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Cancer vaccines are a real application of the extensive knowledge of immunology to the �eld of oncology. Tumors are dynamic
complex systems inwhich several entities, events, and conditions interact among them resulting in growth, invasion, andmetastases.
e immune system includes many cells and molecules that cooperatively act to protect the host organism from foreign agents.
Interactions between the immune system and the tumor mass include a huge number of biological factors. Testing of some cancer
vaccine features, such as the best conditions for vaccine administration or the identi�cation of candidate antigenic stimuli, can
be very difficult or even impossible only through experiments with biological models simply because a high number of variables
need to be considered at the same time. is is where computational models, and, to this extent, immunoinformatics, can prove
handy as they have shown to be able to reproduce enough biological complexity to be of use in suggesting new experiments. Indeed,
computational models can be used in addition to biological models. We now experience that biologists and medical doctors are
progressively convinced that modeling can be of great help in understanding experimental results and planning new experiments.
is will boost this research in the future.

1. Introduction

Vaccines for cancer represent an alternative approach to
the use of standard drugs. Differently from the traditional
vaccines that prevent disease instructing the immune system
on how to recognize and destroy a particular pathogen,
cancer vaccines enlist the patient’s immune system to destroy
existing cancer cells. While simple in concept, the develop-
ment of products has proven difficult. Problems speci�cally
lie in eliciting sufficient, tumor-selective stimulation of an
immune system that is already tolerant of cancer cells [1, 2].

Revolutions in biotechnology and information technol-
ogy have produced enormous amounts of data and are
accelerating the extension of our knowledge of biological
systems. ese advances are changing the way biomedical
research, development, and applications are done. Clinical
data complement biological data, enabling detailed descrip-
tions of various healthy and diseased states, progression, and

responses to therapies. e availability of data representing
various biological states, processes, and their time depen-
dencies enable the study of biological systems at various
levels of organization, from molecule to organism, and even
population levels.

�peci�c systems biology models, that is, applications of
computer and mathematical models that enable the sim-
ulation of biological processes, can be used to investigate
the physiology and pathology of the immune responses
involved in vaccination and immunotherapy. is involves
applications of computational simulations to the discovery,
design, and optimization of vaccines and other immunother-
apies.

e term immunotherapies usually refers to the treat-
ment of established disease while the term vaccine is
restricted to prophylactic immune interventions. We will use
“vaccines” to refer to generic immune intervention and will
use terms “therapeutic vaccines” and “prophylactic vaccines”
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F 1: Tumor immunology and the main difference between cancer immunotherapy and cancer immunoprevention.

to distinguish between the two modalities. Vaccine design is
amenable to the application of modeling techniques, for both
the discovery and development of new and existing vaccines.
In what follows, we �rst deal with a brief overview of different
types of existing cancer vaccines; we then focus on modeling
cancer vaccines and �nally we draw our �nal remarks.

2. A Brief Overview of Cancer Vaccines

e ultimate aim of a vaccine is to activate a component of
the immune system such as B lymphocytes, which produce
antibodies or T lymphocytes, which directly kill tumor cells.
Antibodiesmust recognize antigens in the native protein state
on the cell’s surface. Once bound, antibodies are capable
of destroying tumor cells by means of antibody-dependent
cellular cytotoxicity or complement-mediated cytotoxicity. T
lymphocytes recognize proteins as major histocompatibility
complex complexed with peptides that can vary in size,
presented on the surface of the cells recognized.

