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Global stakeholders including the World Health Organization rely on predictive models for
developing strategies and setting targets for tuberculosis care and control programs. Failure
to account for variation in individual risk leads to substantial biases that impair data inter-
pretation and policy decisions. Anticipated impediments to estimating heterogeneity for each
parameter are discouraging despite considerable technical progress in recent years. Here we
identify acquisition of infection as the single process where heterogeneity most fundamen-
tally impacts model outputs, due to selection imposed by dynamic forces of infection. We
introduce concrete metrics of risk inequality, demonstrate their utility in mathematical
models, and pack the information into a risk inequality coefficient (RIC) which can be cal-
culated and reported by national tuberculosis programs for use in policy development and
modeling.
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uberculosis (TB) is a leading cause of morbidity and

mortality worldwide, accounting for over 10 million new

cases annually!. Although allusions are often made to the
disproportionate effect of TB on the poorest and socially mar-
ginalized groups®3, robust metrics to quantify risk inequality in
TB are lacking. Data reported by the World Health Organization
(WHO), which mathematical models often rely on for calibra-
tions and projections, are typically in the form of country-level
averages that do not describe heterogeneity within populations. In
keeping with the spirit of the Sustainable Development Goals
agenda?, we postulate that mathematical models that account for
heterogeneity and inequality may best reflect the potential impact
of TB prevention and care strategies in achieving disease elim-
ination. Further, we hypothesize that disease incidence patterns in
a population reflect unobserved heterogeneity and may be used to
inform model development and implementation.

Variation in individual characteristics has a generally recog-
nized impact on the dynamics of populations, and pathogen
transmission is no exception®. In infectious diseases, hetero-
geneities in transmission have been shown to have specific effects
on the basic reproduction number, Ry, in ways which are unique
to these systems®~10, In TB, as in other communicable diseases,
this approach motivated the proliferation of efforts to collect data
on contact patterns and superspreading events, to unravel pro-
cesses that may affect transmission indices and models. The need
to account for variation in disease risk, however, is not unfamiliar
in epidemiology at large, where so-called frailty terms are more
generally included in models to improve the accuracy of data
analysis!!. The premise is that variation in the risk of acquiring a
disease (whether infectious or not) goes beyond what is captured
by measured factors (typically age, malnutrition, comorbidities,
habits, social contacts, etc), and a distribution of unobserved
heterogeneity can be inferred from incidence trends in a holistic
manner. Such distributions are needed for eliminating biases in
interpretation and prediction!213, and can be utilized in con-
junction with more common reductionist approaches, which are
required when there is desire to target interventions at individuals
with specific characteristics.

Individual risk of infection or disease relates to a probability of
responding to a stimulus and, therefore, direct measurement
would require the recording of responses to many exposures to
obtain the frequency at which the outcome of interest occurs. In
TB, this is unfeasible due to the relatively low frequency of disease
episodes and the extremely variable time period between expo-
sure and disease development, but may be approximated by sub-

dividing the population in sufficiently large groups and recording
occurrences in each of them. Then incidence rates can be cal-
culated per group, and ranked. Supplementary Fig. 1 illustrates
the population of a hypothetical country comprising low and
high-risk individuals distributed geographically (but dividing by
age or income level, for example, applied singly or in combina-
tion, could also serve our statistical purposes). Forasmuch as
individuals are nonuniformly distributed, disease incidence will
vary between groups and carry information about variation in
individual risks.

Here we adopt concepts and tools developed in economics to
measure inequality in wealth, such as the Lorenz curve'* and the
Gini coefficient!®, and modify them into suitable indicators of
disease risk inequality. We then calculate a risk inequality coef-
ficient for three countries—Vietnam, Brazil, and Portugal,
representing high to low TB burdens—and derive country-
specific risk distributions to inform transmission models. The
resulting models are applied to investigate the conditions for
reducing TB incidence by 90% between 2015 and 2035, one of
the targets set by the WHO’s End TB Strategy!. The results differ
significantly from those obtained by a homogeneous approx-
imation of the same models. We find that by considering het-
erogeneity, control efforts result in a lower impact on disease
burden, except in special circumstances which we highlight. More
generally, we elucidate how model predictability relies on certain
forms of heterogeneity but not others, and propose a practical
scheme for summarizing inequality in disease risk to be used in
modeling and policy development for TB and other diseases.

