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1  |   OVERVIEW OF CHROMOSOME 
DYNAMICS DURING MEIOSIS

The meiotic cell cycle consists of a single DNA replication 
followed by two rounds of chromosome segregation (meiosis 
I and meiosis II), which halves the chromosome number to 
ultimately produce haploid gametes (Figure 1a). Remarkably, 
the structure and behavior of the chromosomes during meio-
sis are markedly different to those in mitosis. During meiotic 
prophase I, sister chromatids are organized into protein-
aceous structures, termed axial element (AE) or chromosome 
axis, on which the synaptonemal complex (SC) is assembled 
(Figure 1b; Zickler & Kleckner, 1999). Homologous chromo-
somes (homologues) then undergo pairing (Barzel & Kupiec, 
2008; Bhalla & Dernburg, 2008; Gerton & Hawley, 2005), 
synapsis (Cahoon & Hawley, 2016; Page & Hawley, 2004) 
and meiotic recombination yielding crossovers, a process that 
produces physical linkages between homologues called chi-
asmata (Figure 1b,c; Baudat, Imai, & Massy, 2013; Handel & 
Schimenti, 2010; Keeney, Lange, & Mohibullah, 2014; Lam 
& Keeney, 2015; Zickler & Kleckner, 2015). A crucial point 
concerning meiotic recombination is that a specific active 

mechanism confers dominance on homologues for recombi-
nation to suppress sister chromatid exchange (SCE; Zickler & 
Kleckner, 1999). During these processes, the chromosomes 
undergo dynamic movement to facilitate homologue pairing 
and synapsis, which is driven by telomeres attached to the 
nuclear membrane (Hiraoka & Dernburg, 2009; Koszul & 
Kleckner, 2009; Shibuya & Watanabe, 2014). Consequently, 
those processes yield bivalent chromosomes, whereby two 
homologous chromosomes are physically connected by 
chiasmata. Chiasmata play an essential role in positioning 
homologous chromosomes so that they are captured by mi-
crotubules from opposite poles during metaphase I (Sakuno, 
Tanaka, Hauf, & Watanabe, 2011). At anaphase I, homolo-
gous chromosomes are segregated toward opposite poles of 
the spindle by dissolution of chiasmata (Buonomo, Clyne, 
Fuchs, Loidl, & Uhlmann, 2000; Kudo, Wassmann, Anger, 
Schuh, & Wirth, 2006). Thus, in contrast to mitosis, meio-
sis I homologous chromosomes rather than sister chromatids 
are segregated into opposite directions to reduce the chro-
mosome number by half (Watanabe, 2012). To accomplish 
this process in meiosis I, sister kinetochores face the same 
direction so that sister chromatids are co‐segregated into the 
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Abstract
Cohesin is an evolutionary conserved multi‐protein complex that plays a pivotal role 
in chromosome dynamics. It plays a role both in sister chromatid cohesion and in es-
tablishing higher order chromosome architecture, in somatic and germ cells. Notably, 
the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, 
distinct types of cohesin complexes are produced by altering the combination of meio-
sis‐specific subunits. The meiosis‐specific subunits endow the cohesin complex with 
specific functions for numerous meiosis‐associated chromosomal events, such as 
chromosome axis formation, homologue association, meiotic recombination and cen-
tromeric cohesion for sister kinetochore geometry. This review mainly focuses on the 
cohesin complex in mammalian meiosis, pointing out the differences in its roles from 
those in mitosis. Further, common and divergent aspects of the meiosis‐specific co-
hesin complex between mammals and other organisms are discussed.

www.wileyonlinelibrary.com/journal/gtc
mailto:﻿￼
http://orcid.org/0000-0002-7515-1511
mailto:ishiguro@kumamoto-u.ac.jp


      |  7Genes to CellsISHIGURO

same daughter cell, a process named monopolar kinetochore 
orientation. In meiosis II, pairs of sister chromatids are seg-
regated at anaphase II, which employs the same mechanisms 
as mitosis. As described later, cohesin plays crucial roles in 
all of these sequential chromosomal events during meiosis.

2  |   COHESIN COMPLEXES IN 
MITOSIS

When the chromosomes are replicated in the S‐phase, sister 
chromatids are held together by a mechanism called sister 

chromatid cohesion, which enables accurate chromosome 
segregation in both mitosis and meiosis. In mammalian so-
matic cells, sister chromatid cohesion is mediated by cohesin, 
an evolutionary conserved multi‐protein complex. Cohesin 
contains four core subunits: two subunits of the structural 
maintenance of chromosomes (SMC) protein family, SMC1α 
and SMC3; the kleisin family protein RAD21/SCC1; and 
either one of two accessory subunits, SA1/STAG1 or SA2/
STAG2 (Figure 2a,c; Losada & Hirano, 2005; Nasmyth & 
Haering, 2009). Other accessory proteins, PDS5A/PDS5B 
(Losada, Yokochi, & Hirano, 2005; Shintomi & Hirano, 
2009), WAPL (Gandhi, Gillespie, & Hirano, 2006; Kueng, 

F I G U R E  1   Schematic of chromosome dynamics during meiosis. (a) Schematics of Meiosis I and Meiosis II. In meiosis I, homologous 
chromosomes, rather than sister chromatids, are segregated in opposite directions. At anaphase I, homologous chromosomes are segregated toward 
opposite poles of the spindle by the dissolution of chiasmata. In meiosis II, sister chromatids are segregated. (b) Cohesin plays crucial roles in 
meiosis‐specific chromosomal events during meiotic prophase I. Meiotic prophase I is prolonged compared to canonical G2 phase of cell cycle 
and is divided into five substages according to chromosome morphology. During meiotic prophase I, sister chromatids are organized into an axial 
element (AE). Cohesin loads onto chromatin during leptotene. Homologous chromosomes undergo pairing and synapsis through leptotene to 
zygotene. The synaptonemal complex (SC) is fully assembled between homologous chromosomes at pachytene. Meiotic recombination generates 
crossover between homologous chromosomes, yielding physical linkages called chiasmata. At diplotene, the SC is disassembled. Although 
cohesin largely dissociates from the chromosome arm after late pachytene, it persists around centromeres until metaphase II. (c) Schematic of the 
synaptonemal complex (SC). When the SC is assembled between homologous chromosomes, the AE is called lateral element (LE). Transverse 
filaments link two LEs. Cohesin locates at the most inner side of the LE
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Hegemann, Peters, Lipp, & Schleiffer, 2006) and SORORIN 
(Nishiyama, Ladurner, Schmitz, Kreidl, & Schleiffer, 2010; 
Nishiyama, Sykora, Huis in ‘t Veld, Mechtler, & Peters, 
2013; Schmitz, Watrin, Lenart, Mechtler, & Peters, 2007) 
are weakly associated with the cohesin complex and regulate 
the dynamic interaction between cohesin and the chromatin 

(Figure 2b). Although SORORIN‐PDS5B interaction stabi-
lizes cohesin loading onto the chromatin, WAPL facilitates 
dissociation of cohesin by competing with SORORIN for 
the binding to PDS5B (Figure 2e; Nishiyama et al., 2010). 
Other components such as SCC2/SCC4 (NIPBL/MAU2) 
complex act for cohesion loading during G1 phase (Ciosk, 

F I G U R E  2   The cohesin complex in mitosis and meiosis. (a) Sister chromatids (indicated by blue bars) are held together by cohesin 
complexes in mitosis and meiosis. Cohesin contains four core subunits, SMC1α, SMC3, the kleisin family protein RAD21/SCC1 and SA1 or SA2. 
The cohesin complex in meiosis differs from that in mitosis. In mammalian germ cells, there are two meiosis‐specific kleisin subunits, REC8 and 
RAD21L. SMC1α and SA1/SA2 are substituted by the meiosis‐specific cohesin subunits, SMC1β and SA3, respectively. (b) PDS5A/PDS5B, 
WAPL and SORORIN are associated with the cohesin complex and regulate the dynamic interaction of cohesin with chromatin. SORORIN‐PDS5B 
interaction stabilizes cohesin loading onto the chromatin (lower). WAPL facilitates cohesin removal by competing with SORORIN for PDS5 
binding (upper). (c) Mitotic and meiotic cohesin subunits are widely conserved throughout diverse species, as listed. (d) When sister chromatids 
are segregated, the kleisin subunit of the cohesin complex is cleaved by separase, dissolving sister chromatid cohesion. (e) In the prophase pathway, 
WAPL facilitates dissociation of cohesin by cleavage‐independent mechanism
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Shirayama, Shevchenko, Tanaka, & Toth, 2000; Watrin, 
Schleiffer, Tanaka, Eisenhaber, & Nasmyth, 2006). Eco1 
homologues, ESCO1 and ESCO2, acetylate SMC3, which 
acts for the establishment of cohesion and regulates cohesin 
dynamics on the chromatin (Alomer, Silva, Chen, Piekarz, & 
McDonald, 2017; Ivanov, Schleiffer, Eisenhaber, Mechtler, 
& Haering, 2002; Kenna, & Skibbens, 2003; Minamino, 
Ishibashi, Nakato, Akiyama, & Tanaka, 2015; Skibbens, 
Corson, Koshland, & Hieter, 1999; Zhang, Shi, Li, Kim, & 
Jia, 2008). HDAC8 deacetylates SMC3 (Deardorff, Bando, 
Nakato, Watrin, & Itoh, 2012). It is proposed that the cohesin 
complex forms a ring structure that encircles sister chroma-
tids during DNA replication. Replicated DNA strands are 
topologically embraced by SMC1α and SMC3 heterodimers 
through their coiled‐coil stretches, whose ends are closed by 
the kleisin RAD21/SCC1. Sister chromatid cohesion per-
sists until anaphase when sister chromatids are segregated 
after the kleisin subunit of the cohesin complex is cleaved 
by the protease separase (Figure 2d). This cohesion is im-
portant, not only for pairwise alignment of the chromosomes 
on the mitotic spindle, but also for the generation of tension 
across the centromeres, which ensures bipolar attachment 
of the chromosomes during mitosis. Moreover, in somatic 
cells, the cohesin complex participates in transcriptional 
regulation by collaborating with an insulator‐binding factor, 
CTCF (Wendt & Peters, 2009; Wendt, Yoshida, Itoh, Bando, 
& Koch, 2008), and a transcriptional coactivator, Mediator 
(Kagey, Newman, Bilodeau, Zhan, & Orlando, 2010). CTCF 
establishes chromatin loops by cooperating with cohesin and 
forms topologically associated domains (TAD) in interphase 
nuclei (Gassler, Brandao, Imakaev, Flyamer, & Ladstatter, 
2017; Ghirlando & Felsenfeld, 2016; Wendt, 2017; Wutz, 
Varnai, Nagasaka, Cisneros, & Stocsits, 2017; Zuin, Dixon, 
Reijden, Ye, & Kolovos, 2014). Accordingly, it has been 
known that mutations in cohesin‐related genes lead to human 
developmental disorders, called cohesinopathies, caused by 
transcriptional dysregulation rather than defect in sister chro-
matid cohesion (Barbero, 2013; Horsfield, Print, & Monnich, 
2012). It is presently unknown whether the meiosis‐specific 
cohesin plays a role in the transcription during meiosis.