Recent research [3] demonstrated that the vaccine
approach may also be useful in the prevention and treatment
of cancer (tumor immunology, see Figure 1). It is known
that the immune system eliminates most of the cancer cells
(cancer immunoediting [4]). ose that are not recognized
escape immune surveillance, leading to tumors. Tumor vac-
cines can thus be used to stimulate an immune response
against poorly immunogenic tumor variants. In few words,
the ultimate goal of tumor immunology is to understand the
interactions between tumor and immune system cells and to
devise immune based approaches to �ght cancer.

e use of cytotoxic T cells (CTLs), dendritic cells (DC),
and antibodies, actually represent well-known approaches in
cancer immunotherapy [5].

e use of anti-idiotype (Id) antibodies as vaccines to
stimulate immune system response against tumors, have
been demonstrated effective in preventing tumor growth and
curing mice with established tumors [6]. Several monoclonal
anti-Id antibodies that have the appearance of distinct human
tumor-associated antigens (TAAs) have been developed and

tested in the clinic, demonstrating good results. Indeed the
efficacy of these vaccines will depend on the results of several
Phase III clinical trials. Numerous studies in mouse tumor
models have shown that DCs pulsed with tumor antigens can
induce protective and therapeutic anti-tumor immunity [7].
It is, however, worth to mention that the complexity of the
DC system requires rational manipulation of DCs to achieve
protective or therapeutic immunity.

Recently it has been shown that prophylactic vaccines
administered to transgenic mice prone to cancer develop-
ment can completely prevent tumor onset and restore a
normal life expectancy [8]. Even though prophylactic cancer
vaccines are still far from human application, this opens up
an entirely new perspective in cancer prevention, leading
to a future in which vaccines will equally contribute to the
prevention of infectious diseases and cancer.

3. Modeling Cancer Vaccines

Computational models have been recognized as relevant
for the understanding of biological systems. In particular,
models are suitable for guiding biology from a qualitative
to a quantitative, thus predictive, science. Pharmaceutical
companies are starting to use models to optimize/predict
therapeutic effects at the organism level, suggesting that
computational biology can effectively play a key role in this
�eld [9].

Obviously to model the behavior of a cancer vaccine,
one needs to model the immune system that is one of the
most exciting challenges as it represents one of the most
complex biological systems. It is, in fact, an adaptive learning
system that operates at multiple levels (molecules, cells,
organs, organisms, and groups of organisms). Immunological
research, both basic and applied, needs to deal with this
complexity.

Computational immunologists increasingly use mathe-
matical modeling and computer simulation to study the
immune system and the immune responses to different
pathogens [10]. us, quantitative models that appropriately
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F 2: e modeling cycle.

capture the complexity (both in the architecture and the
function) of the immune system are an integral component
of the personalized medicine efforts. In silico models of the
immune system can provide answers to a variety of questions,
including understanding the general behavior of the immune
system, the course of disease, the effects of treatments, the
analysis of cellular andmolecular interactions, and eventually
the simulation of laboratory experiments. Here we will focus
onmodeling the immune response against tumors elicited by
a cancer vaccine.

Figure 2 summarizes the modeling cycle that all the
modeling approaches should follow.

4. The SimTriplex Model

�ne of the �rst example in modeling a cancer vaccine is
represented by the SimTriplex model. It is an agent-based
model speci�cally tailored to simulate the effects of �Triplex�
tumor-preventive cell vaccines inHER-2/neu transgenicmice
prone to the development of mammary carcinoma [11, 12].
e Triplex vaccine blocks mammary carcinogenesis when
administered to BALB-neuT mice starting at 6 weeks of age,
allowing very long (>1 y) tumor-free survival [13].emajor
limitation of the very effective Triplex vaccine was that only a
Chronic protocol, withmore than 60 vaccinations distributed
throughout the life of themouse, blockedmammary carcino-
genesis, whereas shorter and/or delayed protocols le mice
exposed to tumor onset.

SimTriplex includes a variety of cellular and molecular
entities, including tumor and vaccine cells, B and plasma
cells, helper and cytotoxic T cells, macrophages, dendritic
cells, antigens, antibodies, and cytokines. e attributes of

each cell entity include position, age, and state (e.g., resting,
activated, memory, antigen-presenting, etc.). Changes of
state (e.g., cell activation, cytotoxicity, cell death, etc.) are
governed by a set of rules based on tumor immunology.