Results

Risk inequality coefficient (RIC). Figure 1 depicts Lorenz
curves!4 for TB occurrences in the populations of Vietnam, Brazil
and Portugal structured by municipalities (level 2 administrative
divisions), enabling the calculation of a Gini coefficient!® that we
refer to as the risk inequality coefficient (RIC) (Methods). To
inform mathematical models of TB transmission with two risk
groups!?17, we discretize risk such that 4% of the population
experiences higher risk than the remaining 96%. This cut-off is
consistent with previous studies!”>18, although it could have been
set arbitrarily as the procedure does not depend on how we
discretize what is conceivably a continuous risk distribution. The
Lorenz curves corresponding to the discretization, which are
depicted by the dashed lines in Fig. la, are then used as an
approximation to the original solid curves with the same RIC.
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Fig. 1 Risk inequality coefficient. a Lorenz curves calculated from notification data stratified by level 2 administrative divisions (697 districts in Vietnam;
5127 municipalities in Brazil; 308 municipalities in Portugal). A risk inequality coefficient (RIC) was calculated for each country from Lorenz curves as in
Methods. Country maps with administrative divisions for Vietnam (b), Brazil (¢), and Portugal (d), colored by number of cases notified per 100,000

person-years
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RIC-compliant transmission models. Inequality in TB risk
among individuals was implemented in three processes which
were analyzed in alternation (Methods; parameters in Table 1): (i)
contact rates; (ii) susceptibility to infection; and (iii) progression
from primary infection to active disease. This study is primarily
devoted to heterogeneity in contact rates, while the other two
modalities are included for comparative purposes. Although the
models differ in the precise implementation of the relative risk
parameters («; and a,), in all three cases these can be calculated
exactly and simultaneously with the mean effective contact rate
(B), so as to match the country-specific incidence patterns
reported for the first year in the data series.

The procedure was applied to data from Vietnam, Brazil, and
Portugal (Fig. 2, for heterogeneous contact rates), resulting in risk
variances of 10.5 in Vietnam, 11.1 in Brazil, and 5.63 in Portugal.
Notice that these variances are consistently higher than the
observed variances in TB incidence (2.3 in Vietnam, 5.1 in Brazil,
and 2.7 in Portugal), indicating that transmission masks risk
heterogeneity to some extent and we need to resort to models for

the inference of total variances!!. Model outputs were then
analyzed in-depth revealing a poor predictive capacity of
homogeneous models and leading to the identification of
acquisition of infection as the single most important process
behind model disparities.

The risk distributions represented inside the various epide-
miological compartments in Fig. 2b, e, h, are key to under-
standing why model outputs diverge. Mean risks have been
normalized to one in all countries (i.e. the distributions in Fig. 2a,
d, g have mean one), but as the system runs to endemic
equilibrium high-risk individuals are infected predominantly. In
other words, high-risk individuals are selected out of the
uninfected compartment when a force of infection is in operation.
As a result, the mean risk in the uninfected compartment
decreases, decelerating the epidemic to the extent that the
uninfected pool sustains transmission. This effect is greater for
stronger forces of infection and larger risk variances, consistently
with the mean risks displayed inside square brackets for the
various epidemiological compartments. A similar process occurs

TB rate (relative to mean)

TB rate (relative to mean)

TB rate (relative to mean)

Table 1 Parameters for tuberculosis transmission model
Symbol Definition Value
p Mean effective contact rate estimated
u Death and birth rate 1/80 yr~!
S Rate of progression from primary infection 2yr]
¢ Proportion progressing from primary infection to active disease 0.05
0] Rate of reactivation of latent infection 0.0039 yr—' (Vietnam);
0.0013 yr—! (Brazil, Portugal)
T Rate of successful treatment 2yr!
0 Proportion clearing infection upon treatment [0, 1]
a; Individual risk in relation to population average estimated
pi Proportion of individuals in low and high risk groups, respectively py=0.96; p, =0.04
9 100 Vietnam Brazil Portugal
E« N Risk distribution [var(z) = 10.5] a Risk distribution [var(x) = 11.1] d M Risk distribution [var(x) = 5.63] g
c 50 (model input) (model input) (model input)
-
2 0
'S 0 5 10 15 20 O 5 10 15 20 O 5 10 15 20
U b U e U h
— H [0.42] — H [0.44] — H [0.64]
B /L Bl l Bl L
0t P 0t P 0t P
p H Bl p 12l H Bl [ ] Bl
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Fig. 2 Tuberculosis transmission model with distributed contact rates. a, d, g Risk (contact rate) distributions inferred by fitting a mathematical model to
notification data stratified in two risk groups (96% and 4% with risk factors a; and a,, respectively) as in Methods (a; = 0.339 and a, =16.9 in Vietnam
[variance 10.5]; a; = 0.320 and a, =17.3 in Brazil [variance 11.1]; &y = 0.516 and a, =12.6 in Portugal [variance 5.631). b, e, h Risk distributions in the
various epidemiological compartments segregated by the transmission dynamics. Numbers in square brackets represent the mean baseline risk @ among
individuals populating each epidemiological compartment. ¢, f, i Distribution of incidence rates calculated from stratified model outputs (Y; = 0.69 and
Y, =8.5in Vietnam [variance 2.3]; Y;=0.52 and Y5> =12 in Brazil [variance 5.1]; Y;=0.67 and Y, = 9.0 in Portugal [variance 2.7]). Model parameters as
in Table 1. Clearance of infection upon successful treatment: @ = 1. Country-specific parameter values: @ = 0.0039 yr—" and f=3.23yr1 in Vietnam;
@ =10.0013yr " and =294 yr~1 in Brazil; ® = 0.0013 yr~1 and = 4.66 yr~' in Portugal. Notice that observed incidence variances ((Y — 1)2) indicate