3  |   COHESIN COMPLEXES IN 
MEIOSIS

In meiosis, the cohesin complex is crucial, not only for sis-
ter chromatid cohesion but also for numerous meiosis‐specific 
chromosomal events. Notably, the cohesin complex in meiosis 
differs from that in mitosis (Figure 2a,c). In mammalian germ 
cells, there are two meiosis‐specific kleisin subunits, REC8 
(Eijpe, Offenberg, Jessberger, Revenkova, & Heyting, 2003; 
Lee, Iwai, Yokota, & Yamashita, 2003; Parisi, McKay, Molnar, 
Thompson, & Spek, 1999) and RAD21L (Gutierrez‐Caballero, 

Herran, Sanchez‐Martin, Suja, & Barbero, 2011; Ishiguro, 
Kim, Fujiyama‐Nakamura, Kato, & Watanabe, 2011; Lee & 
Hirano, 2011), in addition to somatic kleisin subunit, RAD21/
SCC1 (Parra, Viera, Gomez, Page, & Benavente, 2004). 
Furthermore, in mammalian germ cells, SMC1α and SA1/SA2 
are largely replaced by other meiosis‐specific cohesin subu-
nits, SMC1β (Revenkova, Eijpe, Heyting, Gross, & Jessberger, 
2001) and SA3/STAG3 (Bayes, Prieto, Noguchi, Barbero, & 
Perez Jurado, 2001; Prieto, Suja, Pezzi, Kremer, & Martinez, 
2001), respectively. Although it has been shown that a minor 
fraction of the meiotic cohesin complex contains the somatic 
subunits SA2 and/or SMC1α in spermatocytes (Prieto, Pezzi, 
Buesa, Kremer, & Barthelemy, 2002; Revenkova, Eijpe, 
Heyting, Hodges, & Hunt, 2004), their precise role during 
meiosis has yet to be fully clarified. Transfection studies in so-
matic cells suggest that SA3, but not SA1/SA2, interacts with 
REC8 to import it into the nuclei (Wolf, Cuba Ramos, Kenzel, 
Neumann, & Stemmann, 2018), suggesting a specific role of 
SA3 subunit in the assembly of meiotic cohesin. Although 
SMC1α can substitute SMC1β in the AE formation and homo-
logue synapsis, SMC1β plays an essential role in telomere 
integrity for chromosome dynamics during meiosis (Biswas, 
Wetzker, Lange, Christodoulou, & Seifert, 2013; Biswas, 
Stevense, & Jessberger, 2018). Since genetic disruption of ei-
ther one of the meiosis‐specific cohesin subunits leads to in-
fertility with different phenotypes of chromosome structure, 
each of them plays an essential role in chromosome dynamics 
during meiosis (Bannister, Reinholdt, Munroe, & Schimenti, 
2004; Fukuda, Fukuda, Agostinho, Hernandez‐Hernandez, & 
Kouznetsova, 2014; Herran, Gutierrez‐Caballero, Sanchez‐
Martin, Hernandez, & Viera, 2011; Hodges, Revenkova, 
Jessberger, Hassold, & Hunt, 2005; Hopkins, Hwang, Jacob, 
Sapp, & Bedigian, 2014; Ishiguro, Kim, Shibuya, Hernandez‐
Hernandez, & Suzuki, 2014; Llano, Gomez, Garcia‐Tunon, 
Sanchez‐Martin, & Caburet, 2014; Revenkova et al., 2004; 
Winters, McNicoll, & Jessberger, 2014; Xu, Beasley, 
Warren, Horst, & McKay, 2005). The accessory proteins, 
PDS5B (Fukuda & Hoog, 2010), WAPL (Adelfalk, Janschek, 
Revenkova, Blei, & Liebe, 2009; Brieno‐Enriquez, Moak, 
Toledo, Filter, & Gray, 2016; Zhang, Hakansson, Kuroda, & 
Yuan, 2008) and SORORIN (Gomez, Felipe‐Medina, Ruiz‐
Torres, Berenguer, & Viera, 2016; Jordan, Eyster, Chen, 
Pezza, & Rankin, 2017), also appear on chromosomes dur-
ing meiotic prophase I and regulate the stability of the binding 
of cohesin on the chromatin. Thus, in addition to a canonical 
somatic cell‐type cohesin complex, different combinations of 
subunits generate distinct cohesin complexes during meiosis, 
which provide specialized functions for generating meiotic 
chromosomes. As described below, meiosis‐specific cohesin 
complexes are crucial not only for sister chromatid cohesion 
but also for the formation of the AEs of the chromosomes and 
for the SC assembly during prophase I (Cahoon & Hawley, 
2016; Page & Hawley, 2004; Zickler & Kleckner, 1999).
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4  |   KLEISIN SUBUNITS 
DETERMINE THE 
SPATIOTEMPORAL DISTRIBUTION 
PATTERNS OF DISTINCT 
COHESIN COMPLEXES ON THE 
CHROMOSOMES DURING MEIOSIS

Three different types of cohesin complexes exist in mam-
malian meiotic cells that contain one of the kleisin subunits 
REC8, RAD21L or RAD21 (Figure 2a). Given that other 
subunits such as SA3, SMC1β and SMC3 are commonly 
shared in most of these cohesin complexes (Ishiguro et al., 
2011; Lee & Hirano, 2011), it is considered that the kleisin 
subunits produce different specificities of cohesin complexes 
during meiosis.

In meiotic prophase, REC8‐type cohesin localizes along 
the chromosomes before meiotic DNA replication and per-
sists throughout the first meiotic division, at least at the 
centromeres, until metaphase II (Figure 3a). In contrast, the 

RAD21L‐type cohesin mostly appears on the chromosomes 
after DNA replication, which culminates at the leptotene/
zygotene stage. Then, RAD21L‐type cohesin mostly dissoci-
ates from the chromosomes after late pachytene (Figure 3a), 
which contrasts to the persistent localization of REC8‐type 
cohesion until meiosis II (Ishiguro et al., 2014; Lee & Hirano, 
2011). Cohesin removal at later stages of meiotic prophase I 
is mediated by WAPL (Brieno‐Enriquez et al., 2016), whose 
mechanisms are similar to the prophase pathway in mito-
sis (Figure 2e; Buheitel & Stemmann, 2013; Gandhi et al., 
2006; Hauf, Roitinger, Koch, Dittrich, & Mechtler, 2005; 
Kueng et al., 2006; Sumara, Vorlaufer, Stukenberg, Kelm, 
& Redemann, 2002; Waizenegger, Hauf, Meinke, & Peters, 
2000): Dephosphorylation of WAPL by PP1γ promotes its as-
sociation with PDS5B, which in turn facilitates the cohesin re-
moval during late meiotic prophase I (Brieno‐Enriquez et al., 
2016). NEK1 facilitates this process through PP1γ phosphor-
ylation. WAPL‐mediated cohesin removal during meiotic 
prophase I is also conserved in budding yeast (Challa, Lee, 

F I G U R E  3   RAD21L‐ and REC8‐cohesin exhibit different spatiotemporal localization patterns on the chromosomes during meiotic prophase. 
(a) Levels of REC8 and RAD21L localization on the chromatin (upper). Schematic model of REC8, RAD21L and RAD21 localization during 
meiotic prophase (lower). Chromatins are shown in blue. REC8‐, RAD21L‐, and RAD21‐cohesins are shown in red, green and purple circles, 
respectively. In meiotic prophase, REC8‐type cohesin localizes along chromosomes before or during pre‐meiotic DNA replication (preleptotene) 
and persists throughout the first meiotic division. RAD21L‐type cohesin mostly appears on the chromosomes after DNA replication and culminates 
at the leptotene/zygotene stage. REC8 and RAD21L show mutually exclusive localization along the chromosomes. RAD21L‐type cohesin mostly 
dissociates from the chromosomes after late pachytene by WAPL‐mediated mechanism. RAD21 transiently appears on the chromosomes in 
late pachytene and mostly dissociates after diplotene onward. Cohesin removal at later stage of meiotic prophase I is mediated by WAPL. (b) 
Immunostaining of REC8 and RAD21L on chromosome spread of zygotene oocyte
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Shinohara, Kim, & Shinohara, 2016), nematoda (Crawley, 
Barroso, Testori, Ferrandiz, & Silva, 2016) and Arabidopsis 
(De, Sterle, Krueger, Yang, & Makaroff, 2014). Like RAD21 
at anaphase, REC8 is cleaved by separase (Kudo et al., 2006, 
2009); however, the question of whether RAD21L undergoes 
separase‐mediated cleavage remains unresolved.

Intriguingly, REC8 and RAD21L exhibit mutually exclu-
sive localization rather than co‐localization along the chro-
mosomes of spermatocytes and oocytes (Figure 3b; Ishiguro 
et al., 2011; Lee & Hirano, 2011). Notably, the distribu-
tion patterns of REC8 and RAD21L are identical between 
the two not‐yet synapsed homologous chromosomes. This 

localization pattern suggests that REC8‐ and RAD21L‐type 
cohesins have their intrinsic loading sites on the chromo-
somes and form distinct cohesin‐enriched domains along the 
AEs during early meiotic prophase, although the primary 
DNA sequences or chromatin‐bound factors that underlie 
these cohesin‐enriched domains is elusive.

