges, notice that only synaptic weights >50% of maximum are
shown in middle and right panels). At the end of the synaptic
competition, the multiple afferents converging at the same
cortical pixel are segregated by ON-OFF polarity in both cortical
space (Fig. 5c, left) and visual space (Fig. 5c, middle).

The model calculates the cortical receptive field of each cortical
pixel as the weighted receptive-field average of all the converging
afferents from each eye (Fig. 5c, right). Future versions of the
model could also simulate receptive fields of single cortical
neurons by taking subsets of thalamic afferents but, for simplicity,
all reported simulations in this paper are average receptive fields
of neuronal populations. The model extracts the orientation
preference from the cortical receptive field of each cortical pixel to
generate a primordial orientation map. This primordial map

simulates the map of naïve brains not exposed to visual
experience47 and does not yet have a complete representation
of stimulus orientation for each afferent cluster. For example, an
OFF-ipsi afferent cluster in the primordial map may be strongly
biased towards vertical orientations and fail to sample horizontal
orientations (Fig. 5d, left, area within dotted lines), causing a
visual scotoma for horizontal dark stimuli from the ipsilateral eye.

The theory assumes that visual experience prevents the
emergence of these scotomas by optimizing the orientation
coverage of each afferent cluster. The model performs this
optimization by convolving the cortical patch from each afferent
cluster with twelve orientation-coverage filters to generate twelve
possible orientation-map patches and assigns the orientation
patch with best orientation coverage to the mature orientation
map (Fig. 5d, right, area within dotted lines). This optimization is
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arbor with a Gaussian function (left, yellow circle, standard deviation ~3 cortical pixels, radius: 10 cortical pixels). The synaptic weight of the axon arbor is
maximum at the center of the Gaussian (small yellow pixel) and zero at the Gaussian borders. The final size of the axon arbor (right) is also shaped by
synaptic competition. b The synaptic competition changes the synaptic weights of the afferents with non-dominant polarity converging at each cortical
pixel. The synaptic change is based on the overlap between the afferent receptive field and the dominant receptive field of the cortical pixel (left). The
synaptic weight decreases when the overlap is large and increases when it is small, as illustrated in the figure for afferents with synaptic strength >50% of
maximum (middle and right). The dot location illustrates the receptive field position in visual space and the dot size illustrates the synaptic strength.
c Afferents converging at the same cortical pixel segregate in cortical space (left, cortical position of main axon trunks), and visual space (afferent receptive
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notice the greater diversity in pixel colors). e The model maximizes the orientation coverage for each afferent cluster (left) to transform the primordial
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orientation map by adjusting the synaptic weights of the afferents from the non-dominant eye (left) to match those of the dominant eye in the mature
orientation map (right).
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performed for all afferent clusters (Fig. 5e, left) to transform the
primordial map (Fig. 5e, middle) into a mature orientation map
that becomes periodic (Fig. 5e, right). The optimization of
orientation coverage can be interpreted as the result of afferent
co-activation by stimuli with multiple orientations during visual
experience (Supplementary Fig 3). At the end of cortical
development, the model optimizes the binocular orientation match,
a process that is known to require visual experience in both
rodents48,49 and carnivores50. The binocular match is simulated by
adjusting the synaptic weights of afferents from the non-dominant
eye to match the orientation preference of the dominant eye
(Fig. 5f, see methods for more detail). Notice that this optimization
is modulated by visual experience but is fully determined by the
shape and size of the afferent clusters emerging from afferent
sorting. That is, if visual experience is normal (i.e. it provides a
homogeneous distribution of orientations from both eyes), two
animals with identical retinas will generate an identical sorting of
afferents for retinotopy, eye input, and ON-OFF polarity, identical
ON and OFF afferent clusters, and identical cortical maps.

Mature visual cortical maps. At the end of cortical development,
the model generates mature cortical maps for multiple stimulus
dimensions for the contralateral eye, ipsilateral eye or both eyes
(Fig. 6a). It also generates anatomical maps of afferents conver-
ging at the same cortical pixel in cortical space (Fig. 6b, c, first
panel from the left) and visual space (Fig. 6b, c, second panel
from the left) together with the binocular cortical receptive fields
and orientation tuning emerging from afferent convergence
(Fig. 6b, c, third and fourth panels starting from the left, see also
Supplementary Fig 4a, b). The model also generates receptive
fields and response properties measured across linear tracks of
visual cortex (Fig. 6d), closely replicating experimental
measurements28. As in the experimental measures, the simula-
tions generate diverse cortical receptive field structures (e.g. ON
dominated, OFF dominated, ON-OFF balanced), gradients of
orientation preference (e.g. fast fractures or slow linear zones),
gradients of orientation tuning (e.g. broad or narrow, see also
Supplementary Fig 4c), and orientation pinwheels that are OFF
dominated, ON dominated or ON-OFF balanced28. This diversity
emerges in the model from variations in ON-OFF response bal-
ance across the cortex. Regions strongly dominated by ON or
OFF afferents generate broad orientation tuning and rapid
changes in orientation preference (e.g. section from 0 to 0.1 mm
in Fig. 6d) whereas regions with greater ON-OFF response bal-
ance generate sharper orientation tuning and slower changes in
orientation preference (e.g. section from 0.5 to 0.6 mm in Fig. 6d).

The orientation maps generated by the model have similar
power spectrums and hexagonal periodic geometry8 to orienta-
tion maps measured in different species (Supplementary Fig 4d).
The model also simulates changes in cortical map architecture
caused by monocular deprivation or orientation biases in visual
experience (Supplementary Fig 4e). It also replicates experimental
measurements of multielectrode recordings crossing ON and OFF
domains along linear tracks that are parallel or orthogonal to
ocular dominance bands28 (Supplementary Fig 5). The model also
replicates the smooth changes in retinotopy across cortical
distance4,51 and the retinotopic distortions at neighboring cortical
regions28,46,52 (Fig. 6e, f, movies Fig 6e, f). The smooth retinotopy
changes result from the afferent sorting by retinotopy and the
local distortions from the sorting by other stimulus dimensions
(e.g. afferents with the same retinotopy are separated in cortex if
they have different eye input and/or ON-OFF polarity).

Model-data comparison of species variations. An important
prediction of the theory is that cortical orientation maps from

individual animals should be accurately reconstructed by using as
input the retinotopy of ON and OFF ganglion cells from the two
eyes. Unfortunately, there are no current measurements of cor-
tical orientation maps and retinal ganglion cells obtained in the
same animal, and all retinal measures are from one eye only. In
absence of these data, the theory also predicts that differences in
orientation maps across species should be also replicated using
ocular dominance or retinotopy maps as input29 (although
individual-animal maps cannot be replicated without ONOFF
retinotopy). To test this prediction, we simulated the orientation
maps of three different species (macaque, cat and tree shrew)1,3,6

using as inputs published ocular-dominance maps from the same
individual animal (Fig. 7a, left, middle), or retinotopic maps from
the same species (Fig. 7a, right, tree shrews do not have ocular
dominance maps).

When using individual ocular dominance maps as inputs, the
model made a binary black-and-white version of the ocular
dominance map to simulate the cortical subplate. Then, it
assigned a random binary value of ON-OFF polarity to each pixel
of the cortical subplate while preserving the segregation by eye
input. The randomized ON-OFF values were then sorted with the
afferent sorting filter estimated from the ocular dominance
segregation (see29 for details) to generate ON and OFF afferent
clusters for the contralateral and ipsilateral eyes. At the last
simulation stage, the model optimized the orientation coverage of
each afferent cluster to generate the orientation maps (Fig. 7c, left
and middle).

When using the tree-shrew retinotopic map as input, the
simulations were more challenging because the available
retinotopic maps are coarse and from different individual animals
than the published orientation maps3. To overcome these
limitations, the model generated a cortical subplate with the
same shape as the published orientation map. Then, it divided the
cortical subplate into 12 large retinotopic sectors separated by
three iso-retinotopic azimuth lines and three iso-retinotopic
elevation lines. The position of the iso-retinotopic lines was based
on the species retinotopic map and the global pattern of the
orientation map from the individual animal. The model assumes
that, to maximize orientation coverage, the iso-orientation
domains need to fit within the iso-retinotopic domains. There-
fore, the orientation domains become elongated in elongated iso-
retinotopic domains and round in round iso-retinotopic domains.
Because the cortical map of tree shrew is strongly OFF-centric
and dominated by afferents from the contralateral eye53, these
simulations can be interpreted as a maximization of orientation
coverage in cortical clusters dominated by OFF afferents from the
contralateral eye.