underlying risk variances ((a — 1)2) which are consistently higher!’
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Fig. 3 Moving targets. How (b, d, f) and why (a, ¢, e) fixed targets appear to be moving when observed from a homogeneous frame (Methods, and
Supplementary Table 1). The model adopted in this illustration concerns heterogeneity in contact rates as governed by Egs. (1)-(5). Mean risks among
individuals in uninfected and latent compartments are calculated as (Ua; + Uoa2)/(Uy + Uy) and (Liaq + Loaz)/(Ly + L), respectively. Model parameters as
in Table 1. Clearance of infection upon successful treatment: = 1. Country-specific parameter values: @ = 0.0039 yr~1, =3.23 yr~1 (heterogeneous)
or f=10.7 yr~1 (homogeneous) in Vietnam; @ = 0.0013 yr—, f=2.94 yr~1 (heterogeneous) or #=17.3yr~1 (homogeneous) in Brazil; @ = 0.0013 yr—7,

p=4.66yr~1 (heterogeneous) or #=17.1yr~1 (homogeneous) in Portugal

for all epidemiological compartment where individuals are at risk
of infection (i.e. uninfected (U) and latent (L) in the case of the
model adopted here).

Risk inequality as a compromiser of intervention impact. The
heterogeneous contact-rate model initiated according to 2002
incidences (Fig. 2) was run forward in time with a constant decay
rate in reactivation to meet an arbitrary fixed target of halving the
incidence in 10 years (Fig. 3b, d, f, black curves). If these estimations
(exact calculations in this case) and projections had been made by
the homogeneous model, the required control efforts would have
been underestimated and the target systematically missed (Methods;
Supplementary Table 1), with relative errors around 20-30% for
Vietnam, 25-40% for Brazil, and 10-20% for Portugal (colored
curves). This is because the force of infection decreases as the
intervention progresses, reducing the strength of selection described
above, which in turn allows for increasing mean risks in com-
partments at risk of infection (Fig. 3a, ¢, e), counteracting the
intended effects of the intervention. Homogeneous models artifi-
cially disable this selection process, creating an illusion that control
targets are moving when observed from a homogeneous frame.

This is a general phenomenon in infectious diseases, although
there may be exceptional circumstances where the sign of the
effect may be reversed as detailed below. In any case, it is a
systematic error (bias) not to be confused with uncertainty in
parameter estimates!®-20,

Meeting WHO’s End TB incidence targets. The models were
used to reproduce reported country-level trends for TB incidence
in Vietnam, Brazil, and Portugal. Following initialization in 2002
as above, the model was fitted to the incidence declines reported
by WHO until 2015. In the first instance we explored how much
reactivation should have decreased had the observed incidence
declines been attributed to changing this parameter alone at a
constant rate (Supplementary Table 2). This was performed
numerically by a binary search algorithm designed to meet 2015
incidences (Fig. 4). Trajectories were then prolonged until 2050
(dashed segments in the same figure) suggesting the need for

increased efforts to meet the End TB incidence targets (2035
targets marked by dotted lines). This initial exploration was
completed by the introduction of a scale-up parameter (k) to
account for increased reductions in reactivation from 2020
onwards and estimating the necessary scaling to meet the 2035
target in each country (displayed as “xx” in the figure). As above,
the homogeneous model consistently underestimates the required
control efforts. In the following we refer to this as the default
expectation when comparing the outcomes of the same investi-
gation strategy applied to more realistic scenarios where inci-
dence declines are attributed to a combination of parameters.