Although RAD21 is detectable in testicular mitotic cells, 
it disappears in the nuclei from early leptotene until zygo-
tene, which is in sharp contrast to the localization patterns 
of RAD21L and REC8. The absence of RAD21‐contain-
ing cohesin during the early stage of meiotic prophase has 
been also supported by the observation that no cohesin is 

F I G U R E  4   Chromosome axis formation depends on meiotic cohesins. (a) Cohesin is loaded on the chromatin before the AE components, 
forming an axis‐like structure “cohesin core axis,” along the chromosome. Red line: the AE components, SYCP2, SYCP3. (b) The “cohesin 
core axis,” which is marked by cohesin subunits SA3, is organized even in the absence of the AE component SYCP3. (c) Chromosome spread 
of spermatocytes from WT and cohesin mutants was immunostained for SYCP3, a component of the AE, and cohesion subunit. Cohesin 
immunostaining was probed with SMC3 for WT and Rec8/Rad21L dKO, REC8 for Rad21L KO or RAD21L for Rec8 KO. In the absence of either 
REC8 or RAD21L, AE formation is partially impaired and exhibits a shorter axis length, compared to wild type. In Rec8 KO, partial AE is formed 
depending on RAD21L‐cohesin. In Rad21L KO, AE is formed depending on REC8‐cohesin. AE formation is mostly abolished in Rec8/Rad21L 
dKO during meiotic prophase
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detectable in Rec8/Rad21L double‐knockout (dKO) sper-
matocytes and oocytes (Figure 4; Ishiguro et al., 2014; Llano, 
Herran, Garcia‐Tunon, Gutierrez‐Caballero, & Alava, 2012). 
Nevertheless, RAD21 transiently reappears on the chromo-
somes in late pachytene, concomitantly with dissociation of 
RAD21L (Figure 3a; Ishiguro et al., 2011; Lee & Hirano, 
2011; Parra et al., 2004). RAD21 rarely colocalizes with ei-
ther RAD21L or REC8, suggesting that RAD21‐type cohesin 
replaces them or localizes at different sites. From diplotene 
onward, RAD21 mostly dissociates from AEs and residually 
remains around the centromeres at metaphase I in spermato-
cytes (Ishiguro et al., 2011; Parra et al., 2004; Xu, Beasley, 
Verschoor, Inselman, & Handel, 2004). Although physiolog-
ical involvement of RAD21 during late prophase has yet to 
be elucidated, the mechanism on loading RAD21‐cohesin 
during late pachytene stage also remains unknown. The klei-
sin subunits endow distinct cohesin complexes with different 
spatiotemporal localization patterns on the chromosomes in 
mammalian meiotic prophase. Corresponding to the unique 
distribution patterns of meiotic cohesin complexes, kleisin 
subunits also specify unique functions in mammalian meio-
sis, as discussed below.

5  |   MEIOTIC COHESINS 
UNDERLIE A STRUCTURAL BASIS 
FOR CHROMOSOME AXIS

During meiotic prophase, sister chromatids are organized 
into a chromosome axis, termed the AE (Figure 1a). The AE 
acts as a structural framework for recruiting meiotic recom-
bination machineries that promote DSB introduction and re-
pair (Baudat et al., 2013; Handel & Schimenti, 2010; Keeney 
et al., 2014; Kumar, Ghyselinck, Ishiguro, Watanabe, 
& Kouznetsova, 2015; Lam & Keeney, 2015; Zickler & 
Kleckner, 2015), and the HORMA domain‐containing pro-
teins HORMAD1 and HORMAD2 that work for the sur-
veillance of homologue synapsis (Daniel, Lange, Hached, 
Fu, & Anastassiadis, 2011; Fukuda, Daniel, Wojtasz, Toth, 
& Hoog, 2010; Kogo et al., 2012, 2012; Shin, Choi, Erdin, 
Yatsenko, & Kloc, 2010; Wojtasz, Daniel, Roig, Bolcun‐
Filas, & Xu, 2009). The AE appears at leptotene, which is 
marked by its main components, SYCP2 and SYCP3, and 
develops into a continuous linear structure along sister chro-
matid axis. Notably, the appearance of SYCP2 or SYCP3 in 
the nucleus is preceded by loading of cohesin at pre‐meiotic 
S phase or in early leptotene, suggesting that a “cohesin core 
axis” is pre‐formed between sister chromatids and subse-
quently acts as a framework to organize the AE (Figure 4a). 
This notion is supported by the observation that the “co-
hesin core axis,” which is marked by the cohesin subunits 
(Eijpe, Heyting, Gross, & Jessberger, 2000), is formed even 
in Sycp3 and Sycp2 knockouts (Figure 4b; Kouznetsova, 

Novak, Jessberger, & Hoog, 2005; Pelttari, Hoja, Yuan, Liu, 
& Brundell, 2001; Yang, De La Fuente, Leu, Baumann, & 
McLaughlin, 2006). Moreover, the chromosome axis, de-
fined by an electron‐dense structure observed under electron 
microscope, is formed and can be immunolabeled for cohesin 
in Sycp3 KOs (Ortiz, Kouznetsova, Echeverria‐Martinez, 
Vazquez‐Nin, & Hernandez‐Hernandez, 2016), asserting the 
notion that a “cohesin core axis” acts as the structural basis 
for chromosome organization during meiosis. Indeed, it has 
been shown that AE formation depends on meiotic cohesins 
(Figure 4c). In SA3/Stag3 KOs, where the subunit common 
among meiotic cohesin complexes is absent, AE formation 
is largely nullified with residual short stretches of axes, sug-
gesting that the meiosis‐specific subunit SA3/Stag3, but not 
mitotic SA1 or SA2, is essential for AE formation (Fukuda 
et al., 2014; Hopkins et al., 2014; Llano et al., 2014; Ward, 
Hopkins, McKay, Murray, & Jordan, 2016; Winters et al., 
2014). It should be noted that the phenotypes observed in 
these studies differ somewhat depending on the knockout 
allele of SA3/Stag3. Although SMC1α can partly substitute 
SMC1β in AE formation, SMC1β is required for telomere 
integrity in the AE (Biswas et al., 2018).

In the absence of either REC8 (Bannister et al., 2004; Xu 
et al., 2005) or RAD21L (Herran et al., 2011; Ishiguro et al., 
2014), AE formation is partially impaired: In the absence of 
REC8, AE length is shorter compared to wild type or Rad21L 
KO (Figure 4c); in the absence of RAD21L, AE is discontin-
uous and fragmented. Thus, RAD21L and REC8 differently 
contribute to the formation of the AE. Strikingly, AE forma-
tion is mostly nullified in Rec8/Rad21L dKOs (Ishiguro et al., 
2014; Llano et al., 2012). Since Rec8/Rad21L dKO exhibits a 
complete defect in AE formation, REC8‐ and RAD21L‐type 
cohesin complexes, but not RAD21‐type, are required for 
chromosome axis formation. Thus, the meiotic “cohesin core 
axis” assembled by REC8‐ and RAD21L‐type cohesin com-
plexes plays an essential role in AE formation.

Immunogold electron microscopic analyses showed that 
cohesin complexes localize on the innermost sides of the 
two LEs in bivalents (Ishiguro et al., 2014), resembling the 
observation in Drosophila (Anderson, Royer, Page, McKim, 
& Lai, 2005). Accordingly, both REC8 and RAD21L co‐im-
munoprecipitate with the transverse filament protein SYCP1 
of the SC (Figure 1c), but much less so with central ele-
ment proteins. Thus, the assembly of meiotic chromosome 
axis structures (both the AE and SC) is largely mediated by 
REC8‐ and RAD21L‐type cohesins in a redundant manner.

It has been shown that AE components and meiotic co-
hesin complexes coordinate the axis‐loop organization 
(Novak, Wang, Revenkova, Jessberger, & Scherthan, 2008; 
Yuan, Liu, Zhao, Brundell, & Daneholt, 2000). In the ab-
sence of SYCP3, the meiotic “cohesin core axis” is extended 
with reciprocal shortening of chromatin loop size, suggesting 
that the “cohesin core axis” is longitudinally compacted by 
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AE components. In Smc1β KOs, where only SMC1α‐con-
taining cohesin complexes are present, the meiotic cohesin 
core axis is shortened whereas chromatin loops are heteroge-
neously extended, suggesting that the cohesin complexes on 
the chromosome axis act as chromatin loop attachment sites 
(Novak et al., 2008). In contrast, in Smc1β/Sycp3 dKOs, the 
length of the meiotic “cohesin core axis” is restored to the 
levels comparable to wild type, further suggesting that the 
AE components act in longitudinal axial compaction of the 
“cohesin core axis.” Moreover, in Sycp3 KO oocytes, it has 
been shown that the “cohesin core axis” is prematurely disas-
sembled before the entry into dictyate arrest, suggesting that 
AE components are required for the stability of the “cohesin 
core axis” in late meiotic prophase in oocytes (Kouznetsova 
et al., 2005). Thus, the interaction between meiotic cohesin 
and AE components is required to maintain the integrity of 
the chromosome axis and for the subsequent organization of 
chromatin loop architecture during the meiotic prophase.