The model was able to closely reproduce the species differences
in orientation map geometry (compare Fig. 7a, c). It also
reproduced the tendency for iso-orientation lines to run
orthogonal to ocular dominance borders in macaques and cats
and the tendency for same-sign pinwheels (e.g. both rotating
clockwise) to be farther apart than different-sign pinwheels (e.g.
one rotating clockwise and the other counterclockwise). It also
reproduced the differences in average pinwheel distance and
orientation periodicity across species (compare Fig. 7b and d).
We quantified the model accuracy at reproducing map differences
between species by measuring the model error for different map
properties (Supplementary Table 1). The model error was
calculated as the difference between each experimentally-
measured and model-simulated map for each species and map
property. For comparison, a control error was calculated as the
difference between experimentally-measured maps from two
different species. The model error was significantly lower than the
control error for all map properties. Moreover, the average model
error across properties and species was four times lower than the
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average control error. Based on these results, we conclude that the
simulated cortical maps reproduce the differences across species
of experimentally-measured maps.

Combined visual cortical topography for multiple stimulus
dimensions. The theory also predicts that the map gradients for
orientation selectivity, low-pass filtering, spatial resolution and
orientation local homogeneity should be all highly correlated
because they all originate from changes in ON-OFF response

balance (Fig. 1d–f). Unfortunately, there are just a few studies that
measured visual cortical topography for more than two stimulus
dimensions6,54–56. Therefore, to increase the biological constraints
of the model, we performed multielectrode recordings from hor-
izontal tracks of cat visual cortex and used these recordings to
measure systematic changes in spatial position, ocular dominance,
ON-OFF receptive-field structure, orientation preference, orienta-
tion selectivity, homogeneity of orientation preference, spatial-
frequency resolution (highest spatial frequency generating half of
maximum response, S50), and spatial-frequency low-pass filtering.
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The theory predicts that, as ON and OFF responses become
balanced in strength, the ON-OFF spatial antagonism should
increase (Fig. 1f). In turn, the increased ON-OFF spatial antag-
onism should reduce the range of stimulus orientations driving a
response (enhance orientation selectivity), shrink the width of the
receptive-field-subregions (enhance spatial resolution), and reduce
the cortical responses to low spatial frequencies (enhance spatial
frequency selectivity)5.

Our experimental measurements confirm these predictions
(Fig. 8). In horizontal recording tracks performed with multi-
electrode arrays in cat visual cortex, cortical spatial resolution
systematically increased with cortical distance over a few hundred
microns (Fig. 8a). Moreover, the increases in spatial resolution were
strongly associated with increases in orientation selectivity (mea-
sured as a reduction in circular variance) and orientation-preference
homogeneity (Fig. 8a). Such relations could be demonstrated in
horizontal tracks running parallel to an ocular dominance band
(Fig. 8a) and in tracks crossing the ocular dominance border
(Fig. 8c). Moreover, in tracks crossing the ocular dominance border,
there was a strong association between response increases to low
spatial frequencies and increases in eye dominance measured as an
increase in ocular dominance index, ODI (Fig. 8c). Finally, as
predicted by the theory, we also found a correlation between
orientation tuning and ON-OFF response balance (Fig. 8e). The

model replicated all these experimental measurements (Fig. 8b, d, f)
and the correlations among gradients for different stimulus
dimensions measured within single horizontal tracks in individual
animals (Fig. 9a–d) and in multiple recording tracks from different
animals pooled together (Fig. 9e, f). The model also replicated the
sign of the correlations, data scatter, the distribution of slopes from
different combinations of stimulus dimensions (Fig. 9g–j) and the
orthogonal relations between map gradients for different stimulus
dimensions (Fig. 9k, see more examples in Supplementary Fig 6).
Replicating the data scatter for spatial resolution was particularly
challenging and deserves to be described in some more detail. Our
measurements in cat visual cortex demonstrate that spatial
resolution (SF50) can change by almost 1 cpd within just 400
microns of horizontal cortical distance (Fig. 9a). However, without
ON-OFF synaptic competition, the largest changes simulated by the
model were four times smaller (0.25 cpd instead of 1 cpd).
Therefore, the synaptic competition between ON and OFF afferents
is probably important to make the ON-OFF response balance more
effective at reducing the width of the receptive-field-subregions and
increase the range of spatial resolution within an orientation
domain.

To further quantify the model performance, we simulated 1000
recording tracks and counted those that replicated the correlations
measured in our experiments. For statistical comparison, we
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Fig. 7 Model simulations of cortical orientation maps in three different species. a Maps of stimulus orientation and pinwheel density experimentally
measured in the visual cortex of a macaque (left), a cat (middle) and a tree shrew (right). Reproduced with permission from Horton and Adams, 2005
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Fig. 8 Measurements of multiple stimulus dimensions along horizontal tracks of cat visual cortex and model simulations. a Example recording from a
horizontal track parallel to an ocular dominance band. From top to bottom, the left panel shows responses to static gratings presented through the
contralateral (black) or ipsilateral eyes (orange), orientation tuning, and spatial frequency tuning. The spatial resolution (highest spatial frequency
generating half-maximum response, SF50) increases from cortical site 0 to 4, and this increase is associated with a decrease in orientation selectivity
measured as circular variance (CV, right top) and an increase in orientation clustering (right middle) measured as a local homogeneity index (LHI). The
right bottom panel shows the five spatial frequency curves from the left panel superimposed to facilitate their comparison. b The model replicates the data
illustrated in (a). c Example recording from a horizontal track crossing an ocular dominance border (same organization as in a). The response strength to
low spatial frequencies (LPI: low pass index) increases from cortical sites 0 to 4, and this LPI increase is associated with an increase in ocular dominance
(right top, ODI: ocular dominance index) and a decrease in LHI (right middle). d The model replicates the data illustrated in c. e Top. Orientation tuning of
four cortical sites (black) and their adjacent sites 100-microns apart (gray). Middle. Receptive fields with greater ON-OFF response balance (left) have
higher orientation selectivity and local homogeneity index than those that are ON or OFF dominated (right). Bottom left. Receptive fields shown at different
time delays from the stimulus. Bottom right. Significant correlation between orientation selectivity and ON-OFF balance (rank correlation with Matlab ‘corr’
function, R: correlation coefficient, p: probability of no correlation). f The model replicates the experimental measures in e. Source data are provided as a
Source Data file.
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performed these simulations with and without afferent sorting for
ocular dominance and ON-OFF contrast polarity. If the criteria for
track selection required to reproduce just a few weak correlations,
many tracks passed the criteria even when the afferents were not
sorted. However, as the criteria for track selection became stricter
and required to reproduce a larger number of strong correlations
with the correct sign and range, the model could not reproduce any
of the tracks without afferent sorting (Supplementary Table 2).

Based on these results, we conclude that afferent sorting is needed
to explain the combined correlated topography of multiple
stimulus dimensions measured in cat visual cortex.

Main theory propositions. Taken together, our experimental and
modeling results provide support for a theory that we briefly
summarize in three propositions.
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Fig. 9 Correlations among multiple stimulus parameters represented in the visual cortical map. a Example correlations between multiple pairs of
stimulus parameters measured in a single horizontal track of cat visual cortex (n= 35), including orientation selectivity measured as circular variance (CV),
spatial resolution measured as the highest spatial frequency that generates half-maximum response (SF50), response strength to low spatial frequencies
measured as low-pass index (LPI), and cortical clustering of orientation preference measured as a local homogeneity index (LHI). From left to right, the
figure shows significant correlations between pairs of stimulus parameters. In all panels, r and p values were calculated with rank correlation (Matlab ‘corr’
function). b Example single-track correlations measured in a different animal (n= 47). c–d The model replicates single-track correlations as illustrated in
two different simulations (c and d). The number of data points in each plot equals the average number of data points illustrated in (a–b). e Correlations
from all single-track recordings obtained in multiple animals (n= 8 animals, 17 single tracks, 633 data points). f The model replicates the experimental
correlations illustrated in (e), n= 20 single tracks, 800 data points). g Distribution of correlation slopes measured in cat visual cortex between CV and
SF50 (black line), and CV and LPI (gray line). The CV/SF50 slopes were significantly more negative than the CV/LPI slopes. h Distribution of correlation
slopes measured in cat visual cortex between LHI and LPI (black line) and between LHI and SF50 (gray line). The LHI/LPI slopes were significantly more
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measured experimentally (n= 20 single tracks). Two-sided Wilcoxon tests for all slope comparisons. k Model simulations of the relations between paired
combinations of maps. For each map combination, the top panel shows the pair of superimposed maps (color scale for the map listed first and contour plot
for the second). The bottom panel shows the intersection angles between the two maps in a histogram (left) and a polar plot (right). Source data are
provided as a Source Data file.
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1) Visual sampling density. The diversity of visual cortical
maps across species originates from variations in the thalamic
afferent density sampling visual space, which we define as the
number of inputs (afferents) per degree times the receptive-field
size (Fig. 10a). This proposition indicates that an evolutionary
increase in visual acuity requires not only a reduction in receptive
field size but also a massive increase in number of afferents to
keep sampling density high (Fig. 10b, c).