When incidence declines are attributed to reductions in the
probability of progressing from primary infection to active disease
(¢, with the remaining 1 — ¢ maintaining a latent infection) as
well as reactivation (w), estimating the two decay rates is not
possible with a simple binary search algorithm and we use a
Bayesian Markov Chain Monte Carlo (MCMC) approach
(Methods). Figure 5 depicts the declining annual incidences and
model trajectories, based on the means and 95% credible intervals
of the posterior distributions of decay rates in ¢ and w
(Supplementary Table 3), prolonged until 2020. Also in this
scenario, control measures must be intensified for meeting the
ambitious End TB targets. We apply the scaling factor «
uniformly to the decay rates of the two parameters and estimate
the required effort intensification. Heterogeneous contact-rate
(Fig. 5a, ¢, e) and homogeneous (Fig. 5b, d, f) models are similarly
effective at capturing the data, but require significantly different
scale-up efforts (Supplementary Table 4). In contrast with the
case where only reactivation was reduced, we now get an
indication that Brazil requires less effort intensification under
heterogeneity (in relation to that predicted by the homogeneous
model) while Vietnam and Portugal comply with the default
expectation. Inspection into the percent reduction curves for the
two parameters reveals that scale-up tends to be more effective
when the initial decline (pre-scale-up) is predominantly attrib-
uted to reducing reactivation (homogeneous in Vietnam and
Portugal; heterogeneous in Brazil).

Under heterogeneous contact rates, the incidence declines
observed in Vietnam and Portugal have been predominantly
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Fig. 4 Model trajectories with heterogeneity in contact rates and gradual decline in reactivation (w). TB incidence from 2002 to 2015 (black dots) and
model solutions under heterogeneous contact rates (a, ¢, e); homogeneous approximation (b, d, f). Initial parameters values calculated by adjusting the
mean effective contact rates () to fit 2002 incidence rates: f=3.23yr~1(a) or #=10.7 yr—1(b) in Vietnam; #=2.94 yr—1 (c) or f=17.3yr~1 (d) in Brazil;

p=4.66yr~" (e) or B=17.1yr=1 () in Portugal. Incidence declines towards 2015 attributed to reducing reactivation: w(t) = wye'

(t-2002) (where @wo =

0.0039 in Vietnam and wo = 0.0013 in Brazil and Portugal), with constant rates r,, adjusted to meet the incidences observed in 2015 (Supplementary
Table 2). From 2020 onwards, the trajectories split to represent two scenarios: rates of parameter change are maintained (dashed); scale r,, by a factor x
(represented as “xk") to meet WHO incidence targets for 2035 (solid). The bottom plots in each panel represent the cumulative reductions in reactivation
required to meet the targets calculated as @(t) =1— w(t)/w(2002). Clearance of infection upon successful treatment: # =1. Other parameters as in

Table 1. Model described by Egs. (1)-(5), and Rq given by (6)

attributed to reducing progression to disease from recent
infection (Fig. 5a, e; bottom panels show blue curve above red
in pre-scale-up phase). Given the assumption of identical scaling
factors for both processes, the reduction in ¢ (blue) reaches
saturation soon after scale-up is initiated leaving most of the
remaining effort to w (red) and inflating the required scaling
efforts. Contrastingly, in Brazil the incidence decline has been
largely attributed to reducing disease arising from reactivation
(Fig. 5¢; bottom panel shows red curve above blue pre-scale-up)

leaving the reduction in ¢ far from saturation and creates a
scenario where reducing progression maintains substantial
potential to generate further impact after scaling.

Naturally, there is no reason for scale-up factors to be the same
for the two processes, and this result suggest that new ways to
reduce reactivation are needed in Vietnam and Portugal. In
relation to that, it also raises the importance of understanding
what may have led to the declining reactivation rates in Brazil and
how might other countries achieve similar goals. More detailed
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Fig. 5 Model trajectories with heterogeneity in contact rates and gradual declines in disease progression (¢) and reactivation (). TB incidence from 2002
to 2015 (black dots) and model solutions under heterogeneous contact rates (a, ¢, e); homogeneous approximation (b, d, ). Initial parameters values

calculated by adjusting the mean effective contact rates (f) to fit 2002 incidence rates: = 3.23yr=' (a) or #=10.7 yr~1 (b) in Vietnam; = 2.94yr~1 (c)
or f=17.3yr=1(d) in Brazil; = 4.66 yr—1 (e) or f=17.1yr=1 () in Portugal. Incidence declines towards 2015 attributed to reducing disease progression

and reactivation: ¢(t) = 0.05€"+(t72902) and w(t) = wye'«t2092) (where wo =

0.0039 in Vietnam and wo = 0.0013 in Brazil and Portugal), with constant

rates r, and r,, estimated using MCMC (Supplementary Table 3). From 2020 onwards, the trajectories split to represent four scenarios: rates of parameter
change are maintained (dashed black); scale r, and r,, by a factor x (represented as “xx") to meet WHO incidence targets for 2035 (solid black); apply
the same scale up efforts to r, only (blue) or r,, only (red). The bottom plots in each panel represent the cumulative reductions in disease progression
and reactivation required to meet the targets calculated as ¢(t) = 1— ¢(t)/$(2002) and @(t) = 1 — w(t)/w(2002), respectively. Clearance of infection
upon successful treatment: @ =1. Other parameters as in Table 1. Model described by Egs. (1)-(5), and Rq given by (6)

datasets should be interrogated in search for answers, but this is
potentially due to especially intense social protection programs
implemented over recent decades in Brazil?!-2>, leading to
improved health conditions in population segments classically
more at risk for TB.