Although it is largely unclear how cohesin regulates axis 
assembly, a clue emerges from a study on fission yeast. There 
are two SA/Scc3 homologues in fission yeast, mitotic Psc3 
and the meiosis‐specific Rec11, each of which forms a dis-
tinct cohesin complex with Rec8 during meiosis (Kitajima, 
Yokobayashi, Yamamoto, & Watanabe, 2003). Although the 
Rec8‐Psc3‐containing cohesin complex is enriched around 
the centromeres, the Rec8‐Rec11‐containing complex is lo-
calized along the chromosome arms and plays a crucial role 
in meiotic recombination. Notably, phosphorylation of Rec11 
by casein kinase I (Hhp1 and Hhp2, the fission yeast homo-
logues of CK1) is required for the assembly of the meiotic 
chromosome axis called the linear element (LinE) and the 
subsequent promotion of meiotic recombination (Phadnis, 
Cipak, Polakova, Hyppa, & Cipakova, 2015; Sakuno & 
Watanabe, 2015). Non‐phosphorylatable mutations of Rec11 
at casein kinase I target residues result in defects in LinE as-
sembly where sister chromatid cohesion is still preserved, 
suggesting that phosphorylation of the Rec11 subunit plays 
a specific role in assembling the meiotic chromosome axis 
in a way independent of cohesion. Crucially, phosphoryla-
tion of Rec11 by Hhp1 or Hhp2 mediates the interaction of 
Rec11 with a LinE component, Rec10 (Sakuno & Watanabe, 
2015), whose functional homologue is SYCP2 in vertebrates 
and Red1 in budding yeast. Since Rec10 promotes tethering 
between the DSB hot spots in the loop domain and the chro-
mosome axis through interaction with the pre‐DSB recombi-
nation complex (Miyoshi, Ito, Kugou, Yamada, & Furuichi, 
2012; Panizza, Mendoza, Berlinger, Huang, & Nicolas, 2011), 
phosphorylation of Rec11 by Hhp1 or Hhp2 acts as a basis 
for LinE assembly and in turn promotes DSB formation. It 
is worth noting that mouse cohesin subunits, including SA3, 
are highly phosphorylated during meiotic prophase I (Fukuda 
et al., 2014), raising a question whether a similar mechanism 
of chromosome axis assembly is conserved in vertebrates. 

Given that the AE formation and DSB repair process are both 
abolished in SA3 KOs (Fukuda et al., 2014; Hopkins et al., 
2014; Llano et al., 2014; Ward et al., 2016; Winters et al., 
2014), further analyses with mutant mice expressing SA3 
with non‐phosphorylatable will answer the question.

6  |   ROLE OF MEIOTIC COHESINS 
IN HOMOLOGUE PAIRING/
SYNAPSIS AND RECOMBINATION 
DURING MEIOSIS

Homologous chromosomes undergo pairing, synapsis, and 
meiotic recombination. A number of mechanisms are in-
volved in chromosome pairing and alignment. Although a 
tight association of homologues is established by DSB‐de-
pendent recombination and subsequent synapsis, DSB‐inde-
pendent mechanisms are also involved in the juxtaposition 
or gathering of interstitial homologues (Boateng, Bellani, 
Gregoretti, Pratto, & Camerini‐Otero, 2013; Ding, Yamamoto, 
Haraguchi, & Hiraoka, 2004; Peoples, Dean, Gonzalez, 
Lambourne, & Burgess, 2002; Peoples‐Holst & Burgess, 
2005; Storlazzi, Tesse, Gargano, James, & Kleckner, 2003; 
Takada, Naruse, Costa, Shirakawa, & Tachibana, 2011; 
Weiner & Kleckner, 1994). Consequently, these processes 
yield bivalent chromosomes, whereby two homologous chro-
mosomes are physically connected by chiasmata.

The first step for meiotic chromosome pairing and align-
ment is the attachment of telomeres to the nuclear envelope 
(Hiraoka & Dernburg, 2009; Scherthan, 2001). Telomere‐led 
nuclear movement and the polarized chromosome arrange-
ment called “bouquet” facilitate chromosome alignment, 
homologue pairing and synapsis (Page & Hawley, 2004; 
Scherthan, 2001; Zickler & Kleckner, 1999, 2015). This 
chromosome movement is mediated by meiosis‐specific 
telomere‐binding proteins (Horn, Kim, Wright, Wong, & 
Stewart, 2013; Morimoto, Shibuya, Zhu, Kim, & Ishiguro, 
2012; Shibuya, Hernandez‐Hernandez, Morimoto, Negishi, 
& Hoog, 2015; Shibuya, Ishiguro, & Watanabe, 2014; Zhang, 
Tu, Watanabe, & Shibuya, 2017) that form complexes and at-
tach to the nuclear membrane. Cohesin subunit SA3 mediates 
connections between the chromosome axis and the telomere‐
binding protein TERB1 (Shibuya et al., 2014). Consequently, 
the telomere–cohesin connection transmits the driving force 
for the chromosome movement.

RAD21L and REC8 play distinct roles in homologue 
pairing/synapsis during meiosis. Rad21L KO and Rec8 KO 
spermatocytes and oocytes are arrested at the leptotene/zygo-
tene stage with aberrant recombination and SC formation, but 
the outcomes are different between the two KOs (Figure 5a). 
Both Rec8 KO and Rad21L KO spermatocytes show an accu-
mulation of DMC1 and RAD51 foci at the zygotene‐like ar-
rest, suggesting that some recombination process is initiated 
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in both of these KOs, at least in part (Ishiguro et al., 2014; 
Llano et al., 2012). However, although SC assembly occurs 
solely between sisters in the Rec8 KO (Bannister et al., 2004; 
Xu et al., 2005), as observed in budding yeast pds5 mutant 
(Jin, Guacci, & Yu, 2009), the SC is assembled between sis-
ter chromatids, and between non‐homologous chromosomes 
in the Rad21L KO (Ishiguro et al., 2014; Llano et al., 2012). 
These results suggest REC8‐ and RAD21L‐cohesins sup-
press inter‐sister SC formation. At present, it remains largely 
elusive whether the meiotic cohesins play an active role in 
the homologue bias in recombination in mammals, as in yeast 
Rec8 (Kim, Weiner, Zhang, Jordan, & Dekker, 2010).

Given that cohesin‐deficient spermatocytes do not develop 
beyond the zygotene‐like stage, homologue pairing was ex-
amined in Rad21L and Rec8 KO mutants using FISH analysis 
(Ishiguro et al., 2014). Despite the absence of synapsis be-
tween homologues in the Rec8 KO spermatocytes, a signifi-
cant population of spermatocytes exhibit homologue pairing. 
In contrast, homologue association is impaired in Rad21L KO 
spermatocytes. In Spo11 KO background, DSB formation 
and subsequent meiotic recombination are defective. Even 
in the Spo11 KO background, Rec8 KO spermatocytes still 
exhibit significant homologue association, whereas Rad21L/
Spo11 dKO spermatocytes do not. Thus, RAD21L plays a no-
table role in homologue association independently of DSB, 
whereas REC8 may play only a minor role in this process. 

Although the precise mechanisms how RAD21L rather than 
REC8 contributes to this process have yet to be clarified, it 
is noteworthy that Rad21L KO spermatocytes lack the abil-
ity to release the bouquet and often exhibit prolonged telo-
mere clustering along their nuclear membrane, while Rec8 
KO spermatocytes as well as wild‐type spermatocytes do not 
accumulate bouquet‐nuclei (Figure 5b,c). SUN1 acts for the 
connection between telomeres and the nuclear membrane, 
and mediates chromosome movement along the nuclear mem-
brane. In the Sun1‐deficient background, the bouquet arrest 
observed in the Rad21L KO is suppressed (Rad21L/Sun1 
dKO), suggesting that without chromosome movement me-
diated by SUN1, the bouquet do not accumulate even with-
out RAD21L. Importantly, Rad21L/Sun1 dKO spermatocytes 
still exhibit defects in homologue pairing. Thus, bouquet 
arrest can be a consequence of Rad21L KO but not the cause 
of defective homologue pairing. It is worth noting that rec8 
KO‐meiotic cells in budding yeast also exhibit pairing de-
fects and bouquet arrest (Conrad, Lee, Wilkerson, & Dresser, 
2007; Trelles‐Sticken, Adelfalk, Loidl, & Scherthan, 2005), 
similar phenomenon observed in mouse Rad21L KO. Thus, 
the function for bouquet exit is conserved in meiotic cohesins, 
and in mammalian meiosis, RAD21L plays a dominant role.

It should be noted that sexual dimorphism is observed in 
Rad21L KO mice: spermatocytes progress to a zygotene‐like 
stage while some populations of oocytes progress further 

F I G U R E  5   RAD21L and REC8 play 
distinct roles in homologue interaction. (a) 
SC assembly occurs between homologues 
in the wild type. Rad21L KO and Rec8 KO 
spermatocytes and oocytes are arrested at 
the leptotene/zygotene stage and exhibit 
different phenotypes in homologue synapsis. 
In Rec8 KO, SC assembly occurs only 
between sisters. In Rad21L KO, the SC 
is assembled aberrantly between sister 
chromatids together with non‐homologous 
chromosomes. Schematics of SC assembly 
are shown at the bottom. Yellow: SC. (b) 
Rad21L KO spermatocytes exhibit bouquet 
arrest with extensive telomere clustering 
along the nuclear membrane, whereas WT 
and Rec8 KO spermatocytes do not. It is 
possible that RAD21L‐type cohesin might 
provide the chromosome structure necessary 
for bouquet release. (c) Example of Rad21L 
KO spermatocytes with extensive telomere 
clustering
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into a pachytene‐like stage where many more homologues 
are synapsed (Ishiguro et al., 2014). Thus, the contribution 
of REC8 and RAD21L to homologue pairing/synapsis might 
be weighted differently in meiosis between male and female 
mice. Altogether, homologue pairing/synapsis is primarily 
mediated by a specific chromosome architecture defined by 
meiosis‐specific cohesins. REC8‐ and RAD21L‐cohesins 
play different roles in this process in mammalian meiosis.

7  |   SISTER CHROMATID 
COHESION DURING MEIOSIS

Given that different types of meiosis‐specific cohesin com-
plexes exist, which contain any one of the three kleisin subu-
nits REC8, RAD21L or RAD21, the question how individual 
cohesin complexes contribute to sister chromatid cohesion has 
remained elusive. This question has been addressed by genetic 
assays using Rec8TEV/TEV and Rad21/Scc1TEV/TEV knock‐
in mouse lines, in which the endogenous Rec8 or Rad21/
Scc1 allele is genetically modified so that REC8 or RAD21/
SCC1 can be artificially depleted by TEV protease in oo-
cytes (Tachibana‐Konwalski, Godwin, Weyden, Champion, 
& Kudo, 2010). When TEV protease is introduced into M 
I‐arrested oocytes from Rec8TEV/TEV and Rad21/Scc1TEV/

TEV knocked‐in females, all the bivalent chromosomes are 
converted into single chromatids in Rec8TEV/TEV, while they 
remain intact in Rad21/Scc1TEV/TEV. Thus, sister chroma-
tid cohesion in metaphase I oocytes is solely dependent on 
REC8 but not on RAD21/SCC1. Then what is the role of the 
other meiosis‐specific subunit RAD21L? The following three 
questions will be discussed: the first question is whether both 
REC8 and RAD21L equally act for sister chromatid cohe-
sion during meiotic prophase, or whether either of them has a 
dominant role in this process; the second question is whether 
RAD21 contributes to sister chromatid cohesion during mei-
otic prophase; the third question is how REC8‐ and RAD21L‐
type cohesins establish sister chromatid cohesion.

