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Drosophila Insulin Pathway Mutants Affect Visual
Physiology and Brain Function Besides Growth, Lipid,
and Carbohydrate Metabolism
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OBJECTIVE—Type 2 diabetes is the most common form of
diabetes worldwide. Some of its complications, such as retinop-
athy and neuropathy, are long-term and protracted, with an un-
clear etiology. Given this problem, genetic model systems, such
as in flies where type 2 diabetes can be modeled and studied,
offer distinct advantages.

RESEARCH DESIGN AND METHODS—We used individual
flies in experiments: control and mutant individuals with partial
loss-of-function insulin pathway genes. We measured wing size
and tested body weight for growth phenotypes, the latter by
means of a microbalance. We studied total lipid and carbohy-
drate content, lipids by a reaction in single fly homogenates with
vanillin-phosphoric acid, and carbohydrates with an anthrone-
sulfuric acid reaction. Cholinesterase activity was measured us-
ing the Ellman method in head homogenates from pooled fly
heads, and electroretinograms with glass capillary microelectrodes
to assess performance of central brain activity and retinal function.

RESULTS—Flies with partial loss-of-function of insulin pathway
genes have significantly reduced body weight, higher total lipid
content, and sometimes elevated carbohydrate levels. Brain
function is impaired, as is retinal function, but no clear correla-
tion can be drawn from nervous system function and metabolic
state.

CONCLUSIONS—These studies show that flies can be models
of type 2 diabetes. They weigh less but have significant lipid gains
(obese); some also have carbohydrate gains and compromised
brain and retinal functions. This is significant because flies have
an open circulatory system without microvasculature and can be
studied without the complications of vascular defects. Diabetes
60:1632-1636, 2011

nsulin stimulates cell growth and regulates lipid and
carbohydrate metabolism (1). Defects in insulin
signaling lead to diabetes in humans, a chronic de-
generative disease characterized by metabolic dis-
turbances diagnosed by elevated glucose plasma levels.
Complications include retinopathy, neuropathy, and ne-
phropathy. Diabetic retinopathy courses with abnormal
retinal angiogenesis and vascular permeability that lead
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to blindness. Diabetic retinopathy was linked recently to
neuronal damage independent of vascular defects (2)
where diabetes symptoms such as hyperglycemia are
thought to act as triggers (3). However, molecular mech-
anisms underlying these processes are not clear. It is ob-
vious that a model where a clean separation can be made
from complications dependent and independent of vascu-
lar damage is highly desirable.

Molecular and genetic studies in Drosophila have
documented evolutionary conservation of insulin signaling
(4,5). The fly genome encodes seven insulin-like peptides
(termed dilp1-7), homologs of mammalian insulin, and
insulin-like growth factors. Dilps bind and activate the in-
sulin receptor (InR), which autophosphorylates, allowing
the binding and phosphorylation of Chico (fly insulin re-
ceptor substrate homolog). The fly phosphatidylinositol
3 kinase (PI3K) homolog then binds Chico and InR. The
PI3K catalytic subunit (Dp110) phosphorylates phosphati-
dylinositol (4,5) bisphosphate (PIP;) to phosphatidylino-
sitol (3-5) trisphosphate (PIPs). PIP; recruits the fly PDK1
and PKB kinase homologs to the membrane. Activated
PKB regulates growth and metabolism via diverse protein
targets, including the fly homologs of Rheb, a G protein
required for target of rapamycin (TOR) kinase activation,
TOR, S6K, a kinase that phosphorylates the S6 ribosomal
protein, glycogen synthase kinase 3 (GSK-3), and the tran-
scriptional factor forkhead box class O (5).

Insulin pathway conservation also occurs at the physi-
ologic level. Flies with reduced dilps show developmental
delays and combined elevated hemolymph glucose and
trehalose levels (trehalose being the primary circulating
sugar in flies, a nonreducing disaccharide) besides higher
whole-body glycogen and lipid content (6,7). Fly glucose
metabolism is similar to that in mammals, with the excep-
tion that trehalose is also used. Trehalose is synthesized in
the fat body (a rough equivalent of liver/adipose tissue of
mammals), circulated in hemolymph, and taken up by
muscle and target tissues, where it is metabolized to glu-
cose. Trehalose fits the need for a quickly metabolizable,
nontoxic intermediate energy storage molecule, especially
for indirect flight muscles (8). Overall, and because of evo-
lutionary conservation, Drosophila has been key for genetic
and molecular elucidation of metabolism and diabetes (9).