The parameters that have been most commonly varied to
explain incidence trends in modeling studies are rates of
successful treatment (1) and mean effective contacts (8)2°. For

completion and comparability with other studies we conceive
additional scenarios where the observed declines in incidence
are attributed to decays in 7 and w (Supplementary Fig. 2 and
Supplementary Tables 5 and 7) or f and w (Supplementary Fig. 3
and Supplementary Tables 6 and 7), and infer the respective
attributions as above. In both cases the scaling in control efforts
required to meet End TB incidence targets appears lower under
heterogeneity. This seems counter-intuitive at first but see the
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values of R, plotted as insets in Figs. 4, 5 and Supplementary
Figs. 2, 3. During the scale-up phase, this transmission index is
consistently below one in the homogeneous implementation and
above one when heterogeneity is considered. Since 7 and f relate
to ongoing transmission, scaling changes in these parameters is
not effective at reducing incidence when Ry<1 and, conse-
quently, the homogeneous implementations must rely on the
reduction in w alone to meet the targets. This process results in
the inflation of the scale parameter x observed under homo-
geneity and reversion of the default expectation. The sensitivity of
our conclusions to which parameters are actually varying in each
setting reinforces the need for more discriminatory data and
dedicated studies.

Results presented so far addressed heterogeneity in contacts
rates, which implicitly considers that acquisition of infection is
positively correlated with transmission to others>$-10:1218 Byt
irrespective of how present heterogeneity in contact rates is in TB
dynamics, there is a myriad of biological factors which contribute
to making individuals different and may affect TB incidence
patterns.

Figure 6 (and Supplementary Table 8) shows the results
obtained by employing the same procedures as in Fig. 5 but
assuming that heterogeneity affects susceptibility of infection
given exposure, rather than the rate of contacts. The two variants

are in fact described by the same model, except for how the force
of infection is formulated (Methods). Essentially, if we write the
force of infection as A = B(p;I; + p,I,), where the new parameters
p1 and p, represent the relative infectivities of individuals in risk
groups 1 and 2, respectively, heterogeneity in contact rates!? is
retrieved when p;=a; and heterogeneity in susceptibility!” is
obtained by imposing p; =1, while a combination of the two
would correspond to values in between.

The agreement between Figs. 5 and 6 supports the notion that
the results are mostly insensitive to whether heterogeneity affects
primarily contact rates or susceptibility to infection, but the case
of Vietnam deserves a special note. Under the heterogeneous
susceptibility formulation, the contribution of reducing reactiva-
tion to the decline in incidence is more evident than under
heterogeneous contact rates (Fig. 6b). As a result the scaling
factor required to meet the 2035 incidence target is substantially
reduced. This is not sufficient to reverse the default conclusion
that the homogeneous model underestimates control efforts (as it
happens again in Brazil), but it brings the estimated scaling factor
closer to that estimated by the homogeneous model. It follows
that any combination of the two forms of heterogeneity is
expected to lead to the same qualitative conclusions, whereas,
quantitatively, the findings for Brazil and Portugal are confined to
narrow ranges while for Vietnam they are highly sensitive to how
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Fig. 6 Model trajectories with heterogeneity in susceptibility to infection and gradual declines in disease progression (¢) and reactivation (w). TB incidence
from 2002 to 2015 (black dots) and model solutions under heterogeneous susceptibility to infection (a, ¢, @); cumulative reductions in disease progression
and reactivation required to meet End TB incidence targets (b, d, f), calculated as ¢(t) = 1 — ¢(t)/¢$(2002) and @&(t) = 1 — w(t)/w(2002), respectively.
Initial parameter values calculated by adjusting the mean effective contact rates () to fit 2002 incidence rates: #=19.2yr~1in Vietnam (@); f = 26.1yr~!
in Brazil (¢); #=21.6yr~1in Portugal (e). Incidence declines toward 2015 attributed to reducing disease progression (¢) and reactivation (w): (t) =

0.05¢/(t-2002) gnd w(t) = woe'w("zooz) (where wo =0.0039 in Vietnam and wo = 0.0013 in Brazil and Portugal), with constant rates r, and r,, estimated
using MCMC (Supplementary Table 8). From 2020 onwards, the trajectories split to represent four scenarios: rates of parameter change are maintained
(dashed black); scale r,, and r,, by a factor k (represented as “x«") to meet WHO incidence target for 2035 (solid black); apply the same scale up efforts to
ry only (blue) or r,, only (red). Clearance of infection upon successful treatment: @ = 1. Other parameters as in Table 1. Model described by Egs. (1)-(4) and