2) Afferent sorting. As afferent sampling density increases, the
size of visual cortex representing the same visual point also
increases to accommodate the larger number of afferents with
overlapping receptive fields. In turn, the larger cortical region
allows afferents and cortical targets with the same retinotopy to
segregate by other stimulus dimensions that are not just spatial
position (Fig. 10d).

3) Afferent convergence and synaptic competition. Afferents
with similar retinotopy converge at the same cortical point, but

the thalamocortical convergence is limited by synaptic competi-
tion. As afferent density increases, the convergence becomes
constrained by more stimulus dimensions that are not just
retinotopy and, as a consequence, each axon arbor occupies a
smaller portion of the cortical area representing each visual point.

Discussion
We propose a theory of cortical map formation that explains the
natural diversity of visual cortical maps based on variations in
afferent sampling density. The theory is illustrated with an
afferent-density model that follows very closely the main devel-
opmental stages of the early visual pathway including the afferent
sorting. Across the animal kingdom, primary sensory cortical
areas sort their thalamic afferents by their dominant sensory
modality that can include retinotopy22,25, somatotopy26, sound
frequency57, gustotopy58 or electroreception59. Moreover, in
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primary visual cortex, mammals with extensive binocular vision
sort afferents by multiple stimulus dimensions that include not
only retinotopy but also eye input60 and ON-OFF polarity61–64.
Therefore, afferent sorting is likely to play a major role in cortical
map development and the wiring of thalamocortical
circuits23–26,57.

The theory proposes that cortical map diversity originates from
variations in visual sampling density (V), which we define as the
number of inputs per degree (I) times their receptive field size
(R), V= I x R (Fig. 10a). As with the Ohm’s law, the density of
visual sampling acts as a driving force (voltage) proportional to
input density (current) and receptive field size (resistance). In the
theory of cortical map formation, the effect of the driving force is
to enlarge the cortex and make neurons segregate by multiple
stimulus dimensions. The driving force can be made stronger by
increasing the afferent density and/or making the receptive field
size larger (Fig. 10b). The increase in afferent sampling density is
associated with an enlargement of the afferent axon arbor and the
cortical iso-retinotopic region representing the same visual point
(Fig. 10c). In turn, as the iso-retinotopic region becomes larger,
the multiple afferents and cortical neurons with the same reti-
notopy segregate by multiple stimulus dimensions such as eye
input, ONOFF polarity, and orientation, while reducing the size
of their axon arbors through synaptic competition. The theory
predicts that the size of the iso-retinotopic domains and/or
afferent clusters should determine the size of the iso-orientation
domains (Fig. 10d). Consistent with this prediction, iso-
orientation domains become smaller as the cortical space per
visual point decreases to accommodate a larger visual field
(Fig. 10e). Also consistent with this prediction, iso-orientation
domains increase in size with the number of afferents (e.g. from
macaque to human) or receptive field size (e.g. from cat area 17 to
cat area 18).

The theory also predicts that animals with the largest iso-
orientation domains should have the largest cortical areas
representing the same retinotopy and, therefore, the greatest
processing power per visual point. We define processing power as
the number of cortical neurons available to discriminate stimuli
centered at the same visual point, a term that is equivalent to filter
bank size in signal processing (Fig. 10f). Because the size of the
perceived visual point is associated with the afferent receptive
field size, processing power can be increased by changing afferent
density and/or receptive field size. This flexibility of design allows
each species to reach a different compromise between processing
power and spatial resolution. For example, the large iso-
orientation domains and afferent receptive-fields of cat area 18
can maximize processing power per visual point at the expense of
reducing spatial resolution. This may be a good compromise for
an area specialized in visual motion that requires discriminating
fine movements of relatively large targets65. Conversely, macaque
area V1 can afford losing some processing power per visual point
(smaller iso-orientation domains than cat area 18) to achieve a
much higher spatial resolution (many afferents with much
smaller receptive fields). This may be a good compromise for an
area specialized in visual detail. Human area V1 can maintain the
high spatial resolution of macaques while approaching the pro-
cessing power of cat area 18 by dramatically increasing afferent
density17 (Fig. 10e). Therefore, our theory of cortical map for-
mation not only provides insight about the organization of visual
maps from different species but also about the diversity of cortical
map functions. The theory also predicts that the multiple map
gradients for different stimulus dimensions should be closely
related and, therefore, the map of one-dimension can be used as
input to reproduce the maps for other dimensions. If ON-OFF
retinal mosaics become available through imaging or other
methods in the future33,66, the theory provides a path towards

reconstructing the multidimensional map of an individual brain
to guide the implantation of cortical prosthesis67.

Methods
General structure of the computational model. We organize the model in three
stages: retinal development, development of the cortical subplate, and development
of the visual cortex. At the stage of retinal development, we simulate the mosaics of
ON and OFF retinal ganglion cells from the two eyes, which are ipsilateral and
contralateral to the cortical subplate from one brain hemisphere. The ON and OFF
retinal mosaics are then fed into the dorsal Lateral Geniculate Nucleus (LGN) of
the thalamus and, in turn, the thalamic afferents are fed into the cortical subplate.
At the stage of cortical subplate development, we sort the thalamic afferents by
retinotopy, eye input and ON-OFF polarity. At the last stage of visual cortical
development, we spread the axonal arbors of the thalamic afferents in the devel-
oping cortex and adjust their synaptic weights based on visual experience. Each
stage of the model aims to reproduce as closely as possible the experimental data
that is currently available, including the new measurements that we report in
this paper.

Model stage 1. Retinal development. The retinal simulations replicate the ON
and OFF retinal mosaics from the retinal ganglion cell type that dominates the
projection to the LGN, which is the midget cell in macaques and beta cell in cats.
The model can incorporate other cell types (e.g. parasol cells in macaques and
alpha cells in cats) or multiple cell types. However, for simplicity, it assumes that
the cortical topography for retinotopy, eye input and ON-OFF polarity is deter-
mined by the inputs of the cell type that dominates the retino-geniculate-cortical
projection in number and strength. In the rest of the paper, we use the generic
terms ON and OFF retinal mosaics to refer to this dominant retinal ganglion cell
type in each species.

The simulation of ON and OFF retinal mosaics reproduces as close as possible
the ON and OFF retinal arrays experimentally measured in different species.
Consistently with the experimental data, the simulated ON and OFF retinal
mosaics are independent, regularly spaced, randomly jittered, and do not allow two
neurons to occupy the same spatial position33,42,68,69. The algorithm that simulates
the retinal mosaics is the same for the two eyes but each eye mosaic is different
because the model randomly jitters the position of each retinal ganglion cell. We
start generating ON and OFF retinal mosaics by simulating a grid that samples
retinal space at a fixed inter-cell distance. The fixed inter-cell distance (dx, dy) is a
variable that changes the average retinal ganglion cell density separately for ON
and OFF cells and separately along the azimuth (RX) and elevation (RY) retinal
axis. For example, if (dx, dy) values are smaller for OFF than ON cells, the cell
density is higher for OFF than ON cells. If dx values are smaller than dy values, the
cell density is higher along the azimuth than elevation axes.

After the cell grid is created, the model jitters the position of each retinal
ganglion cell with a random number taken from a uniform distribution whose
range can be specified separately for the azimuth (±rjx) and elevation axis (±rjy).
The absolute number of cells of each type along the azimuth (nx) and elevation
axes (ny) can also be changed together with the inter-cell distance to simulate
retinas of different sizes and cell densities. We define the original position of each
retinal ganglion cell, Retop, as the (rx, ry) grid position within the azimuth (RX)
and elevation (RY) retinal axes times the inter-cell distance (dx, dy) plus the
position jitter (jx, jy), as shown in Eq. 1. The grid position is given by two integer
numbers (rx, ry), each one ranging from one to the total number of cells from each
type, ON or OFF, along the azimuth or elevation axes. The integer number
increases from left to right within the azimuth retinal axis (RX) and from bottom
to top within the elevation axis (RY). The inter-cell distance (dx, dy) can take any
value in pixels to match the retinal cell density that we want to simulate. For
example, to simulate the cat retina, we use an inter-cell distance of five pixels that
corresponds to 110 microns (22 microns/retinal pixel).