Antigen-speci�c immune interactions (antibody
or immunoglobulin/antigen (IG/Ag) and T cell
receptor/peptide/MHC (TCR-pMHC)) are modeled with
bit-strings (sequences of 0 s and 1 s). Hamming distances
is used as a measure of affinity among receptors and co-
receptors: the probability of an interaction depends on the
number of matches.

e simulation space is a two-dimensional triangular lat-
tice (six neighbor sites) with periodic boundary conditions.
Cells and molecules are free to move across the lattice sites.
At each time step, representing 8 hours of real time, cells and
molecules residing on the same lattice site can interact.

To model the continuous carcinogenic process of HER-
2/neu transgenic mice, new tumor cells appear in the lattice,
and existing tumor cells replicate (and rarely die). e
simulation stops if the total number of tumor cells exceeds a
threshold, signifying the formation of a palpable tumormass,
or aer a de�ned number of time steps, typically more than 1
year of real time.

Probabilistic elements affect various starting variables
(e.g., initial positions in the lattice) and interactions (e.g.,
cytotoxic death of tumor cells). e outcome of each run of
the simulator, entailing the generation of a large number of
pseudo-casual numbers, is taken to simulate the results of one
mouse, thus reproducing experimental variability between
individual mice.

SimTriplex model coupled with optimization techniques
(based on combinatorial optimization algorithms as genetic
algorithms and simulated annealing) allowed to search for
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an optimal vaccination schedule to obtain the same efficacy
of the Chronic protocol with a de�nitively reduced vaccine
administrations. Simtriplex predictions has been veri�ed in a
in-vivo experiment (probably the �rst model results veri�ed
in vivo). Results show that in-silico predicted schedule does
signi�cantly reduce the tumors multiplicity on the ten mice
mammary glands even if the vaccination efficacy for the
�rst appearing of tumor was still overestimated. Further
adjustment of the model is required to include evidence of
immune aging which appeared from in vivo follow up results
[13, 14].

5. TheMetastaSimModel

eTriplex vaccine proved to be effective also as a therapeutic
vaccine, showing its ability to be used against induced
lung metastases [15]. Brie�y, lung metastases were induced
in BALB-neuT mice by intravenous injection of syngeneic
mammary carcinoma cells.

e administration of the vaccine started one day aer the
intravenous injection of the metastatic cells and it is repeated
twice weekly up to the end of the experiment (day 32), with
lower but good prevention rates when the same cycle is
started 7 days aer the induction of themetastases (Triplex+7
protocol). e immunological responses in the immunopre-
vention and therapeutic experiments overlap only partially.
A major goal of biologists is to better understand the
biological behavior to improve the efficacy of the therapeutic
treatment and to try to predict, for example, the outcomes of
longer experiments in order to move faster towards clinical
phase I trials. In a recent work [16], we developed a new
computational model named MetastaSim to be used as an in
silico virtual lab can help answering these questions.

e MetastaSim model has been inspired by the
SimTriplex model. MetastaSim has in common with
SimTriplex the same modeling framework [17, 18] and
some of the biological mechanisms shared by the in vivo
experiments they model. However it has some important
differences, that is, a complete revision of the cancer growth
kinetics. e model is now able to simulate multiple different
metastatic nodules, each one with its own growth rate, more
accurately. To reproduce the growth in time of nodules, the
Gompertz growth law is now used in its differential form.

An exhaustive search for any optimal protocol has been
performed. Results showed that it is possible to obtain in
silico a reduction of approximately 45% in the number of
vaccinations. Most of the protocols presented there share a
similar vaccination strategy that is composed by a boost of
three vaccine injections, a period of rest, and then a series of
vaccine recalls that are somewhat equally spaced. e model
suggests that any optimal protocol for preventing lungmetas-
tases formation should be therefore composed by an initial
massive vaccine dosage followed by few vaccine recalls. Even
if this is a well-known vaccination strategy in immunology,
since it is commonly used for many infectious diseases such
as tetanus and hepatitisB, it can be still considered a relevant
result in the �eld of cancer-vaccines immunotherapy.