(7), and Ry given by (8)
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Fig. 7 Model trajectories with heterogeneity in disease progression and
gradual declines in progression (¢) and reactivation (w). TB incidence from
2002 to 2015 in Portugal (black dots) and model solutions under
heterogeneous progression to disease (c); mean risk (progression fraction)
among susceptible individuals [(Ui(t) + L1(t))an + (Ux(t) + La(tD)az]/
Uy + L) + Ux(®) + La(D) (b), and endemic equilibrium parameterized
by the mean effective contact rate () plotted in terms of Rq for the
heterogeneous (blue) and homogeneous (black) models (a). Initial
parameter values calculated by adjusting g to fit 2002 incidence rates as
shown in a: f=17.1yr~". Incidence declines toward 2015 attributed to
reducing disease progression (¢) and reactivation (@): ¢(t) =
0.05¢"+(t72092) and w(t) = wye+(t2992) (where wo = 0.0039 in Vietnam
and wo = 0.0013 in Brazil and Portugal), with constant rates r, and r,,
estimated using MCMC (Supplementary Table 9). From 2020 onwards, the
trajectories split to represent four scenarios: rates of parameter change are
maintained (dashed black); scale r,, and r,, by a factor x (represented as
“xk") to meet WHO incidence target for 2035 (solid black); apply the same
scale up efforts to ry only (blue) or r,, only (red). Clearance of infection
upon successful treatment: § =1. Other parameters as in Table 1. Model
described by Egs. (9)-(13), and Ry given by (14)

individual predisposition to acquire infection correlates with
propensity to infect others. In any case, all the results presented so
far imply heterogeneity in acquisition of infection.

The results presented are in stark contrast with forms of
heterogeneity that do not affect acquisition of infection. Figure 7
(and Supplementary Table 9) shows that when heterogeneity is in
the probability of progression from primary infection to active
disease, model outputs do not deviate from the homogeneous
implementation. This is because progression is not under the
selection mechanisms described earlier in the paper, as demon-
strated by the mean risk among susceptible compartments
remaining flat at the value one (Fig. 7b) by contrast with what
has been noted under heterogeneous contact rates, for example
(Fig. 3a, ¢, e). Similarly, heterogeneity in rates of reactivation or
treatment success should generally not lead to different model
outputs unless correlated with predisposition for acquiring
infection. This confirms our earlier premise that variation in

acquisition of infection is the single most important process
behind the disparities between homogeneous and heterogeneous
models, and hence the most important to estimate.

In further account to sensitivity analysis we show that the
original results of Fig. 5 are robust to whether individuals clear
the infection upon treatment or maintain a latent infection
(Supplementary Fig. 4 and Supplementary Table 10).

Prevalence of latent TB infection. Prevalence of latent TB
infection (LTBI) calculated from model trajectories generated by
our heterogeneous models (27.0-28.9% in Vietnam, 15.2-16.1%
in Brazil, and 16.9-18.0% in Portugal, in 2014; Supplementary
Table 11) are generally consistent with estimates from a recent
study?’. This is irrespective of whether heterogeneity is in contact
rates or susceptibility to infection. Even though these percentages
are somewhat smaller than those expected under the homo-
geneous model, the reservoir must nevertheless be contained in
all three countries if incidence targets are to be met.

Discussion

The notion that heterogeneity affects the results of population
models and analyses is not new>28-32, but we still face a general
inability to measure it. We propose a concrete way forward for
infectious disease transmission models, which is based on routi-
nely collected data. Measures of statistical dispersion (such as
Lorenz curves'* and Gini coefficients!”) are commonly used in
economics to represent the distribution of wealth among indivi-
duals in a country and to compare inequality between countries,
but rarely used in epidemiology334. Measuring disease risk of an
individual is less direct than measuring income, but surely this
can be overcome in creative ways for classes of diseases.