The adult chico and InR mutant flies that emerge after
metamorphosis are significantly smaller, with a higher
lipid content per milligram of protein. They are obese and
diabetic, with stunted growth (10,11). It is unknown, as is
true in humans, whether aging diabetic flies will show
diminishing lipid and carbohydrate levels (12). Here, we
studied weight, metabolic alterations in young adult flies
with partial loss-of-function mutations for the insulin
pathway and brain and retinal function.
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RESEARCH DESIGN AND METHODS

Drosophila stocks. Flies were cultured under standard conditions (25°C, 50%
relative humidity, 12/12-h light/dark cycles). Fly stocks used were InR™**/TM3
(chemically induced hypomorphic mutation not in the coding sequence),
InR%>**/TM3 (transposable element insertion in the first coding exon), InR>™"/
TMS3, chico'/CyO (transposable element insertion in the first coding exon),
Dp110°Y/TM6B, Dp110°V*/TM6B, Dp110*/TM6 (deletion of the 3’ end of the
coding sequence), PKBY/TM3 (point mutation in the kinase catalytic domain
F327I), PKB*/TM3 (point mutation in the coding sequence G99S), dRheb™/
TM6B (point mutation in the coding sequence V71 K), dRheb®"/TM6B,
dRheb**/TM6B (0.6-Kb insertion in the 5’'—coding sequence), dS6K™/TM3
(5'—deletion in the coding sequence), and dS6K"17*3/TM3 (transposable ele-
ment insertion) obtained from E. Hafen (ETH, Zurich, Switzerland). The mu-
tant alleles and balancer chromosomes (CyO, TM3, and TM6B) used in this
study are described in FlyBase (http:/flybase.org) and the references therein,
and with the exception of InR’™ and dS6K® 1713, all are characterized and
published bona fide mutants.

Genetics. Homozygous mutant flies for chico, Dp110, and Rheb were made by
crossing heterozygous chico'/CyO, Dpl110*YTM6B, Dp110°V3/TM6B, and
dRheb™1/TM6B inter se, respectively, and selecting progeny flies without
balancer chromosomes. Because mutant alleles of other insulin pathway loci
are homozygous embryonic lethal, we used flies with the following viable
heteroallelic combinations: InR™Y/InR™®, InR*™®/mR*™, InR™®/mR*™,
Dp110*Y/Dp110°®, Dp110*/Dp110°™>, PKB'/PKB®, Rheb *°Y/Rheb**!, and
S6KYY/S6KT1™3. These last were obtained by crossing heterozygous flies for
both mutant alleles in the heteroallelic combination desired and selecting flies
without balancer chromosomes in the progeny. These viable alleles and het-
eroallelic combinations represent unique and different fly models of type 2
diabetes. Most insulin pathway alleles and heteroallelic combinations are le-
thal and so cannot be studied. Among rare viable insulin pathway mutant

combinations, these were chosen to represent a cross section of the pathway
at different levels, and to our knowledge, are the sole known Drosophila
models of diabetes type 2. To account for differences in genetic backgrounds,
pairwise comparisons were always done between mutant combinations and
sibling controls.

Body weight, wing size, lipid, and carbohydrate content. To determine
body weight, wing size, and lipid and carbohydrate content, flies were aged for
2 days after eclosion before use. We measured body weight in cold-killed in-
dividual females placed in a microbalance (Cahn C-31; Manasquan, NJ) with
0.1 pg of sensitivity and a range of 0.1 pg to 25 mg. For wing analysis, flies
were anesthetized with CO,, and wings were dissected, placed in absolute
ethanol, and mounted in a 6:5 mixture of lactic acid/ethanol (13). Measure-
ments were made directly on digitized images of mounted wings using iVision
software (Calgary, AB, Canada).

Lipid determination was as described previously (14). Total lipids were
calculated against a calibration curve using vegetable oil solutions as the lipid
standard. Carbohydrate content was determined as described previously (15)
and was estimated against a calibration curve of standard glucose solutions.
Estimates may not reflect total carbohydrate content, because no test was
done to ensure complete digestion and reaction of cuticular carbohydrates;
nevertheless, all flies were treated in the same way. Results are expressed as
the percentage change.

Determination of cholinesterase activity. Groups of 10 adult flies (aged 2
days) were decapitated, and heads were frozen for at least 24 h. Heads were
homogenized in Tris-HCl saline buffer containing protease inhibitors (1 mol/L
NaCl, 50 mmol/. MgCl,, 1 mmol/. EGTA, 1 mg/mL bacitracin, 2 mmol/L
benzamidine, 0.1 mg/mL soybean trypsin inhibitor, 10 pg/mL pepstatin,
20 units/mL aprotinin, 20 pg/mL leupeptin, and 10 mmol/L Tris buffer, pH 7.0).