6. Model of Immunotherapy and
Cancer Vaccination

Unfortunately, the efficacy of available therapeutic strategies
for cancer still remain poor. Moreover, widely adopted
approaches to cure or, at least, delay cancer development that
is, chemotherapy and radiotherapy, both still carrymajor side
effects for individual patients. In order to better understand
therapies, experimentalists and clinicians are increasingly
appreciatingmathematical and computational modeling, and
in recent years several papers appeared in the literature:
they have begun to investigate the various aspects of the
immune system response to cancer from a computational and
mathematical perspective [19–21].

Particularly, in [22], the authors developed a math-
ematical model to describe the growth dynamics of an
immunogenic tumor in the presence of an active immune
response. ey paid special attention on the interaction of
cancer cells with cytotoxic T lymphocytes and professional
antigen presenting cells in a relatively small, multicellular
tumor, before the angiogenesis process.

During the numerical simulation of themodel, it has been
discovered that adoptive immunotherapy protocols have the
potential to promote tumor growth instead of inhibiting it.
Conversely, active vaccination with tumor-antigen pulsed
APCs was shown to be generally more effective.

7. Epitope Focused Immunoinformatics

DNA vaccination has been widely explored to develop new,
alternative, and efficient vaccines for cancer immunotherapy.
ey offer several paybacks such as speci�c targeting, use
of multiple genes to enhance immunity, and reduced risk
compared to conventional vaccines.

Fast advances in molecular biology and immunoinfor-
matics allow logical design methodologies. ese technolo-
gies allow construction of DNA vaccines encoding selected
tumor antigens together withmolecules to direct and amplify
the desired effector pathways, as well as highly targeted
vaccines aimed at speci�c epitopes. Reliable predictions of
immunogenic T cell epitope peptides are crucial for rational
vaccine design and represent a key problem in immunoinfor-
matics [23, 24].

For example, the authors in [25] explore the selection of T
cell epitopes to develop epitope-based vaccines, the need for
CD4+ T cell help for improved vaccines and the assessment
of vaccine performance against tumor.

Moreover they present two applications, namely predic-
tion of novel T cell epitopes and epitope enhancement by
sequence modi�cation, and combined rationale design with
bioinformatics for creation of new synthetic mini-genes.

8. Repositories inMachineLearningAlgorithms

It is well known that the immune system is characterized
by high combinatorial complexity, especially due to its wide
potential repertoire. Consequently, the analysis of immuno-
logical data needs the use of specialized computational tools.
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A newway to select vaccine targets and reduce the number of
necessary experiments is based on the use of machine learn-
ing (ML) algorithms in combination with classical experi-
mentation. As the development of ML algorithms requires
standardized data sets that are measured in a consistent way
(and share the same uniform scale), there is a gap between
the immunology community and the ML community. To
overcome this problem and �lling the gap, the authors in [26]
present a repository for machine learning in immunology
named Dana-Farber Repository for Machine Learning in
Immunology (DFRMLI). Integrating experimental and in
silico methods allows efficient study of highly combinatorial
problems related with interpreting immune responses. With
the advancement of experimental technologies, the amount
of immunological data produced anddistributed is increasing
dramatically. Bioinformatics tools also based on statistical
and ML algorithms are able to utilize these data. e main
problem with both immunological data and other biological
data is that they are usually represented qualitatively and
as a consequence, these descriptions are oen ambiguous,
presenting a challenge for the mainstream ML developers.
e DFRMLI is designed to overwhelm this hole through
extending immunological data with well-de�ned annotations
that could be conveniently used by the ML community.

9. Models in Flow Cytometry Data for
Cancer Vaccine ImmuneMonitoring

Detection of minimal residual disease, diagnosis, charac-
terization of the pro�le of immunotherapies, and immune
response tracking represent hot topics in cancer research.
Flow cytometry (FCM) is widely used in these areas of inter-
est. Circumventing spurious positive events and recognizing
uncommon cells subsets delineate the challenge in all these
applications. To accomplish this is task, the use of multiple
markers simultaneously in the analysis of FCM data will help
a lot. is because the additional information provided oen
lends a hand to minimize the number of false positive and
false negative events, hence improving both sensitivity and
speci�city.