We have focused on tuberculosis, and shown how to approx-
imate distributions of individual risk from suitably structured
disease notification and population data (Fig. 1; Supplementary
Fig. 1), and how to summarize the information into a simple risk
inequality coefficient (RIC=0.30 in Vietnam, RIC=0.46 in
Brazil, and RIC = 0.32 in Portugal), analogous to the Gini coef-
ficients calculated by the World Bank to describe inequality in
the distribution of wealth (0.38 in Vietnam, 0.51 in Brazil, and
0.36 in Portugal). Because they are based on the use of disease
estimates at the level of administrative divisions within countries,
there are limits to the accuracy of the RIC estimates, especially
due to misreporting, which may be more severe in some countries
than others. Other uses of the Gini coefficient, however, face the
similar limitations while the methodology is still used to drive
policy and program decisions and is improved upon as better
data and formalisms become available. Importantly, the avail-
ability of comparable inequality metrics in economics and health
can pave the way to pertinent studies between income inequality
and health and provide a basis for equity considerations in policy
development3’, a major component of the Sustainable Develop-
ment Goals agenda®. In addition, we have demonstrated how
to input this information into tractable mathematical models
and why this is essential to accuracy and predictive capacity of
these decision-making tools.

The approach followed here is in sharp contrast with those
based on explicit metapopulation models3°-38. We use incidence
data of a country stratified into its administrative (geographical)
divisions as a means to infer variation in disease risk among
individuals, rather than as a direct measure of variation between
the divisions themselves. To highlight this distinction we built a
metapopulation model consisting of two subpopulations (pat-
ches), each with its intrinsic individual variation, and constrain
the outputs to be consistent with patch incidences (Methods;
Supplementary Fig. 5), according to data from our study
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solid curve represents one model that produces country incidences in agreement with RIC values calculated in Fig. T (procedures described in Methods).
Filled circles marks variances in individual risk and R obtained for each country by the procedure utilized in this study, whereas open circles indicate Rg

estimated by homogeneous approximations

countries (Fig. 1). This sets a mathematical problem which can be
solved over a range of country-level variances in individual risk
(Supplementary Figs. 6 and 7), and for each variance there is an
exact value of Ry that makes the metapopulation model compa-
tible with the stratified incidence data. The result is a curve
describing R, as a function of variance in individual risk which is
plotted in Fig. 8 together with the corresponding metrics obtained
from the models used in this study (circles). The common
practice of implementing a metapopulation without individual
variation within subpopulations (lower limit of the curve), dis-
ables the action of selection at the individual level and carries
similar biases to those present in homogeneous models (open
circles). As individual variation increases, the curve approaches
our heterogeneous models (filled circles), supporting the notion
that the models proposed in this paper represent the dynamics of
an average location within a country (with variation captured
down to the individual level), in contrast with standard meta-
population models which describe an entire country structured
into patches (with differentiation between patches but neglecting
individual variation within).

Strikingly, the figure highlights an essential need for repre-
senting heterogeneity at the finest level if transmission indices are
to be estimated accurately. In placing the models adopted here in
the wider context of TB models with the same structure whose
outputs are compatible with stratified incidence data for Vietnam,
Brazil, and Portugal, the figure also reveals one potential limita-
tion of the approach. The range of variances (and associated R,
values) compatible with the data is wide and this is arguably the
greatest current attrition to reaching high levels of certainty on
parameters and predictions. This can be improved by combining
multiple schemes for stratifying country incidence data alongside
the development of more sophisticated methods for inferring
variation in individual risk from patterns in the data.

In conclusion, the worldwide adoption of risk inequality
metrics, such as the RIC proposed here or similar, has the
potential to prompt an explosion of creativity in mathematical
modeling, but it can also enable policymakers to assess risk
inequality in each country, compare the metric across countries,
and monitor the impact of equalization strategies and targeted
interventions over time.

Methods

Lorenz curves and risk inequality coefficients. Lorenz curves!'* are widely used
in economics to calculate indices of inequality in the distribution of wealth, known
as Gini coefficients'®. Although rarely used in epidemiology, similar metrics can be
adopted to describe inequalities in disease risk’>34. Here we construct a Lorenz
curve for each study country from TB notifications and population data structured
by municipalities (level 2 administrative divisions). Municipalities are ordered by
incidence rates (from low to high) and cumulative TB notifications are plotted
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against cumulative population (both in percentages). By construction, this results
in a convex curve between (0, 0) and (100, 100), which would be a straight line in
the absence of inequality. A risk inequality coefficient(RIC) can be calculated as the
ratio of the area between the curve and the equality line, over the area of the
triangle under the equality line. This gives a number between 0 and 1, which is
analogous to the Gini coefficient commonly used to summarize income inequality,
with the exception that while income can be measured at the individual level the
assessment of TB risk cannot be made by analyzing individuals directly, but must
be approximated from group measurements.

Supplementary Fig. 8 compares alternative Lorenz curves generated for
Vietnam, Brazil and Portugal to explore the effects of timespan and group size. As
we must comply with the administrative divisions already established in each
country, level 2 appears to offer the best compromise between resolution (the
smaller the units, the closer we get to measuring individual risk) and occurrences
(the larger the units, the larger the numbers and the more accurate the risk
discrimination3?). Regarding timespan, the longer the data series the better. We
used 10 years (2006-2015) in Vietnam and 14 years (2002-2015) in Brazil and
Portugal to generate the respective RIC values.