Retopðrx; ryÞ ¼ ½rx ´ dxþ jx; ry ´ dy þ jy�

1 ≤ rx ≤ nx

1 ≤ ry ≤ ny

�rjx ´ dx ≤ jx ≤ rjx ´ dx

�rjy ´ dy ≤ jy ≤ rjy ´ dy

8>>><
>>>:

9>>>=
>>>;

ð1Þ

In the final stage of retinal development, the model simulates interactions
between neighboring ON and OFF retinal ganglion cells to adjust their final
position. This process prevents ON and OFF retinal ganglion cells from being at
the same retinal position. It also allows the model to match the statistics of the
retinal mosaic that we want to simulate (e.g. average and standard deviation of the
distance distribution between pairs of ON and OFF cells). We define an ONOFF
pair (p) as the pair of ON and OFF cells separated by the shortest distance within
each retinal location. We simulate ON-OFF retinal interactions by scaling the
distance between each ON-OFF cell pair. The retinal scaling changes the array
maximum and minimum ON-OFF distance (Maxd, Mind) to match the maximum
and minimum distance that we want to replicate (Maxdr, Mindr). We calculate the
new ON-OFF scaled distance for each cell pair, ONOFFdnew (p), by adjusting the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29433-y

14 NATURE COMMUNICATIONS |         (2022) 13:2303 | https://doi.org/10.1038/s41467-022-29433-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ON-OFF distance before scaling, ONOFFd, as shown in Eq. 2.

ONOFFdnewðpÞ ¼ ðONOFFdðpÞ �MindrÞMaxdr�Mindr
Maxd�Mind

þMindr ð2Þ
The model calculates the final [rx, ry] position of each retinal ganglion cell by

adding the original [rx, ry] position (Retop) to the adjustment of [rx, ry] position
resulting from the ON-OFF interactions. The position adjustment is done along the
angle (Ө) between the line connecting the cell pair and the azimuth axis (Eq. 3).
Because the interactions move ON and OFF cells within each pair in opposite
directions, the adjustments are opposite in sign (sign) for ON and OFF cells.

Retðrx; pÞ ¼ RetopðrxÞ þ sign ´ ONOFFdnewðpÞ � ONOFFdðpÞ
2 ´ cos θ

�
sign ¼ 1 forON

sign ¼ �1 forOFF

�

Retðry; pÞ ¼ RetopðryÞ þ sign ´ ONOFFdnewðpÞ � ONOFFdðpÞ
2 ´ sin θ

�
sign ¼ 1 forON

sign ¼ �1 forOFF

�

ð3Þ
Retinal receptive fields (RRF) are modeled as two-dimensional Gaussian

functions with a center at retinal position (rx, ry) and a size equal to one standard
deviation (σ), as shown in Eq. 4. For simplicity, all simulations of cat visual cortex
use a constant retinal receptive field size with a standard deviation of 2–5 retinal
pixels (44–110 microns, 22 microns/retinal pixel, 0.2–0.4 degrees for cat central
retina with 250 microns/degree).

RRFðrx; ry; σÞ ¼ 1
2πσ2

exp � ðRX � rxÞ2 þ ðRY� ryÞ2
2σ2

� �
ð4Þ

In cats and primates, the receptive field of each LGN cell closely resembles the
receptive field of a dominant retinal input. Therefore, the model uses a neuronal
divergence equal to one and makes the receptive field of each thalamic cell (TRF)
identical to the receptive field of its retinal input (RRF), as shown in Eq. 5.

TRFðrx; ry; σÞ ¼ RRFðrx; ry; σÞ ð5Þ
Future versions of the model could increase the number of thalamic afferents

with overlapping receptive fields by using larger values of neuronal divergence or
incorporating additional retinal mosaics. The neuronal divergence could be
implemented by interpolating the receptive field array of the simulated ON-OFF
retinal mosaic. For example, if the neuronal divergence is two, half of the thalamic
afferents could receive only one input and have identical receptive fields to the
retinal mosaic. In addition, the other half could receive two inputs and have
receptive fields calculated as a weighted average of two input receptive fields. For
example, if two neighboring ON retinal ganglion cells make connection with one
ON thalamic neuron, the model can first calculate the thalamic receptive field as
the receptive-field sum of the two retinal inputs (RFsum= RRF1+ RRF2). Then, it
can calculate the weight of each input (w1, w2) based on the overlap between the
receptive field from each input and the receptive-field sum. Then, the final thalamic
receptive field can be computed as a weighted sum of the receptive fields from the
retinal inputs (TRF=w1 x RRF1+w2 x RRF2). The receptive field overlap can be
measured by normalizing each receptive field to an absolute maximum of 1 (−1 for
OFF and +1 for ON) and then calculating the dot product between the receptive
fields averaged over all pixels and rectifying the average so that negative weights
equal zero. The model assumes that the strongest retino-geniculo-cortical
connections dominate the development of cortical topography for retinotopy, eye
input and ON-OFF polarity. Therefore, a neuronal divergence equal to one also
provides a simple approach to build cortical topography purely based on the
strongest retinogeniculate connections.

Model stage 2. Development of cortical subplate (thalamic afferent sorting by
retinotopy). The model divides the cortical subplate into equally spaced square
locations and accommodates one thalamic afferent in each location. The number of
locations within the cortical subplate equals the number of thalamic afferents. In
turn, the number of thalamic afferents equals the number of ganglion cells from the
two eyes projecting to one LGN times the neuronal divergence, which is one if each
retinal ganglion cell connects only to one thalamic afferent. The separation between
two square locations within the cortical subplate is constant and equal to 50
microns. This constant separation makes the size of the cortical subplate directly
related to the number of thalamic afferents. For example, a patch of the cortical
subplate that receives 180,000 ON and 180,000 OFF thalamic afferents has
600 × 600= 360,000 square locations and measures 30,000 × 30,000 square
microns. In contrast, a patch of the cortical subplate that receives 100 times less
afferents (1800 ON and 1800 OFF) is 10 times smaller (60 × 60= 3600 cortical
locations) and measures only 3000 × 3000 square microns. The model assumes that
the most important factor in generating cortical orientation maps is the number of
thalamic afferents sampling the same point of visual space. If this number is small,
the cortex can only devote a small region to represent each visual point. However, if
the cortical area per visual point is large, the number of afferents with overlapping
receptive fields is also large and the cortex can sort afferents by eye input and ON-
OFF polarity in addition to retinotopy.

The model sorts the afferents in three sequential stages. At the retinotopy stage,
it sorts afferents by retinotopy only. At the eye-input stage, it sorts afferents with
similar retinotopy by eye input. At the ON-OFF polarity stage, it sorts afferents
with similar retinotopy and eye input by ON-OFF polarity. This sequence of

afferent sorting (retinotopy→ eye input→ON-OFF) has been demonstrated in
the ferret visual thalamus5,39 and the model assumes that it is preserved in the
retino-thalamo-cortical pathway of all mammals. There is evidence that retino-
thalamo-cortical connections segregate by retinotopy before eye input in cats,
ferrets, and macaques35,39,70. There is also evidence that the segregation by eye
input can be prevented at very early stages of development by ablation of the
cortical subplate34,37,38. There is also evidence that ON-OFF segregation is a slow
process that can last several months after birth in the cat retina71 and that occurs
after the segregation by retinotopy and eye input in the ferret thalamus39.

The model simulates the retinotopy sorting by assigning a [x, y] position within
the cortical subplate (CP) to each afferent (i) based on its [rx, ry] retinotopy.
Afferents with the lowest values of [rx, ry] retinotopy are assigned the lowest [x, y]
values of cortical position (the top left corner of the cortical subplate) and those
with the highest [rx, ry] values are assigned the largest [x, y] values (bottom right
corner of the cortical subplate, Eq. 6). The maximum index is equal to the total
number of afferents (nx x ny) along the azimuth and elevation axes. Because
afferents from the two eyes can have overlapping receptive fields and the same
retinotopy, the order of afferent assignment is randomized and afferents reaching
the cortex earlier get the best retinotopic match. After the retinotopic sorting is
complete, afferents with nearby receptive field positions are located in nearby
cortical locations and those with receptive fields far apart are located in cortical
locations that are also far apart.