Sister chromatid cohesion at leptotene, when any po-
tential SC‐mediated linkage of sister chromatids can be ex-
cluded, was assessed by FISH in Rec8 KO‐, Rad21L KO 
and Rec8/Rad21L dKO spermatocytes (Figure 6a; Ishiguro 
et al., 2014). Notably, sister chromatid cohesion is only par-
tially impaired in Rad21L KO compared to wild type. Sister 
chromatid cohesion in Rec8 KO is more impaired at a lep-
totene‐like stage compared to Rad21L KO, implying that 
REC8‐type cohesin contributes to sister chromatid cohesion 
more than RAD21L‐type cohesin, at least during leptotene. 
Furthermore, sister chromatid cohesion is completely sup-
pressed in Rec8/Rad21L dKO spermatocytes, emphasizing 
that it is exclusively mediated by REC8‐ and RAD21L‐type 
cohesins and not by RAD21‐type cohesin during meiotic 
prophase I. This notion is further supported by the fact that 

Stag3 KO, in which the common subunit of meiotic cohesins 
is absent, recapitulates the cohesion defect observed in Rec8/
Rad21L dKO (Hopkins et al., 2014; Winters et al., 2014).

It has been shown that loss of cohesin accompanies splitting 
of the sister chromatid axes (Figure 6b). In wild type, the chro-
mosome axis, which consists of two sister chromatids, is labeled 
by a single line of the AE component, SYCP3. In Rec8 KOs, 
however, the entire length of the chromosome axis becomes 
two separate SYCP3‐labeled structures, despite the fully local-
ized RAD21L‐cohesin along the sister chromatid axes (Ishiguro 
et al., 2014; Xu et al., 2005). Similar to the observation in Rec8 
KOs, super‐resolution microscopic analyses showed that the 
chromosome axis is regionally separated in hypomorphic Stag3 
mutants and Smc1β KOs, in which REC8‐cohesin levels are 
partly reduced (Agostinho, Manneberg, Schendel, Hernandez‐
Hernandez, & Kouznetsova, 2016; Fukuda et al., 2014; Ishiguro 
& Watanabe, 2016). Notably, illegitimate SCs are assembled 
between sister chromatids at the REC8 free “axial opening” 
regions in these mutants (Agostinho et al., 2016; Ishiguro 
& Watanabe, 2016), as has also been shown in Rec8 KOs 
(Bannister et al., 2004; Xu et al., 2005). Thus, REC8 protects 
the chromosome axis from local “axial opening” and illegiti-
mate SC assembly between sister chromatids (Figure 6b). The 
causal relationship between inter‐sister SC assembly and local 
“axial opening” remains elusive. One possibility is that ecto-
pic inter‐sister SC assembly forces sister chromatid axes to be 
separated. If this is the case, illegitimate SC formation between 
sister chromatids does not necessarily mean loss of cohesion. 
However, a recent study (Ishiguro et al., 2014) provides strong 
evidence that sister chromatid cohesion in Rec8 KO is indeed 
once lost during early leptotene shown by AEs discontinuously 
separated throughout the chromosome length and then become 
closely connected in late leptotene depending on SC formation 
between sister chromatids. Thus, the characteristic structures 
between sister chromatids in REC8‐free chromosome regions 
surely represent the loss of sister chromatid cohesion.

Given that REC8‐cohesin plays a dominant role in sister 
chromatid cohesion in meiotic prophase I, it remains unclear 
how RAD21L‐cohesin contributes to cohesion. The mode of 
inter‐sister SC formation in Rec8 KO versus Rec8/Spo11 dKO 
provides a clue (Figure 6c,d; Ishiguro et al., 2014). Spo11 
introduces DNA double‐strand breaks. Intriguingly, despite 
the full localization of RAD21L‐cohesin on chromosomes, 
inter‐sister SC formation in Rec8 KO is mostly suppressed 
and the sister chromatid axes are entirely separated in the ab-
sence of SPO11 (Figure 6c,d; Ishiguro et al., 2014). Thus, it 
is possible that RAD21L‐cohesin establishes sister chromatid 
cohesion depending on DSB, as reported in mitotic yeast cells 
(Heidinger‐Pauli, Unal, Guacci, & Koshland, 2008; Strom, 
Karlsson, Lindroos, Wedahl, & Katou, 2007; Unal, Heidinger‐
Pauli, & Koshland, 2007) and nematode oocytes (also see 
below; Severson & Meyer, 2014), while REC8‐cohesin es-
tablishes sister chromatid cohesion depending on DNA 
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F I G U R E  6   RAD21L and REC8 exhibit different modes of sister chromatid cohesion. (a) Sister chromatid cohesion is only partially impaired 
in Rad21L KO at a leptotene‐like stage. Sister chromatid cohesion in Rec8 KO is further impaired at a leptotene‐like stage compared to Rad21L KO. 
REC8‐type cohesin contributes to sister chromatid cohesion more than RAD21L‐type cohesin, at least during leptotene. Although establishment 
of REC8‐cohesin cohesion is dependent on DNA replication, establishment of RAD21L‐cohesin is dependent on DSB. (b) In wild types, the sister 
chromatid axis is recognizable as a single line of SYCP3‐labeled structures, along with high density of REC8. In Rec8 KO, the sister chromatid 
axis of univalents is separated into two SYCP3‐labeled structures. In Stag3 and Smc1β KOs, the sister chromatid axis is separated in the regions 
where REC8 is absent. The “axial opening” is accompanied by inter‐sister SC formation. (c) Example of Rec8 KO spermatocytes with inter‐sister 
SC, which is indicated with SYCP1 immunostaining (upper). Enlarged images are shown on the right. The inter‐sister SC formation is suppressed 
in Rec8/Spo11 dKO spermatocytes (lower). (d) Sister chromatids are cohered in Rec8 KO spermatocytes (upper). Despite full localization of 
RAD21L, sister chromatids are separated in Rec8/Spo11 dKO spermatocytes (lower). Enlarged images are shown on the right
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replication in a similar manner to mitotic cohesin. Another 
interpretation is that inter‐sister SC depends on DSBs, and 
without SC, the sister axes are separated even in the presence 
of RAD21L. The distinct roles of REC8 and RAD21L in sister 
chromatid cohesion needs to be further investigated.

It has been suggested that SMC1α and SMC1β have differ-
ent roles in cohesion. Although these proteins have redundant 
roles in cohesion at chromosome arms, at the centromeric region 
SMC1β plays an essential role during meiosis (Biswas et al., 
2013, 2018).

8  |   CENTROMERIC COHESION IS 
PRESERVED BY COUNTERACTING 
PHOSPHORYLATION OF COHESIN 
DURING MEIOSIS I

In meiosis I, cohesin is enriched around the centromeric re-
gions. Cytologically, cohesin is detected between the closely 
associated kinetochores and the inner centromere regions (Suja, 
Antonio, Debec, & Rufas, 1999). Proteolytic removal of co-
hesin triggers separation of homologous chromosomes to-
ward opposite poles during metaphase I–anaphase I transition. 
Separase cleaves the kleisin subunit of cohesin in both mito-
sis (Hauf, Waizenegger, & Peters, 2001; Nakajima, Kumada, 
Hatakeyama, Noda, & Peters, 2007; Uhlmann, Wernic, Poupart, 
Koonin, & Nasmyth, 2000) and meiosis (Buonomo et al., 2000; 
Kitajima, Miyazaki, Yamamoto, & Watanabe, 2003; Kudo 
et al., 2006), and this mechanism is widely conserved in eukar-
yotic organisms (Figure 2d). Crucially, Rec8 phosphorylation 
contributes to cohesin removal during meiosis (Brar, Kiburz, 
Zhang, Kim, & White, 2006). Rec8 becomes susceptible to 
separase cleavage when phosphorylated by casein kinase 1 
(CK1) in fission yeast (Ishiguro, Tanaka, Sakuno, & Watanabe, 
2010), and by a casein kinase 1 homologue Hrr25, a catalytic 
subunit of Dbf4‐dependent protein kinase (DDK) Cdc7, and/
or Cdc5 (PLK) in budding yeast (Attner, Miller, Ee, Elkin, & 
Amon, 2013; Brar et al., 2006; Katis, Lipp, Imre, Bogdanova, 
& Okaz, 2010). In mice, phosphorylation by Polo‐like kinase 
(PLK1) makes REC8 susceptible to separase cleavage in vitro 
(Kudo, Anger, Peters, Stemmann, & Theussl, 2009). Thus, by 
phosphorylation REC8 becomes more susceptible to cleavage.

During anaphase I, REC8‐cohesin is cleaved by separase 
only along the chromosome arms, but is maintained in the 
centromere regions throughout anaphase I until meiosis II, 
allowing the resolution of chiasmata and the consequent re-
lease of the homologous chromosomes (Figure 1; Buonomo 
et al., 2000; Kitajima et al., 2003; Kudo et al., 2006). Thus, 
REC8 in centromere regions is protected from cleavage 
during anaphase I. The centromeric cohesion must be pre-
served during meiosis I to ensure sister chromatid separation 
in the following meiosis II, a period when bipolar attachment 
is established by the preserved centromeric cohesion. During 

interkinesis, preserved cohesin is distributed between sister 
kinetochores (Parra et al., 2004). At the onset of anaphase 
II, residual centromeric REC8 is cleaved by separase, which 
results in segregation of sister chromatids into each gamete.