Acetylcholinesterase activity was measured by the Ellman method (16)

using 1 mmol/Li acetylthiocholine as the substrate and 50 pmol/L iso-OMPA
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FIG. 1. Mutant flies for insulin signaling show defective growth. A: Histogram shows the percentage of reduction in body weight of heteroallelic and
homozygous mutants of the insulin pathway compared with their respective paired heterozygous sibling controls (n = 16). *P < 0.01. The error bars
represent the SEM. B: Heteroallelic PKB!3 mutant flies are smaller than PKBY* or PKB3* heterozygous flies (controls). C: The wing area of
insulin pathway mutant flies is reduced compared with paired sibling controls (n = 30). *P < 0.01. The error bars represent SEM. D: Heteroallelic
mutant PKB® wings are smaller than heterozygous PKBY* or PKB>* wings (controls). (A high-quality color representation of this figure is

available in the online issue.)
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(tetraisopropyl pyrophosphoramide). Iso-OMPA is a cholinesterase inhibitor
with relative specificity for butyrylcholinesterase (17). The assay mixture
contained 0.05% (w/v) Triton X-100. Acetylcholinesterase activity was de-
termined as described previously (18). One unit of enzymatic activity is equal
to 1 pmol of substrate hydrolyzed per hour per milliliter at pH 7.5 and 25°C.
Protein content was determined according to Lowry (19) using BSA as the
standard.

Electroretinogram recordings. Electroretinogram (ERG) recordings were
performed as described previously (20), with the exception that the recording
electrode made electrical contact with the compound eye. The ground mi-
croelectrode was placed in the thorax. Flies were adapted to the dark for at
least 5 min before recordings, and all recordings were performed in the dark.
Stimulating white light was 427 lux for 500 ms. Electrical responses were
amplified, visualized, and photographed in a TDS210 oscilloscope (Tektronix,
Beaverton, OR). Each fly was tested five times, and individual results were
averaged per fly. For each genotype, 10 flies were tested.

Statistical analysis. Student ¢ test was used for pairwise comparisons be-
tween mutant and sibling controls. Data are presented as mean *+ SEM.

RESULTS

Most insulin pathway mutant alleles are homozygous le-
thal. To circumvent lethality and obtain varying degrees
of reduction in insulin signaling, we used viable hetero-
allelic and viable homozygous hy]gomorphic mutant alleles
(Dp110°™, Dp1105W3, and Rheb™"). The allele chico’ is
viable, despite being a null (partly because the Drosophila
InR has an intracellular extension homologous to insulin
receptor substrate genes, allowing the Drosophila InR to
function as an insulin receptor substrate) (21).

These flies have some insulin pathway functionality left,
typical of type 2 diabetic patients. This allows escape from
lethality; because of this, alterations in the parameters
studied, although not necessarily present in all mutant
combinations tested for the same gene, if seen in at least
one mutant combination, is treated to mean that the gene
affects the particular function studied.

As a way to quantify insulin-signaling effects on growth,
we measured body weight and wing size of mutant flies
and control siblings and calculated percentage reductions.
All of the mutant combinations had different, but signifi-
cant, degrees of weight reduction (range 22% for S6 K-1/P1713
to 65% for PKB"®). Wings were similarly significantly re-
duced (Fig. 1).

To examine effects on metabolism, we determined lipid
content in individual flies. We found that mutants generally
have a significant increase in lipid content, which was
close to 100% in PKB mutants and in DpI10°™?1! Less
dramatic but significant increases were found for the in-
sulin receptor, chico, S6K, and three heteroallelic combi-
nations of Dp110. No significant differences were found
for Dp1105W35W3 or for three of four mutant combinations
for Rheb. From these results we conclude that all tested
proteins are involved in lipid metabolism (Fig. 2A4).

We also determined carbohydrate content. Of the mu-
tants tested, fewer showed significant changes. The three
heteroallelic combinations of Dpl110, InR3T5/E19, and

exhibited significant increases, whereas
Rheb** V™! had a discrete decrease (Fig. 2B). Other
mutants, such as Dp110*V2M pKBY3 and chico’ had no
significant changes. We interpret these data to mean that
at least InR, Dpl110, and Rheb are involved in carbohy-
drate metabolism. Two ways to rationalize that other
genes had no effect (chico, PKB, and S6K) is that lipid
metabolism may be affected more than carbohydrates by
insulin signaling, and/or that the particular combinations
tested retained more carbohydrate function.