CPiðx; y; rx; ryÞ ¼ TRFiðrx; ryÞ
1 ≤ i≤ nx ´ ny

1 ≤ x ≤ nx

1 ≤ y ≤ ny

8><
>: ð6Þ

Model stage 2. Development of cortical subplate (thalamic afferent sorting by
eye input). After finishing the retinotopy sorting, the model starts sorting afferents
by eye input using a variation of an algorithm developed by Swindale13,29. As in
many models of cortical maps, the algorithm performs a convolution between a
difference of Gaussians and a matrix of cortical values. However, unlike previous
models, our convolution is only used to simulate an afferent relocation within the
cortical subplate through a movement in one of eight possible directions (e.g. one
pixel to the left if the convolution value is largest at the left region of the afferent).
The afferent movement can be interpreted as a growth cone changing positions
within the cortical subplate or as the pruning of an axon arbor at later develop-
mental stages that effectively changes its central position in cortex. The goal of the
model is not to simulate how afferents segregate in the cortex but to simulate the
contribution of afferent segregation to the construction of cortical maps.

The model segregates afferents within the cortical subplate (CP) as follows. It
starts by assigning one of two possible values to each afferent based on their eye of
origin (eye), 1 for the contralateral eye and −1 for the ipsilateral eye. Then, the
binary cortical subplate is convolved with an afferent sorting filter (ASF) that has a
center-surround organization. The filter center attracts afferents of the same type
while the surround repels afferents of different type making afferents of the same
type to become close together. The center of the filter is always circular and its
radius is defined by a single standard deviation (σc). The filter surround can be
circular or elongated and the radii are described by two different standard
deviations (σsx, σsy). The surround size along the filter longest axis is two times
larger than the center size (e.g. [center, x-surround, y-surround]= [0.5, 1, 1] mm
for simulations of cat visual cortex and [0.5, 0.5, 1] mm for simulations of macaque
visual cortex). The afferent sorting filter is modeled as a difference of two
multivariate Gaussian functions (Eq. 7). Each of the functions is described by the
[x, y] position of the selected afferent within the antero-posterior (AP) and medio-
lateral (ML) axes of cortical space, two vectors that describe a local subset of x (X
vector) and y positions (Y vector) influencing the afferent sorting, and the standard
deviations of the filter center (σc) and surround (σsx, σsy). The filter angle (ρ) is
described as the dot product of the X and Y vectors divided by their magnitudes
(i.e. the square root of the sum of the squared elements of each vector). Circular
filters segregate afferents in beaded regions resembling the ocular dominance
segregation of cats. Elongated filters segregate afferents in stripes resembling the
ocular dominance segregation of macaques and humans. Filters with large diameter
segregate afferents in larger ocular dominance domains than filters with smaller
diameter29.

ASFðx; y; σc; σsx; σsyÞ ¼ fcenterðx; y; σcÞ � f surroundðx; y; σsx; σsyÞ
fðx; y; σX; σYÞ ¼ 1

2πσXσY
ffiffiffiffiffiffiffiffi
1�ρ2

p exp � 1
2ð1�ρ2 Þ

� �
ðAP�xÞ2

σ2X
þ ðML�yÞ2

σ2Y
� 2ρðAP�xÞðML�yÞ

σXσY

h i� �

ρ ¼ X : Y
jjXjjkYk

ð7Þ

The model performs the sorting convolution (SC) between the afferent sorting
filter and the cortical subplate in multiple developmental steps (s), each step
centering the filter on a different afferent position. For each selected afferent (i) at a
given cortical position [x, y], the model calculates the convolution when the
afferent is at its original position (xp= x, yp= y) and when it moves to one of eight
adjacent positions (xp= x+ p, yp= x+ p) within a radius of 1 pixel (p= [−1 0 1]),
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as shown in Eq. 8.

SCiðxp; yp; sÞ ¼ ASFðx; y; σc; σsx; σsyÞCPiðxp; yp; sÞ

xp ¼ x þ p

yp ¼ y þ p

p ¼ ½�1 0 1�
1 ≤ s≤ 10

8>>><
>>>:

ð8Þ

After performing all the convolutions, the afferent moves to the position that
generates the maximum convolution absolute value (xpMax, ypMax), as shown in
Eq. 9. In turn, the adjacent afferent that was at position (xpMax, ypMax) moves to
the original position of the selected afferent [x, y].

CPiðx; y; sþ 1Þ ¼ CPiðxpMax; ypMax; sÞ 1< s < slf ð9Þ
For example, if the cortical position with the largest convolution value is one

pixel to the right of the original position, the selected afferent moves to position
[x+ 1] and the afferent that was at position [x+ 1] moves to position [x]. The full
set of sorting convolutions is repeated for ten sequential developmental steps (s)
and the segregation remains nearly identical in subsequent steps29. At the last
developmental step (sl= 10), afferents with the same retinotopy and eye input are
neighbors within the cortical subplate.

Model stage 2. Development of cortical subplate (thalamic afferent sorting by
ON-OFF polarity). After the model finishes sorting the afferents by retinotopy and
eye input, it starts sorting them by ON-OFF polarity using a similar algorithm as
for eye input. The algorithm assigns values of 1 and −1 to afferents of ON and OFF
contrast polarity. Then, it calculates the convolution between the cortical subplate
(CP) and the afferent sorting filter (ASF). The afferent sorting filter for ONOFF
polarity is identical in shape and size to the afferent sorting filter for ocular
dominance. However, in species with different sampling density along azimuth and
elevation axes (e.g. macaques), the filters are elongated and the angles for ocular
dominance and ONOFF sorting are orthogonal. As for ocular dominance segre-
gation, the ONOFF sorting sequentially centers the filter at each afferent (Eq. 8)
and calculates convolutions at the afferent original position [xp= x, yp= y] and
adjacent positions [xp= x+ p, yp= y+ p]. The afferent moves to the position with
the largest convolution value (xpMax, ypMax, Eq. 9) that receives input from the
same eye.

At the last developmental step (sl= 10), all afferents from the cortical subplate
are organized in maps for retinotopy, eye dominance and ON-OFF polarity. In
these maps, afferents of the same type (i.e. same retinotopy, eye input and ON-OFF
polarity) are close together in the cortical subplate forming afferent clusters that are
very similar to those measured in the visual cortex of minks, ferrets, cats and
mice15,38,62,64. The model assumes that the similarity in stimulus preferences of
neighboring afferents help them drive common cortical targets more effectively
through synchronous activation19. In turn, their synchronous activation reinforces
their synaptic weights at neighboring cortical regions, making their cortical targets
also similar in retinotopy, eye dominance and ON-OFF polarity.

Model stage 3. Development of visual cortex (spread of thalamic axon
arbors). After finishing the afferent sorting, the model makes each afferent grow
into an immature cortex and start spreading its axonal arbor. In real brains, the size
of the axonal arbors varies across cell types (e.g. larger for Y than X thalamic
afferents in cats) and species (e.g. larger for X afferents in cats than Parvocellular
afferents in macaques). We assume that the most important factor in shaping
cortical topography is the average thalamic arbor size at each cortical location,
which is roughly constant throughout the cortex5. Therefore, in the model, the size
of the thalamic axonal arbor represents the average LGN arbor size in each species.

The thalamic axonal arbor (TAA) is modeled as a two-dimensional Gaussian
function (Eq. 10) with a standard deviation (σ) set to 3–4 cortical pixels in all
simulations of cat visual cortex reported in the paper (50 microns per cortical pixel,
σ: 150–200 microns). The axon arbor spreads from its central cortical position [xc,
yc] to other cortical pixels within the anteroposterior (AP) and mediolateral (ML)
cortical axes. The synaptic weight at a given cortical location (wi) is determined by
the distance of the afferent synapse from the axonal arbor center, the afferent type
(e.g. dominant or non-dominant within an afferent cluster), and the afferent
receptive field position. The synaptic weight is maximum at the axonal arbor center
and decays to zero at the arbor edges (radius: 10–15 cortical pixels, 500–750
microns). Among afferents at the same cortical location, the synaptic weight is
maximum for afferents with the dominant receptive-field polarity (e.g. OFF
afferent in OFF afferent cluster) and minimum for those with non-dominant
polarity (e.g. ON afferent in OFF afferent cluster).