In a wide variety of organisms, centromeric proteins of 
Shugoshin (Sgo)/Mei‐S332 family protect centromeric cohe-
sion during meiosis I, whose loss leads to precocious sister chro-
matid separation (Hamant, Golubovskaya, Meeley, Fiume, & 
Timofejeva, 2005; Katis, Galova, Rabitsch, Gregan, & Nasmyth, 
2004; Kerrebrock, Miyazaki, Birnby, & Orr‐Weaver, 1992; 
Kitajima, Kawashima, & Watanabe, 2004; Lee, Dej, Lopez, 
& Orr‐Weaver, 2004; Marston, Tham, Shah, & Amon, 2004; 
Miyazaki & Orr‐Weaver, 1994; Rabitsch, Gregan, Schleiffer, 
Javerzat, & Eisenhaber, 2004). For this activity, Shugoshin forms 
complex with PP2A phosphatase that contains B56 subunit 
(Kitajima, Sakuno, Ishiguro, Iemura, & Natsume, 2006; Riedel, 
Katis, Katou, Mori, & Itoh, 2006; Tang, Shu, Qi, Mahmood, & 
Mumby, 2006). In fission and budding yeast, Sgo1‐PP2A coun-
teracts Rec8 phosphorylation at the centromere, protecting centro-
meric cohesin from separase‐mediated cleavage during meiosis I.

Depletion of either Sgo1 or PP2A leads to precocious loss 
of centromeric cohesion during anaphase I, but homologous 
chromosomes still co‐segregate toward the same poles owing 
to monopolar attachment (see below). Defects resulting from 
Sgo1 or PP2A depletion in chromosome segregation are de-
tected as the random segregation of prematurely separated 
sister chromatids in meiosis II.

In mammals, there are two paralogs of Shugoshin‐like pro-
teins, SGO1 and SGO2 (Kitajima et al., 2006; McGuinness, 
Hirota, Kudo, Peters, & Nasmyth, 2005; Salic, Waters, & 
Mitchison, 2004; Tanno, Kitajima, Honda, Ando, & Ishiguro, 
2010), each of which forms a complex with PP2A phospha-
tase (Kitajima et al., 2006). In mitosis, SGO1‐PP2A protects 
cohesin from dissociation at the centromeres (Kitajima et al., 
2006; McGuinness et al., 2005; Salic et al., 2004). In mei-
osis, SGO2‐PP2A localizes to the centromeres to protect 
centromeric REC8 cohesin from separase‐mediated cleav-
age during anaphase I (Lee, Kitajima, Tanno, Yoshida, & 
Morita, 2008; Llano, Gomez, Gutierrez‐Caballero, Herran, 
& Sanchez‐Martin, 2008). Thus, centromeric cohesion is pre-
served by the action of SGO2‐PP2A that counteracts REC8 
phosphorylation. On the other hand, the kinases responsible 
for REC8 phosphorylation remain to be identified.

9  |   CENTROMERIC COHESION 
PLAYS A CONSERVED ROLE 
IN ESTABLISHING MONO‐
ORIENTATION OF SISTER 
KINETOCHORES DURING MEIOSIS I

Sister chromatid cohesion at the centromeres plays a crucial 
role in defining kinetochore geometry, which determines the 
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mode of sister kinetochore orientation and, in turn, the chro-
mosome orientation (Figure 7). During mitosis, sister kine-
tochores are placed in a back‐to‐back configuration so that 
they are bi‐oriented and captured by microtubules from the 
opposite poles, causing the sister chromatids to separate into 
opposite directions (equational segregation). In contrast, dur-
ing meiosis I, sister kinetochores of one homologous chro-
mosome are juxtaposed side by side, so that they are captured 
by microtubules from the same pole (monopolar attachment). 
Consequently, homologous chromosomes separate into op-
posite directions (reductional segregation).

Accumulating evidence suggests that Rec8 orthologs play 
a role in the mono‐orientation of kinetochores in diverse eu-
karyotic organisms. It is assumed that the geometric restric-
tion imposed by Rec8‐mediated sister chromatid cohesion at 
the core centromeres promotes a side‐by‐side configuration 
of sister kinetochore geometry at meiosis I. In fission yeast, 
mutation in rec8 results in equational rather than reduc-
tional segregation at meiosis I, suggesting that Rec8 plays 
a specific role in establishing the monopolar attachment of 
sister kinetochores at meiosis I (Sakuno, Tada, & Watanabe, 
2009; Watanabe & Nurse, 1999; Watanabe, Yokobayashi, 
Yamamoto, & Nurse, 2001; Yokobayashi & Watanabe, 2005; 
Yokobayashi, Yamamoto, & Watanabe, 2003). In contrast to 
fission yeast, it is unclear in budding yeast whether Rec8‐
cohesin, or even cohesion itself, is involved in the regula-
tion of the mono‐orientation of the kinetochores. Mutations 
in rec8 homologues in maize and Arabidopsis cause simi-
lar equational segregation at meiosis I, suggesting that the 
same mechanism for mono‐orientation is conserved in plants 
(Chelysheva, Daiallo, Vezon, Gendrot, & Vrielynck, 2005; 
Yu & Dawe, 2000). Furthermore, in mouse, region‐specific 
depletion of REC8 at core centromeres (under kinetochore 
region) leads to bi‐orientation, suggesting that REC8‐co-
hesin at the core centromeric region is necessary for kineto-
chore mono‐orientation in mammals (Tachibana‐Konwalski, 
Godwin, Borsos, Rattani, & Adams, 2013). Consistent with 
this notion, although disruption of mouse SGO2 causes 

precocious separation of sister chromatids because the loss 
of peri‐centric cohesion, sister chromatids still co‐segregate 
toward the same direction during meiosis I, indicating that 
monopolar attachment has already been established before 
the onset of anaphase I. Thus, the role of REC8‐cohesin in es-
tablishing the monopolar orientation of sister kinetochores at 
meiosis I is widely conserved through eukaryotic organisms.

10  |   THE MEIOSIS‐SPECIFIC 
KINETOCHORE PROTEIN 
MEIKIN PLAYS A CRUCIAL ROLE 
IN MONO‐ORIENTATION OF 
SISTER KINETOCHORES DURING 
MEIOSIS I

The establishment of mono‐orientation of sister kinetochores 
requires not only REC8‐cohesin but also meiosis‐specific 
kinetochore proteins. The fission yeast meiosis‐specific pro-
tein Moa1 (monopolar attachment protein 1) localizes to the 
core centromere from prophase I to metaphase I by inter-
acting with the constitutive kinetochore protein CENP‐C, a 
homologue of Cnp3, but disappears at anaphase I (Tanaka, 
Chang, Kagami, & Watanabe, 2009). Moa1 is required for 
establishing the mono‐orientation of kinetochores at meiosis 
I (Yokobayashi & Watanabe, 2005). It is worth noting that 
the core centromere is intrinsically refractory to cohesion in 
mitosis, and this is also the case in meiosis I in moa1 mutants. 
Similarly to rec8 mutants, sister chromatid cohesion at the 
core centromere is abolished in the absence of Moa1, leading 
to subsequent equational segregation in meiosis I, despite the 
enrichment of Rec8 at the core centromere compared to wild 
type (Sakuno et al., 2009; Yokobayashi & Watanabe, 2005).

In vertebrates, the meiosis‐specific kinetochore protein 
MEIKIN plays a crucial role in mono‐orientation of sister 
kinetochores (Figure 8a; Kim, Ishiguro, Nambu, Akiyoshi, 
& Yokobayashi, 2015). Notably, mouse MEIKIN has func-
tionally similar characteristics to fission yeast Moa1, despite 

F I G U R E  7   REC8‐cohesin at centromeres determines sister kinetochore orientation. Sister chromatid cohesion in the centromeric region 
determines the mode of sister kinetochore orientation and, in turn, the chromosome orientation. In mitosis, sister kinetochores are bi‐oriented 
and captured by microtubules from the opposite poles (bipolar attachment). In meiosis I, sister kinetochores on one homologous chromosome are 
captured by microtubules from the same pole (monopolar attachment). REC8‐cohesin at the core centromeric region is necessary for the mono‐
orientation the kinetochores in meiosis
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their little sequence homology. MEIKIN localizes to the core 
centromere from pachytene to metaphase I through the inter-
action with CENP‐C, but disappears at anaphase I. Crucially, 
the distance between sister kinetochores in prometaphase I 
increases significantly in Meikin KOs compared to wild type, 
suggesting that the conjunction between sister kinetochores 
is weakened in the absence of MEIKIN. In Meikin KO mice, 
sister chromatids are separated at the onset of anaphase I 
(Figure 8b), resulting in infertility because of defective chro-
mosome alignment in oocytes at meiosis II, and the accu-
mulation of abnormally large, round spermatid‐like cells that 
cannot undergo meiosis II in testes. Accordingly, although 
REC8 shows normal localization at bivalent chromosomes 
until metaphase I in Meikin KO, centromeric REC8 is lost 
entirely from metaphase II chromosomes. The loss of cen-
tromeric REC8 and the premature separation of sister chro-
matids during anaphase I in Meikin KO mice resemble the 
phenotype of mice defective in SGO2, although the pheno-
type is less severe than in Sgo2 KO.

MEIKIN physically interacts with Polo‐like kinase 1 
(PLK1) through the Polo‐box domain (PBD)‐binding site 
(Ser‐Thr‐Pro) and recruits it to the kinetochore from diplo-
tene to metaphase I. Accordingly, PLK1 localization at 
kinetochores is diminished in Meikin KO. Furthermore, 
perturbation of PLK1 activity with a PLK inhibitor causes 

sister chromatid separation during anaphase I and subsequent 
loss of REC8 on metaphase II chromosomes, similar to the 
Meikin KO. Thus, during meiosis I, PLK1 recruited to ki-
netochores by MEIKIN acts to protect centromeric cohesion 
and mono‐orientation.

Although the amino acid sequences are not conserved 
between vertebrate MEIKIN and fission yeast Moa1 overall, 
Moa1 possesses a putative PBD‐binding motif. Indeed, fis-
sion yeast Polo‐like kinase 1 (Plo1) associates with Moa1 and 
localizes to the kinetochores during meiosis I. Strikingly, re-
gion‐specific inactivation of kinetochore‐bound Plo1 during 
meiosis I results in equational segregation, similar to the 
Moa1 mutant. Thus, Plo1 recruited by Moa1 to the kineto-
chores acts similarly to PLK1 in vertebrates for mono‐orien-
tation during meiosis I.