With the use of the above explained strategy by manual
gating, it is possible to analyze at most twomarkers in a single
dot plot, oen applying a sequential scheme. e sequential
strategy is difficult to assess, as it gets rid of events that fall
outside preceding gates at each stage.

Model-based analysis is a promising computational tech-
nique that works using information from all marker dimen-
sions simultaneously and offers an alternative approach to
�ow analysis that can usefully complement manual gating in
the design of optimal gating strategies. In [27], the authors
presented results from model-based analysis illustrated with
examples from FCM assays commonly used in cancer
immunotherapy laboratories.

e authors’ approach to model-based analysis is based
on the use of statistical mixture models. Statistical mixture
models are very widely used in the presence of problems
where objects depicted in several or many dimensions need
to be clustered or classi�ed.

10. Modeling Personalized Response to
Cancer Immunotherapy

erapeutic interventions that stimulate tumor-speci�c
immunity still remain rare. An improved understanding
of patient-speci�c dynamic interactions of immunity
and tumor progression, combined with personalized
application of immune therapeutics, would increase the
efficacy of immunotherapy. In [28] the authors developed
a method to predict and enhance the individual response
to immunotherapy by using personalized mathematical
models. e approach is set in the early phase of treatment
and includes an iterative real-time in-treatment evaluation of
patient-speci�c parameters from the accruing clinical data,
construction of personalized models and their validation,
model-based simulation of subsequent response to ongoing
therapy, and suggestion of potentially more effective patient-
speci�c modi�ed treatment. e model is then applied to a
prostate cancer immunotherapy. e major �nding of the
simulations conducted in [28] suggested that an increase in
vaccine dose and administration frequency would stabilize
the disease in most patients.

11. Immunotherapies Enhancing Vaccines

Recently, Wilson and Levy [29] have investigated the possible
effect of an immunotherapy based on an immunoregula-
tory protein, the transforming growth factor beta, (TGF-
𝛽𝛽), in combination with vaccine treatments. e proposed
mathematical model follows the dynamics of the tumor size,
TGF-𝛽𝛽 concentration, activated cytotoxic effector cells, and
regulatory T cells. Using numerical simulations and stability
analysis, they have studied several scenarios: a control case
of no treatment, anti-TGF-𝛽𝛽 treatment, vaccine treatment,
and combined anti-TGF-𝛽𝛽 vaccine treatments. e model
was able to capture experimental results, and hence has
the potential to be used in designing future experiments
involving this approach to immunotherapy.

12. Conclusions

e investigation of vaccines and therapeutic approaches
against cancer from the mathematical and computational
point of view is still a new �eld of research. It has been shown
that several papers have begun to propose models that have
been appreciated by both clinicians and experimentalists and
have been proven to be of great use in improving anti-cancer
approaches research.

We expect that an extensive use of mathematical/compu-
tational modeling into clinical practice will stimulate the
clinical research of new and alternative protocols for cancer
treatments with immune interventions.

e possibility of the use of personalized approaches into
the clinical practice is probably still far to come. However,
virtual patient simulations can produce expected responses to
the therapy for different class of patients (by immunological
pro�le, age, pathologies, etc.). is can help the clinicians in
deciding the best clinical approach for the speci�c patient.
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Finally, a thought on the future directions of themodeling
cancer vaccines topic. We believe that models should be inte-
grated during the entire cycle of cancer vaccine development
line. is means that if a model has been used in the �rst
line of the development �for example in the de�nition of
epitopes targets), it should be used later in the optimization
of the schedule and �nally in the human response to the
speci�c vaccine or immunotherapy. Presently, to the best of
our knowledge, there is nomodel that has been applied to the
three critical phases of vaccine development.
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