TAAiðx; y; σÞ ¼ wiðx; yÞ
1

2πσ2
exp � ðAP� xcÞ2 þ ðML� ycÞ2

2σ2

� �
ð10Þ

As a consequence of the axon arbor spread, each cortical location receives
inputs from multiple afferents that compete for cortical space. This synaptic
competition is required to replicate the range of spatial-frequency preferences
experimentally measured at nearby locations in cat visual cortex. To simulate the
synaptic competition, the model calculates the dominant thalamic receptive field of
each cortical pixel, separately for each eye. It selects the central afferent of the
cortical pixel (c; the afferent reaching its cortical pixel first, before arbor spread).

Then, it calculates the weighted receptive field average of all neighboring afferents
converging at that pixel that have the same polarity as the central afferent
(DTRFk). The receptive field from each neighboring afferent is multiplied by the
weight of the axon arbor from the central afferent (wc) at the main cortical pixel [x, y]
of the neighboring afferent. The weighted receptive fields are then summed and the
sum normalized by its maximum value to obtain a matrix of dominant weights
associated with the central afferent (DWc). The weights are then applied to all
converging neighboring afferents with non-dominant polarity if their retinotopic
positions overlap a circular area centered on the dominant thalamic receptive field.
The diameter of this circular area equals the average cortical receptive field at that
cortical location, which is ~1 degree in all simulations of cat visual cortex. In cortical
regions with large receptive fields, the dominant receptive field is sharpened with a
power of 2 to allow afferents with non-dominant polarity to be more competitive.
When simulating cortical maps with ON and OFF afferent clusters and ON-OFF
competition, the final weight of each afferent (wfi) is calculated as 1 minus the weight
extracted from the weight matrix (Eq. 11). When simulating cortical maps without
ON and OFF afferent clusters and only retinotopic competition, the final weight is
extracted directly from the weight matrix.

DWcðrx; ryÞ ¼ ∑n
k¼1wcðx;yÞ ´ DTRFkðx;y;rx;ryÞ

maxð∑n
k¼1wcðx;yÞ ´ DTRFkðx;y;rx;ryÞÞ

wf iðx; y; rx; ryÞ ¼ 1�DWcðrx; ryÞ
ð11Þ

Through this synaptic competition, afferents with non-dominant polarity have
their weights decreased to zero if their receptive fields completely overlap the
dominant receptive field and increased as the receptive-field overlap decreases. The
synaptic competition between ON and OFF afferents has a correlate in real brains.
Neighboring afferents of the same contrast polarity have a competitive advantage
over afferents of different polarity because they are more frequently co-activated by
retinal waves or visual experience19,72. In contrast, neighboring afferents of
different contrast polarity are co-activated less frequently and only when they have
non-overlapping receptive fields that can be simultaneously stimulated (e.g. vertical
grating for ON and OFF afferents with horizontally displaced receptive fields). The
model assumes that the afferent groups most frequently co-activated are also most
effective at driving their common cortical targets and strengthening their
connections.

After the initial afferent weights are adjusted, the model simulates the
population cortical receptive field (CRF) at each cortical location [x, y] as the
weighted sum of the receptive fields from all thalamic afferents at that location
(Eq. 12).

CRFðx; yÞ ¼ ∑
n

k¼1
wk ´TRFkðx; yÞ ð12Þ

Then, the model measures the cortical response to different stimulus
orientations (CRθ) by performing a two-dimensional Fast Fourier transform (FFT)
of the cortical receptive field. The FFT space is divided into 16 equal orientation
sectors (11.25 degrees per sector) and the cortical response to each orientation (θ)
is calculated as the sum across all spatial frequencies (sf) within the preferred
orientation sector (Eq. 13). The model calculates the preferred orientation of the
cortical receptive field (CRFpθ) as the orientation that generates the maximum
response.

CRθðx; y; θÞ ¼ ∑
nsf

sf¼1
FFTðCRFðx; yÞÞ

CRFpθðx; yÞ ¼ maxðCRθðx; y; θÞÞ
ð13Þ

The model uses the values of orientation preference at each cortical location to
generate a primordial orientation map (POM) in the cortical subplate before birth
(Eq. 14).

POMðx; yÞ ¼ CRFpθðx; yÞ ð14Þ
In this primordial orientation map, most cortical locations receive input from

both eyes but with different eye dominance. Therefore, the model generates three
variations of the primordial orientation map, one for the contralateral eye, another
for the ipsilateral eye, and another for the dominant eye at each cortical location.
The primordial orientation maps from contralateral and ipsilateral eyes share many
features in common but are not accurately matched in orientation and ON-OFF
receptive field structure, consistently with experimental data48–50.

Model stage 3. Development of visual cortex (the mature visual map). In the
final developmental stage (i.e. after birth), the model adjusts the synaptic weights of
the thalamic afferents based on visual experience. If all orientations and both eyes
drive the cortex with equal strength, the model maximizes the cortical coverage of
all orientations within each afferent cluster. However, if there is a bias in visual
experience towards one eye and/or one orientation, the model makes the cortical
map also biased.

The model simulates monocular deprivation by shrinking the axon arbors of the
deprived eye. The axon arbor shrinkage is simulated by elevating the afferent
weight (w) to a power of 5 and then normalizing the weight to the original value.
As in real brains, monocular deprivation in the model has a pronounced effect on
the ocular dominance map but the orientation map from the non-deprived eye
remains normal. The model also simulates the effect of biased visual experience
towards a dominant orientation. It does this by adjusting the synaptic weights of
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the afferents at a percentage of randomly selected cortical locations (pcl) to shift
their preference towards the dominant orientation (pcl= 20% to generate the
subtle biases described in experimental observations73). For simplicity, the
description below assumes that both eyes receive equal stimulation from all
possible stimulus orientations during cortical development.

The model starts the maturation of the primordial orientation map by
maximizing the coverage of all orientations within each afferent cluster. This
maximization is important to allow each afferent type to signal the maximum
number of orientations possible (e.g. allow OFF contralateral-eye afferents to signal
all possible orientations of a dark stimulus projected on the contralateral retina at
position [rx, ry]). To achieve this maximization, the model convolves the
primordial orientation map of each afferent cluster (POMc) with four orientation-
coverage filters (OCF). The orientation-coverage filter is mathematically the same
as the afferent sorting filter (Eq. 7) but is 25% smaller. The surround of the
orientation-coverage filter is also elongated (ratio between longest and shortest
axes= 2), and its angle can take four different values (0, 45, 90, 135 degrees). To
perform the convolution, the model first transforms the patch of the primordial
orientation map into complex space. Then, it convolves the real components of the
patch, cos (POMc), with four orientation-coverage filters (α= 0, 45, 90 or 135
degrees). Then, for each convolution with a real component, it performs another
convolution with the imaginary map components, sin (POMc), using orientation-
coverage filters with all angles except the one used for the real component (e.g.
β= 45, 90 and 135 degrees for α= 0 degrees). The 12 convolutions generate 12
different cortical patches. The model measures the orientation coverage (cov) in
each of the 12 patches and selects the one with maximum orientation coverage
(maxcov), which is the patch that has its pinwheel center closest to the center of the
afferent cluster (Eq. 15).

POMcðx; y; covÞ ¼ arctan cosðPOMcðx;yÞÞOCFðx;y;αÞ
sinðPOMc ðx;yÞÞOCFðx;y;βÞ

�
α ¼ ½0; 45; 90; 135�

β ¼ ½αþ 45; αþ 90; αþ 135�

�

OMðx; yÞ ¼ POMcðx; y;maxcovÞ
ð15Þ

This maximization process allows each afferent cluster to cover a complete
orientation cycle and makes the orientation map (OM) periodic. In real brains, this
maximization process is likely mediated by visual experience, which co-activates
afferents with multiple stimulus orientations at each position of visual space over the
time period following eye opening that is known as the critical period. Visual stimuli
should co-activate adjacent afferents more frequently than distant afferents because
adjacent afferents have more similar stimulus preferences (i.e. similar retinotopy, eye
input and ONOFF polarity). In turn, because adjacent afferents make more
connections with common cortical targets, their co-activation should help drive their
targets more effectively and reinforce their synaptic weights. Afferents with the same
retinotopy (i.e. overlapping receptive fields) should be more strongly co-activated
than afferents with different retinotopy (i.e. non-overlapping receptive fields).
Therefore, through afferent co-activation, species with a large number of afferents
with overlapping receptive fields should devote large cortical areas to represent the
same retinotopy (i.e. large iso-retinotopic cortical domains). Conversely, species with
a limited number of afferents with overlapping receptive fields can only devote
limited areas of cortex to represent the same retinotopy. The model makes cortices
with large cortical iso-retinotopy domains to accommodate multiple orientation
cycles per visual point. Conversely, it makes cortices with small cortical iso-retinotopy
domains to accommodate fewer orientation cycles per visual point (e.g. tree shrews53)
or distribute orientation preference nearly randomly (e.g. rodents15). The model also
makes the shape of orientation domains to be closely associated with the shape of the
iso-retinotopic domains or afferent clusters. For example, large elongated iso-
retinotopic domains generate large elongated orientation domains and the longest
axes of both domains are orthogonal, consistently with experimental measurements
in tree shrew and cat area V13,74.