Although the involvement of Rec8 in the regulation of the 
mono‐orientation of kinetochores is unclear in budding yeast, 
a different set of meiosis‐specific proteins, Mam1, a subunit of 
the monopolin complex that organizes the centromere architec-
ture (Matos, Lipp, Bogdanova, Guillot, & Okaz, 2008; Toth, 
Rabitsch, Galova, Schleiffer, & Buonomo, 2000), and Spo13 
(Katis, Matos, Mori, Shirahige, & Zachariae, 2004; Lee, Amon, 
& Prinz, 2002; Lee, Kiburz, & Amon, 2004; Shonn, McCarroll, 
& Murray, 2002) are required for mono‐orientation during mei-
osis I. Although neither Mam1 nor Spo13 shares amino acid 

F I G U R E  8   MEIKIN plays a role in 
mono‐orientation of sister kinetochores by 
regulating centromeric REC8. (a) MEIKIN 
localizes to centromeres from pachytene 
to metaphase I. Seminiferous tubules were 
immunostained for SYCP3 (red), MEIKIN 
(green) and DAPI (blue). (b) In Meikin KO 
mice, sister chromatids are separated at the 
onset of anaphase I, resulting in defective 
chromosome alignment in meiosis II. 
Although REC8 normally localizes to the 
bivalent chromosomes until metaphase I in 
Meikin KO, centromeric REC8 is entirely 
lost from metaphase II chromosomes

(b) Meiosis I
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sequence homology with Moa1 or MEIKIN, Spo13 has a PBD‐
binding motif and collaborates with the PLK/Cdc5 (Clyne, Katis, 
Jessop, Benjamin, & Herskowitz, 2003; Lee & Amon, 2003) to 
promote mono‐orientation during meiosis I. Strikingly, ecto-
pic expression of kinetochore‐targeting Spo13 (Spo13‐Cnp3), 
but not a PBD‐binding‐motif‐defective Spo13 mutant, rescues 
mono‐orientation defects, even in a Moa1 mutant of fission yeast 
(Kim et al., 2015). Thus, budding yeast Spo13 and budding yeast 
Cdc5 act together to produce mono‐orientation in a similar man-
ner to fission yeast Moa1 or vertebrate MEIKIN. Taken together, 
although the critical substrate of Polo‐like kinase is still largely 
elusive, MEIKIN, together with Polo‐like kinase, underlies the 
conserved mechanisms for mono‐orientation of sister kineto-
chores during meiosis I in a wide range of eukaryotic organisms.

11  |   SIMILARITIES AND 
DIFFERENCES IN MEIOTIC 
KLEISINS BETWEEN MAMMALS 
AND CAENORHABDITIS ELEGANS

The nematode C. elegans possesses meiosis‐specific kleisins, 
REC‐8 and nearly identical COH‐3 and COH‐4, in addition 
to the somatic kleisin SCC‐1 (Severson, Ling, Zuylen, & 
Meyer, 2009). Interestingly, C. elegans REC‐8 and COH‐3/
COH‐4 exhibit similarity to mammalian REC8 and RAD21L 
in the temporal localization patterns on the chromosomes and 
the mode of sister chromatid cohesion (Severson & Meyer, 
2014). Notably, although REC‐8 appears in the nucleus dur-
ing pre‐meiotic S phase in C. elegans oocytes, COH‐3/COH‐4 
localizes along the chromosomes after the entry into meiotic 
prophase I, which resembles the chromosome localization pat-
terns of mammalian REC8 and RAD21L. This phenomenon 
accompanies the highest loading of WAPL‐1, the C. elegans 
homologue of WAPL, along chromosomes before the entry 
into meiotic prophase I. WAPL‐1 destabilizes chromatin bind-
ing of cohesion and acts to selectively remove COH‐3/COH‐4 
but not REC‐8 from chromosomes during meiotic prophase 
I (Crawley et al., 2016). REC‐8 and COH‐3/COH‐4 are es-
sential for sister chromatid cohesion, but their mode of action 
is different. COH‐3/COH‐4 establishes cohesion in a DSB‐
dependent manner, while REC‐8 establishes cohesion during 
DNA replication (Severson & Meyer, 2014). Thus, the distinc-
tion between the role of nematode REC‐8 and COH‐3/COH‐4 
during meiosis I is in part parallel to mammalian REC8 and 
RAD21L. Moreover, this notion can be extrapolated to co-
hesin complexes in plants. Four different kleisins are present 
in Arabidopsis thaliana: mitotic SCC1 homologues SYN2 
and SYN4, a REC8 homologue meiotic SYN1, and the fourth 
kleisin SYN3 which acts for homologue synapsis during mei-
osis (Yuan, Yang, Ellis, Fisher, & Makaroff, 2012).

In C. elegans diakinesis/prometaphase I, the chromo-
somes are reorganized into cruciform‐shaped bivalents with 

short and long arms divided by the crossover (CO) site 
(Chan, Severson, & Meyer, 2004; Nabeshima, Villeneuve, & 
Colaiacovo, 2005). Although the holocentric chromosome of 
C. elegans does not possess a regionally defined centromere, 
the longer arm has a feature of the centromere during meio-
sis. Accordingly, sister chromatid cohesion is maintained at 
the longer arm until anaphase II to hold sister chromatids to-
gether. Remarkably, reorganization of bivalent chromosomes 
into short and long arms accompanies redistribution of REC‐8 
and COH‐3/COH‐4 in diakinesis/prometaphase I. REC‐8 
is selectively removed from the short arm and remains only 
along the long arm (de Carvalho, Zaaijer, Smolikov, Gu, & 
Schumacher, 2008; Severson & Meyer, 2014). Reciprocally, 
COH‐3/COH‐4 dissociates from the long arm and persists 
along the short arm (Kaitna, Pasierbek, Jantsch, Loidl, & 
Glotzer, 2002; Rogers, Bishop, Waddle, Schumacher, & Lin, 
2002; Severson & Meyer, 2014). REC‐8‐mediated cohesion 
along the long arm persists through meiosis I and until meiosis 
II and acts in the mono‐orientation of sister chromatids during 
meiosis I (Severson et al., 2009). This evidence strengthens 
the notion that REC8 plays evolutionally conserved roles in 
preserving centromeric cohesion until meiosis II, which en-
sures mono‐orientation of sister chromatids during meiosis I.

12  |   TWO DISTINCT MEIOTIC 
COHESIN COMPLEXES IN 
DROSOPHIL A  PARALLEL TO 
MAMMALIAN RAD21L‐ AND REC8‐
TYPE COHESIN COMPLEXES

In Drosophila meiosis, there are at least two distinct types of 
meiosis‐specific cohesin complexes that play different roles 
in sister chromatid cohesion, SC assembly and centromere 
clustering. C(2)M is a meiosis‐specific kleisin subunit that 
forms a complex with SMC1, SMC3 and stromalin/SA subu-
nits (Heidmann, Horn, Heidmann, Schleiffer, & Nasmyth, 
2004; Manheim & McKim, 2003). Another type of cohesin 
complex consists of SOLO and SUNN together with common 
subunits SMC1 and SMC3. Based on predicted protein fold-
ing, SUNN is considered to be a meiosis‐specific counterpart 
of stromalin/SA, although there is little homology in over-
all primary sequence, except for the HEAT motif (Gyuricza, 
Manheimer, Apte, Krishnan, & Joyce, 2016; Krishnan, 
Thomas, Yan, Yamada, & Zhulin, 2014). SOLO has a se-
quence motif similar to the SMC1 interaction domain of 
kleisin (Yan & McKee, 2013; Yan, Thomas, Tsai, Yamada, 
& McKee, 2010). Thus, C(2)M‐SA‐type and SOLO‐SUNN‐
type cohesin complexes participate in Drosophila meiosis, 
which resemble RAD21L‐ and REC8‐cohesins in mammals, 
respectively.

C(2)M‐SA‐type cohesin accumulates along the chromo-
some arms, but not at the centromeres, after pre‐meiotic S phase 
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and dissociates from chromosomes after pachytene. In either 
C(2)M or SA female mutants, sister centromere cohesion is in-
tact, but SC formation and subsequent crossover are impaired 
(Gyuricza et al., 2016; Manheim & McKim, 2003), suggest-
ing that C(2)M‐SA‐type cohesin acts primarily in homologue 
interaction rather than sister chromatid cohesion. Thus, C(2)
M‐SA‐type cohesin has similar features to RAD21L‐cohesin in 
mammals (Ishiguro et al., 2014). In contrast to C(2)M‐SA‐type 
cohesin, SOLO‐SUNN‐type cohesin localizes to centromeres 
before meiotic prophase I and persists until metaphase II in 
spermatocytes and oocytes (Khetani & Bickel, 2007; Krishnan 
et al., 2014; Yan et al., 2010). SOLO‐SUNN‐type cohesin plays 
crucial roles in centromeric cohesion and mono‐orientation of 
sister centromeres during meiosis I (Krishnan et al., 2014; Yan 
& McKee, 2013; Yan et al., 2010). Thus, SOLO‐SUNN‐type 
cohesin has similar features to REC8‐cohesin in mammals. 
Once SOLO‐SUNN‐type cohesin is loaded on the chromo-
somes before meiotic prophase, its de novo incorporation into 
chromosomes is not detectable during meiotic prophase, sug-
gesting that chromosome‐bound SOLO‐SUNN‐type cohesin is 
stable rather than dynamic (Gyuricza et al., 2016). This phe-
nomenon is similar to what has been reported in mouse REC8‐
cohesin dynamics in oocytes (Revenkova, Herrmann, Adelfalk, 
& Jessberger, 2010; Tachibana‐Konwalski et al., 2010).

In Drosophila, which lack typical telomere repeats, no bou-
quet is observed during homologue synapsis. Instead, Drosophila 
oocytes exhibit centromere clustering as a prerequisite for ho-
mologue synapsis, which is analogous to bouquet formation 
(Takeo, Lake, Morais‐de‐Sa, Sunkel, & Hawley, 2011; Tanneti, 
Landy, Joyce, & McKim, 2011). In Drosophila oocytes, the 
centromeres act as the earliest sites of synapsis initiation, while 
synapsis is also initiated at the interstitial sites along the chro-
mosomal arms at the later stage. Centromere clustering and syn-
apsis initiation at the centromeres depend on the chromosome 
cohesion protein ORD and presumably on SOLO‐SUNN‐type 
cohesin (Takeo et al., 2011; Tanneti et al., 2011). Although C(2)
M is less important for centromere clustering, it is required for 
synapsis initiation at the interstitial sites (Tanneti et al., 2011).