Taken together, these results argue that growth and both
lipid and carbohydrate metabolism is partially regulated by
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FIG. 2. Insulin signaling is required for lipid and carbohydrate metab-
olism. A: Histogram shows the percentage increases in lipids of heter-
oallelic and homozygous mutant flies for the insulin pathway compared
with paired heterozygous sibling controls. B: Histogram shows the
percentage change in body carbohydrates of heteroallelic and homo-
zygous mutant flies for the insulin pathway compared with paired het-
erozygous siblings (n = 8). *P < 0.01. The error bars represent the
SEM.

insulin. This has been shown in mammals and diabetic
patients, making the fly model similar.

Insulin signaling has been implicated in retinal (22) and
brain function (23), so we looked for alterations in the fly
nervous system. We assessed retinal physiology using
ERGs. Most mutant genotypes tested, but not all, showed
a decrease in amplitude of the ERG-sustained component
(Fig. 3A). The off transient, a consequence of light-evoked
synaptic activity at the brain lamina (24), also showed
amplitude reductions (Fig. 3B).

ERG decreases do not correlate with the extent of meta-
bolic alterations. Dp110°V¥*"? shows severe ERG defects
but normal lipid and carbohydrate content. PKB"® has de-
fective ERGs (Fig. 3B), a dramatic increase in body lipids,
but no change in carbohydrates. I PI5BT5  exhibits no
change in ERG and carbohydrate levels but an increase in
lipid content. Dp110?™A has no ERG defect but does have
severe lipid and carbohydrate alterations. Finally, Rheb ™A1
has normal ERG and lipid levels but a significant reduction
in carbohydrates. As suggested for diabetes, retinal defects
here arise independently of microvasculature defects.

A general and global way to assess nervous system
function is to use an enzymatic activity common in nervous
tissue as an activity reporter. We measured cholinesterase
activity from fly head extracts because acetylcholine is the

diabetes.diabetesjournals.org
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FIG. 3. Insulin pathway mutant flies show defective retinal function.
Histograms show the percentage reduction in the amplitude of the
sustained component (A) and off transient (B) of the ERG of hetero-
allelic and homozygous mutants compared with paired heterozygous
sibling controls (n = 10). *P < 0.01. The error bars represent the SEM.
C: ERGs from heteroallelic PKB"? mutant flies and heterozygous sib-
ling controls. The mutant condition shows a significant amplitude re-
duction of the receptor potential (sc) and the off transient (off) in the
ERG. The on transient (on) is also marked.

main excitatory neurotransmitter in fly brains (25). Most
mutant phenotypes studied have significantly diminished
cholinesterase activity, implying faulty brain acetylcholine
metabolism (Fig. 4). Diabetic retinas in rats also show sig-
nificant changes in cholinesterase activity (18).

DISCUSSION

Insulin signaling affects lipid and carbohydrate metabolism
and size in flies, showing evidence of the pathway’s two-
prong control over metabolism and growth. Moreover, nervous

diabetes.diabetesjournals.org
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FIG. 4. Cholinesterase activity is defective in insulin mutant flies.
Histogram shows percentage reduction in cholinesterase of the insulin
pathway heteroallelic and homozygous mutants compared with paired
heterozygous siblings (n = 3-8). *P < 0.1, **P < 0.05. The error bars
represent the SEM.

system defects exhibit alterations on at least two neuro-
transmitter systems: acetylcholine and histamine. Histamine
is the fly photoreceptor neurotransmitter (25). Reduced
photoreceptor depolarization (amplitude reductions of sus-
tained ERG component) leads to reduced neurotransmitter
release, and whether this solely explains reduced off tran-
sients (brain electrical responses to histamine) does not
belie the fact that neuronal communication is compromised.
Reduced cholinesterase activity, as a general brain readout,
implies widespread nervous system effects.

Our results, in general, argue that nervous system phe-
notypes are partially independent of metabolic and growth
phenotypes, strongly implying an independent origin. This
has the unforeseen benefit of allowing the study of insulin-
signaling defects in relative isolation: mutant conditions
occur without other effects in nervous system physiology
in Dp110°%*>%3 lipid metabolism in InR5545/375 and car-
bohydrate metabolism in Rheb™ 771,

In summary, partial loss-of-function insulin pathway fly
mutants have reduced growth, lipid and carbohydrate
alterations, and abnormal nervous system function. They
represent viable type 2 diabetes models, allowing study of
several typical insulin-signaling defects of patients with
diabetes, some in relative isolation.
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