In real brains, orientation maps and cortical receptive fields mature at the same
time. To simplify and speed up the computation process, the model matures the
orientation map first and then uses this map to guide the maturation of the cortical
receptive fields from both eyes. At each cortical location, the model starts by adjusting
the synaptic weights of the afferents with non-dominant-polarity (e.g. ON afferents in
an OFF afferent cluster) until the preferred orientation of their receptive fields
matches the preferred orientation of the mature cortical orientation map at that
location. This synaptic adjustment is done by convolving the receptive field at each
cortical location with the same receptive field rotated to match the orientation of the
map and then using the values of this convolution to adjust the synaptic weights of the
afferents. This process simulates the synaptic co-activation and reinforcement of
afferents with a population receptive fields matching the dominant orientation at each
cortical region. The model also linearly decreases the weights of the afferents with
non-dominant-polarity as a function of their cortical distance from the border of the
afferent cluster and pinwheel centers. The weights of non-dominant polarity afferents
at the border of an afferent cluster are multiplied by one, those at pinwheel centers by
zero and those in between pinwheel centers and afferent-cluster borders by 0.5. If the
changes in synaptic weight of non-dominant polarity afferents are not enough to
match the orientation preference of the mature cortical map, the model adjusts the
synaptic weights of the afferents with dominant polarity. After the first iteration of
synaptic adjustments is complete, the model generates the orientation maps for the
contralateral and ipsilateral eyes by extracting the orientation preference of the cortical

receptive fields, as previously described. At this developmental stage, 95% of the
cortical locations from contralateral- and ipsilateral-eye maps have the same
orientation preference. In a second and last iteration of synaptic adjustments, the
model minimizes the binocular differences in orientation preference, spatial frequency
and dominant polarity at each cortical location of the visual maps from the two eyes.

Measurements of stimulus topography in the mature cortical map. The mature
cortical map generated by the model contains a combined representation of
multiple stimulus parameters such as spatial position, eye input, dark-light polarity,
orientation preference, orientation selectivity, spatial resolution, low-pass filtering,
and different receptive field structures. The model generates multiple maps for
individual or combined stimulus properties, population receptive fields, afferent
axon arbors, and correlations of neuronal stimulus preferences across the cortex.
All maps are interpolated four times to minimize correlation noise. In the orien-
tation maps, the interpolations are done separately for real and imaginary map
components and the components are then combined. The cortical retinotopic map
(RM) describes the central position of the population receptive field at each cortical
location for each eye or both eyes (Eq. 16). The ocular dominance map (ODM)
describes the difference between the cortical receptive fields from the contralateral
(CRFC) and ipsilateral (CRFI) eyes. The contrast-polarity map (CPM) describes
the difference between ON dominated (CRFON) and OFF dominated (CRFOFF)
cortical receptive fields. The orientation map (OM) describes the receptive-field
preferred orientation at each cortical region (CRFpθ). The orientation-selectivity
map (OSM) describes the average orientation tuning of each cortical region
measured as circular variance (CRFcv). The spatial-frequency map (SFM)
describes the receptive-field preferred spatial-frequency (CRFsf) at each cortical
location (i.e. maximum spatial-frequency value in the FFT measured at the pre-
ferred orientation).

RMðx; yÞ ¼ CRFðx; yÞ
ODMðx; yÞ ¼ CRFCðx; yÞ � CRFIðx; yÞ
CPMðx; yÞ ¼ CRFONðx; yÞ � CRFOFFðx; yÞ
OMðx; yÞ ¼ CRFpθðx; yÞ

OSMðx; yÞ ¼ CRFcvðx; yÞ
SFMðx; yÞ ¼ CRFsfðx; yÞ

ð16Þ

The model also generates an orientation homogeneity map (OHM) that
describes the local orientation gradients measured with a local homogeneity index
(LHI), as described in Eq. 17. The LHI of each cortical location75,76 is calculated
with an exponential function that includes all preferred orientations (θj) and
distances (dj) of regions surrounding the selected cortical location within a circular
radius (σ) of 100 microns. The function has a normalization factor (k) that makes
the maximum LHI value equal to one (Eq. 17). LHI reaches the maximum value of
one in cortical regions with complete orientation homogeneity and the minimum
value of zero in cortical regions with the lowest orientation homogeneity. The
model also calculates the orientation tuning associated with the cortical receptive
field (CRFcv) as the circular variance of the cortical responses (CRθ) to the
different stimulus orientations (o), as shown in Eq. 17.

OHMðx; yÞ ¼ LHIðx; yÞ

LHI ¼ k∑e�
d2
j

2σ2 e2iθj

CRFcv ¼ 1� ∑16
o¼1CRθoe

i2θ

∑16
o¼1CRθo

			 			
ð17Þ

The model also outputs paired correlations for different combinations of
stimulus parameters such as orientation, circular variance, spatial resolution, ocular
dominance, ON-OFF dominance, retinotopy, and low-pass spatial frequency index.
The spatial resolution is defined as the highest spatial frequency that generates 50%
of the maximum response (SF50). The low-pass spatial frequency index (LPI) is
defined as the ratio between the response at zero spatial frequency and the
maximum response (i.e. one for low-pass filters and zero for band-pass filters). The
model generates cortical maps, receptive fields and stimulus response tuning both
under binocular or monocular stimulation. To simulate monocular stimulation, the
model multiplies the cortical responses by an ocular dominance index. The ocular
dominance index is calculated as the afferent average weight from the dominant
eye divided by the afferent average weight from the non-dominant eye.

Quantification of model error in simulations of species-specific cortical maps.
We quantified the model error at generating species-specific cortical maps for
macaque, cat and tree shrew by calculating the difference between simulated and
experimentally-measured maps of the same species. For comparison, a control
error was calculated as the difference between experimentally-measured maps from
two species, choosing the two species with most similar brain sizes (macaque minus
cat for map simulations of macaque and cat; cat minus tree shrew for map
simulations of tree shrew). The errors for all properties except pattern similarity
and gradient orthogonality were measured by randomly selecting cortical patches
of 2 × 2 millimeters and then measuring pinwheel density (in pinwheels per square
millimeter), same-sign and different-sign pinwheel distance (in microns), and
distance between the peak or valley of orientation domains (in microns). The error
measurements for pinwheel distance were obtained from 100 cortical patches and
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those from orientation-domain distance with just 40 patches. The errors in pattern
similarity were also measured by randomly selecting 40 cortical patches of 2 × 2
millimeters and then calculating one minus the correlation between the Fast
Fourier Transform of the two cortical patches under comparison. The error in
pattern similarity is zero if the two patches are identical and one if the correlation
of the Fast Fourier Transforms is zero. The error in gradient orthogonality was
measured by calculating the frequency of different angle intersections between the
map gradients for orientation preference and ocular dominance (only in macaque
and cat because tree shrews do not have ocular dominance bands along the cortical
surface). The angles were measured between iso-orientation lines plotted for 10
different orientations and ocular dominance bands plotted as contour plots at 25,
50 and 75% of the absolute maximum value. The gradient orthogonality was
measured as the ratio between the frequencies of 90 and 0 degree angles (90 angle
frequency divided by 0 angle frequency) and the ratio subtracted from a value of 6
for macaque and 5 for cat. In the measurements of gradient orthogonality, the
model error was obtained from cortical maps simulated with afferent sorting filters
matched in size to the iso-retinotopic domain of each species (i.e. the diameter of
the filter center was equal to the average width of the ocular dominance bands)
whereas the control error was obtained by using afferent sorting filters 50% smaller
than the iso-retinotopic domain.

Quantification of model simulations for correlated map gradients. We quan-
tified the model performance at replicating correlated map gradients as follows. We
simulated 1000 recording tracks and measured all possible correlations across all
cortical pixels within the track between pairs of stimulus-map dimensions. The
stimulus-map dimensions were orientation selectivity, spatial resolution, low-pass
index, and local orientation homogeneity. The simulated recording tracks sampled
the cortical map at 40 cortical pixels per track. For statistical comparison, we run the
simulations with and without sorting the afferents by eye input and ON-OFF polarity.
For each simulation type, we counted the tracks that passed specific criteria of cor-
relation strength, sign and dimension range. We counted tracks that had 3–5 cor-
relations with a strength equal or larger than 0.15, 0.2, 0.3, 0.4 or 0.5 and tracks that
also had correlations with the same sign as those measured experimentally. We also
counted tracks that had a value range for each correlated stimulus dimension equal or
larger than 0.2 times the range experimentally measured. We compared the counts
obtained in the two simulation types with a Chi squared test.