Thus, different organisms including Drosophila may use 
evolutionarily conserved systems for meiotic chromosome 
regulation, of which mechanisms are endowed by distinct 
kleisins of the cohesin complexes, “the REC8‐type” and “the 
RAD21L‐type” subunits.

13  |   PREMATURE LOSS OF 
COHESIN IS ASSOCIATED WITH 
AGE‐RELATED ANEUPLOIDY IN 
FEMALE MEIOSIS

In mammals, oocytes begin meiosis in the fetal ovary and 
then enter the dictyate stage, when they undergo long‐term 
cell cycle arrest while awaiting the hormonal stimulus for 

resumption of meiosis (Jones, 2008). There is a gradual 
loss of cohesin from the nuclei at this stage in mouse and 
human oocytes (Garcia‐Cruz, Brieno, Roig, Grossmann, & 
Velilla, 2010; Prieto, Tease, Pezzi, Buesa, & Ortega, 2004). 
Oocytes subsequently resume meiosis by entering meta-
phase I and again become arrested at metaphase II before 
ovulation. Thus, the time interval from the establishment to 
the final resolution of sister chromatid cohesion is remark-
ably prolonged in female meiosis, which lasts for decades 
in humans and many months in mice. Notably, aneuploidy 
predominantly arises as a consequence of chromosome mis-
segregation in female meiosis, which leads to severe birth 
defects such as Down’s syndrome and miscarriage (Hassold 
& Hunt, 2001). Given that the frequency of clinically recog-
nized trisomy largely correlates with advancing maternal age 
(Herbert, Kalleas, Cooney, Lamb, & Lister, 2015; Nagaoka, 
Hassold, & Hunt, 2012), it has been suggested that premature 
loss of sister chromatid cohesion could be one of the primary 
causes of chromosome segregation errors in oocytes, because 
cohesin has already localized along the chromosomes during 
meiotic prophase in fetal ovaries (Prieto et al., 2004).

Indeed, accumulating evidence suggests that cohesion lev-
els are decreased in aged human and mouse oocytes (Chiang, 
Duncan, Schindler, Schultz, & Lampson, 2010; Lister, 
Kouznetsova, Hyslop, Kalleas, & Pace, 2010; Liu & Keefe, 
2008; Sakakibara, Hashimoto, Nakaoka, Kouznetsova, & 
Hoog, 2015; Tsutsumi, Fujiwara, Nishizawa, Ito, & Kogo, 
2014; Zielinska, Holubcova, Blayney, Elder, & Schuh, 2015). 
It has been shown that, despite the invariable levels of total 
REC8 protein in oocytes from old to young mice, the level 
of chromosome‐bound REC8 is severely reduced at the cen-
tromeres and on the arms in both naturally aged oocytes 
(Chiang et al., 2010; Lister et al., 2010) and senescence‐ac-
celerated mouse oocytes (Liu & Keefe, 2008), suggesting 
that the REC8 cohesin has dissociated from chromosomes 
in the aged cells. Consequently, aged oocytes exhibit a high 
incidence of distally associated homologous chromosomes 
without visible chiasma compared to young cells (Lister 
et al., 2010). This is accompanied by a significant reduction 
in the proportion of bivalents with a single chiasma, like in 
Smc1β KO oocytes, where distally associated homologues 
without skewed crossover sites are prevalent (Hodges et al., 
2005). This phenomenon can be explained by the notion that 
low levels of arm cohesion cannot prevent chiasmata from 
moving and slipping off the chromosome. Thus, gradual re-
duction of sister chromatid cohesion along the arm regions 
leads to destabilization of the physical linkage between ho-
mologues in aged oocytes.

Furthermore, coincident with the reduced levels of REC8 
at the centromeres, sister kinetochores are significantly sepa-
rated apart at metaphase I and metaphase II in aged oocytes, 
indicating that sister chromatid cohesion at the centromeric 
regions is weakened (Chiang et al., 2010; Lister et al., 2010; 
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Zielinska et al., 2015). As a result of the disruption in cen-
tromere geometry, weakened centromeric cohesion accompa-
nies a high incidence of chromosome missegregation during 
the transition from metaphase I to anaphase I in aged oocytes. 
Recent live imaging analysis has shown that the majority of 
chromosome segregation errors are preceded by premature 
separation of bivalents into univalents during metaphase I in 
aged oocytes (Sakakibara et al., 2015). Moreover, it should 
be noted that retention of SGO2 on the chromosomes is also 
reduced in aged oocytes, which may, in turn, partly amplify 
the premature loss of chromosome‐bound cohesin (Lister 
et al., 2010). Thus, dissociation and degradation of chromo-
some‐bound REC8‐cohesin over time account for the high 
frequency of aneuploidy in aged oocytes, raising a question 
whether cohesin on the chromosomes is renewed during pro-
longed oocyte arrest.

The cohesin loading factor NIPBL/SCC2 localizes along 
chromosome axes during meiotic prophase in fetal oocytes 
and becomes undetectable after dictyate arrest is com-
menced (Kuleszewicz, Fu, & Kudo, 2013; Visnes, Giordano, 
Kuznetsova, Suja, & Lander, 2014). Concomitantly, before 
dictyate arrest, cohesins significantly dissociate from de‐
synapsing chromosomes, leaving protein aggregates called 
polycomplexes (Prieto et al., 2004). Thus, whether in oo-
cytes sister chromatid cohesion is maintained on the chro-
mosomes without turnover, or is complemented by de novo 
synthesis and reloading of cohesins during prolonged arrest, 
remains unclear. This question has been addressed by a ge-
netic approach using Rec8TEV/TEV mouse lines, in which the 
endogenous Rec8 allele is genetically modified so that REC8 
can be artificially cleaved by TEV protease (Burkhardt, 
Borsos, Szydlowska, Godwin, & Williams, 2016; Tachibana‐
Konwalski et al., 2010). When TEV protease is introduced 
into M I‐arrested oocytes from Rec8TEV/TEV females, all the 
bivalent chromosomes are converted into single chromatids, 
indicating that cohesion is lost completely after REC8TEV de-
pletion. However, when TEV‐resistant REC8 is exogenously 
expressed from a conditionally activated Rec8 transgene in 
Rec8TEV/TEV oocytes before pre‐meiotic DNA replication, 
conversion of bivalents into single chromatids is suppressed 
in M I oocytes, indicating that cohesion is established by 
the exogenous REC8 compensating the loss of REC8TEV. 
However, it is important to note, that when TEV‐resistant 
REC8 is expressed in Rec8TEV/TEV oocytes during or after 
dictyate arrest, it no longer suppresses the conversion of bi-
valents into single chromatids in M I oocytes, suggesting that 
the exogenous REC8 cannot contribute to cohesion during 
or after dictyate arrest. Crucially, the REC8 exogenously ex-
pressed at those times exhibits little localization to chromo-
somes, suggesting that oocytes during or after dictyate arrest 
do not have the ability to reload cohesin onto chromosomes. 
In agreement with this notion, when SMC1β is condition-
ally disrupted in primordial follicle oocytes shortly after 

birth, cohesion and chiasma positions still remain normal in 
M I oocytes (Revenkova et al., 2010). This indicates that de 
novo SMC1β expression is dispensable for the maintenance 
of cohesion during dictyate arrest once cohesion has been 
established in pre‐meiotic S phase. Thus, REC8‐mediated 
cohesion is maintained without detectable turnover from dic-
tyate arrest until resumption of meiosis I in oocytes. Since it 
has been shown that chromosome abnormalities are slightly 
elevated in oocytes from heterozygous Smc1β or Rec8 mice, 
gene dosage of cohesin may potentially affect aneuploidy 
(Murdoch, Owen, Stevense, Smith, & Nagaoka, 2013). This 
implies that heterozygous human carriers of cohesin gene 
mutations may be at higher risk of aneuploidy, which should 
be focused in future clinical studies.

14  |   CONCLUSION

In mammalian germ cells, the meiosis‐specific cohesin 
complex plays critical roles in chromosome axis forma-
tion, homologue association, meiotic recombination and 
centromeric cohesion, which cannot be substituted by 
mitotic cohesin. These specific functions are endowed by 
the meiosis‐specific subunits of the cohesin complex. The 
kleisin subunit REC8 and RAD21L, in particular, provide 
distinct functions and specificities of cohesin complexes 
during meiosis I. It is noteworthy that a system similar 
to REC8 and RAD21L in mammalian meiosis is also ob-
served in other organisms. Over a wide range of organisms, 
REC8‐type cohesin largely contributes to canonical sister 
chromatid cohesion and primarily acts for centromeric co-
hesion during meiosis I. In contrast, RAD21L‐type is an 
atypical cohesin because it less contributes to sister chro-
matid cohesion, but possesses more specific role in homo-
logue interaction.

At present, several questions remain to be answered. REC8‐ 
and RAD21L‐type cohesins have their intrinsic loading sites 
on the chromosomes and form distinct cohesin‐enriched do-
mains. The primary DNA sequence or loading factor that 
underlies these cohesin‐enriched domains remains elusive. 
Although the establishment of REC8‐mediated cohesion is 
dependent on DNA replication, that of RAD21L is dependent 
on DSB. The mechanism of RAD21L‐mediated cohesion is 
an important question to be addressed. Furthermore, REC8‐ 
and RAD21L‐type cohesins have different functions in ho-
mologue association. It is largely unexplained how RAD21L 
acts during bouquet exit to complete homologue association. 
Given that the loss of meiosis‐specific cohesin is associated 
with age‐related aneuploidy, it is an enigma how meiotic co-
hesion is preserved without turnover over the long spans of 
time involved in maternal meiotic arrest. Further study will 
shed light on the mechanistic insight of meiotic cohesion and 
its role in chromosome dynamics during meiosis.
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