Surgical procedures and data collection in electrophysiological recordings.
We tested several main predictions of the computational model with electro-
physiological recordings from cat primary visual cortex. Adult male cats (n= 16,
3–4 Kg, 0.8–1.2 years old) were tranquilized with an intramuscular injection of
acepromazine (0.2 mg/kg) and anesthetized with an intramuscular injection of
ketamine (10 mg/kg). Continuous infusions of propofol (5–6mg · kg−1 · h− 1),
sufentanil (10–20 ng · kg−1 · h− 1), vecuronium bromide (0.2 mg · kg−1 · h− 1),
and saline (1–3ml/h) were administered to maintain anesthesia and eliminate eye
movements during the recordings. All vital signs were carefully monitored and
maintained within normal physiological limits. Silicon probes with 32 linearly-
arranged recording sites (100-micron inter-electrode distance) were inserted tan-
gentially into the primary visual cortex to maximize the number of recordings
sampling cortical layer 4. We performed combined measurements of orientation and
spatial frequency tuning in 9 cats and measurements of ON/OFF receptive field
organization in 16 cats (some of the data for ON/OFF receptive field analysis was
collected over many years and included in previous publications). All surgical and
experimental procedures were performed in accordance with the guidelines of the
U.S. Department of Agriculture and were approved by the Institutional Animal Care
and Use Committee at the State University of New York, State College of Optometry.

Visual stimuli and data analysis in electrophysiological recordings. Visual
stimuli were generated with Matlab Psychtoolbox (Matlab versions: 2010 to 2014;
Psychtoolbox versions: 3.0.9 to 3.0.11) and displayed on a CRT monitor in early
experiments (refresh rate= 120Hz, mean luminance= 61 cd/m2) and a ViewPixx
monitor in later experiments (refresh rate= 120Hz, mean luminance= 112 cd/m2).
Cortical orientation and spatial frequency tuning were measured with a sequence of
flashed sinusoidal gratings that had different orientations, phases and spatial fre-
quencies. The gratings included all parameter combinations of 8 equally spaced
orientations, 4 equally spaced phases, and 10-11 spatial frequencies. The spatial fre-
quencies ranged from 0.03 to 1 cycles per degree in earlier experiments and included
also 2 cycles per degree in later experiments. Each grating combination of orientation,
spatial frequency and phase was presented 20 times in random order under mono-
cular stimulation, first through the contralateral eye and then through the ipsilateral
eye. The orientation/direction tuning was also measured with light and dark bars
presented on a mid-gray background sweeping at 8 different orientations and 16
directions of movement. Cortical receptive fields were mapped with sparse noise
stimuli made of white squares on black backgrounds (to measure ON receptive field
subregions) or black squares on white backgrounds (to measure OFF subregions). The
square stimuli were presented for 33ms, were 2.8 degrees/side in size, and sampled
visual space at positions separated by 1.4 degrees.

Responses to flashed sinusoidal gratings were measured within a temporal
integration window of 200 ms, starting 20 ms after the stimulus onset. All responses

were averaged across grating phases. The orientation tuning was measured from
responses to different orientations at the preferred spatial frequency of the cell
group sampled within a recording site of the multielectrode array. The orientation
tuning curve was fit with a von Mises function and the fit used to measure the
preferred orientation and orientation tuning of cell group measured with each
cortical recording site. The orientation tuning was measured as the circular
variance (CV) of the responses to all the orientations, which ranges from one
(broadest tuning) to zero (narrowest tuning). We also measured the orientation
selectivity index as 1 – (NP / PO), where PO is the response to the preferred
orientation and NPO the response to the non-preferred orientation (orthogonal to
the preferred one). The orientation selectivity is 0 when the responses to the
preferred and non-preferred orientations are equal and 1 when the response to the
non-preferred orientation is zero. The orientation preferences from multiple
contiguous recording sites within the multielectrode array were used to compute
the local homogeneity index (LHI)75,76. LHI measurements were calculated within
a 300 microns linear distance from the reference recording site (i.e. the 6 closest
electrodes in the linear multielectrode array).

The spatial frequency tuning was measured on a logarithmic scale for spatial
frequency and fit with a difference-of-Gaussians function. The fits were then used
to extract the low-pass index (LPI) and spatial resolution of the function. The LPI
was defined as the ratio between the response to zero spatial frequency (y-
intercept) and the maximum response. The spatial resolution was defined as the
highest spatial frequency that generated half of the maximum response (SF50). The
range of spatial resolution varied greatly across different penetrations and animals
due to variations in the visual eccentricity of the recordings. Therefore, to make
comparisons of SF50 across animals and multielectrode penetrations, we converted
each SF50 to a relative SF50 (SF50r) by dividing each SF50 value by the average
SF50 across the simultaneously recorded neurons. Only recordings with a
reasonable signal to noise ratio (snr ≥ 3.5) were included in the analysis of
orientation and spatial frequency tuning. The snr was computed as the ratio
between the maximum response and the baseline firing rate. The baseline firing
rate was defined as the average firing rate integrated within the first 20 msec and
last 40 msec of the peri-stimulus time histogram.

ON and OFF receptive fields were calculated in time windows of 10 ms
following the stimulus onset and normalized by their maximum response. They
were subtracted from each other at each time window to generate a sequence of
ON-OFF receptive field subtractions spanning 24 temporal frames, from 0–10 ms
to 230–240 ms. To reduce receptive-field noise, we summed the absolute value of
the receptive field across time, normalized the sum by the maximum response, and
set any response below 20% of the maximum to zero. To obtain accurate
correlation values between ON-OFF receptive field dominance and orientation
tuning, we selected the receptive fields and orientation measures with highest signal
to noise (RFsnr > 12, ORsnr > 6, ORresp > 10 spikes). RFsnr was calculated as the
ratio between the maximum value within the receptive field and the average of all
values below 80% of the maximum. ORsnr was calculated as the ratio between the
maximum number of spikes within a 50 msec bin and the average across all bins
(16 directions x 35 bins, 1.75 sec per bar sweep). ORresp was calculated as the
maximum number of spikes at the preferred orientation within a 50 msec bin. We
also selected receptive fields with pronounced ON-OFF segregation that matched
the preferred orientation measured with moving bars (ORdiff < 30 degrees). ORdiff
was calculated as the difference between the orientation preference measured with
moving bars and the predicted from the ON-OFF structure of the receptive field
(calculated with a fast Fourier transform, FFT). The ON-OFF response balance was
measured as 1- abs (ON-OFF) / (ON+OFF), where ON and OFF are respectively
the maximum ON and OFF values within the receptive field. When ON and OFF
responses are identical in strength, the ON-OFF balance reaches its maximum
value of one. When the receptive field is completely dominated by ON or OFF, the
ON-OFF balance is zero. We used four different approaches to calculate the ON-
OFF response balance: mean, maximum, mean average, and maximum average.
The mean ON-OFF balance is the mean of all values of ON-OFF balance measured
at all the time windows of the receptive field (illustrated in Fig. 3e). The maximum
ON-OFF balance is the maximum value across all time windows. The mean-
average ON-OFF balance is the ON-OFF balance calculated after averaging the
receptive fields from all time windows and then taking the ON mean and OFF
mean from the receptive field average instead of the ON and OFF maximum
values. The maximum-average ON-OFF balance is the ON-OFF balance calculated
by averaging the receptive fields from all different time windows and then taking
the ON and OFF maximum values from the receptive field average. All four
approaches revealed a significant positive correlation between ON-OFF response
balance and orientation tuning (r= 0.3596 for mean ON-OFF balance, r= 0.2886
for maximum ON-OFF balance, r= 0.3825 for maximum-average ON-OFF
balance, and r= 0.3226 for mean-average ON-OFF balance, p < 0.00001 for all).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the electrophysiological measurements and computer simulations from this study are
available from source data provided with this paper, from a repository in Zenodo40, and
upon request from the correspondence author (jalonso@sunyopt.edu).
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Code to run customized simulations and generate the figures and tables reported in this
study are available from a repository in Zenodo40, and upon request from the
correspondence author (jalonso@sunyopt.edu).
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