We then use the RIC to inform risk distributions for TB transmission models.
The Lorenz curves utilized to obtain RIC values consist of many segments (as many
as administrative divisions; 696 in Vietnam, 5127 in Brazil, and 308 in Portugal).
To keep our models tractable and low dimensional without compromising the
overall variance in risk we construct two-segment Lorenz curves with the same RIC
as the original and use this approximation to infer risk distributions for our TB
models.

Mathematical models. We adopt a TB transmission model which is adapted from
previously published studies'?17, to represent risk heterogeneity in three alternative
ways.

@

Heterogeneity in contact rates:

ddlf = quu+ 01, — MU, — uU, (1)
P+ 1)~ @ +p, @)
% = ¢0P, + oL, — (1 + )], 3)
%: (1= ¢)8P, + (1 — 0) I, — L,L; — (w + p)L,, 4)

where subscripts i =1, 2 denote low and high risk groups that individuals
enter at birth in proportions q; and g¢,, respectively. Within each group
individuals are classified, according to their infection history, into uninfected
(U)), or infected in one of three possible states: primary infection (P;); latent
infection (L;); and active tuberculosis disease (I;) which is the infectious state.
The model parameters along with their typical values used herein are listed in
Table 1. The force of infection upon uninfected individuals is
Lo
) (5)
where «; is a modifier of risk (contact rate in this case) of individuals in group
i in relation to the population mean (a)=q,a; + g,a, =1, and the basic
reproduction number is
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where (a?) is the second moment of the risk distribution, i.e.
(o) = q,a} 4+ q,a3. For simplicity we have assumed individuals to mix
uniformly irrespectively of risk group.
(ii)  Heterogeneity in susceptibility to infection:
When risk heterogeneity is attributed to susceptibility to infection the
model is still written as in Eqgs. (1)-(4), but the force of infection upon
uninfected individuals becomes

A =af (L + L), (7)

where «; is the susceptibility of individuals in group i in relation to the
population mean {(«a) = q;a; + g, = 1. The basic reproduction number for
this model is

w+ o) (1—¢)dw
R, = {a) ; S B ®
(t+otu) +0r0] [d+p  (8+u)(w+p)
(ili)  Heterogeneity in progression from primary infection to disease:
When risk heterogeneity is attributed to factors that affect the probability of
progression from primary infection to active disease, the model takes the form

du;
dtl = qip + 071, — AU; — uU; ©)
dP;
T;ZA(Ui+Li)7(6+#)Pi (10)
dr;
E;:‘Piapﬂf“’Li*(TJF#)Ii (11)
dL;
e (1—¢,)0P; + (1 — 0)7L; — AL; — (@ + u)L;, (12)
with force of infection
A=p + 1), (13)

and ¢; = «;¢, representing the probability of progression from primary infection to
disease for individuals in group i in relation to the population mean (a) = q,a, +
20> = 1. The basic reproduction number for this model is

_ wtu (@)¢d (1 (@)¢)dw
TH+w+p)+0rw| |0+u  (8+u)(w+p)

In all cases we use risk and risk distribution as generic terms to designate factors
of variation in the predisposition of individuals to acquire infection or disease,
which may be realized physically as rates of contacts with other individuals (i), or
biologically as susceptibility to infection given exposure (ii) or progression to
disease given infection (iii). We use the terminology epidemiological compartment
to refer to the composite of all compartments for the same infection status (i.e.
uninfected comprises both U; and U,, etc). We also introduce the notion of mean
risk for each epidemiological compartment to track selection (e.g. the mean risk for
U(t) is calculated as (U (H)a; + Ux(t)an)/(Us(t) + Us(1)), etc). We adopt two risk
groups for concreteness, but formalisms with more groups would essentially
support the same phenomena. Indeed, two recent studies implemented similar
selection processes within populations structured into hundreds of risk groups?0-41,

The models accommodate an endemic equilibrium when R, > 1, as displayed by
the solution curves parameterized by 8 in Supplementary Figs. 9, 10 and Fig. 7a.
Incidence rates in each risk group are approximated from model outputs by adding
the positive terms in dl;/dt and dividing by the population in that group, i.e.
(¢:OP; + wL;)/q; per year, and for the entire population as the weighted sum of
these over risk groups.

Model initialization. Model trajectories are initialized assuming equilibrium
conditions in 2002. Parameters describing the rates of birth and death of the
population, the probability of progression from primary infection to active disease,
and the rate of successful treatment, are set at the same values for the three
countries: y = 1/80 yr~1; ¢ = 0.05 (ref. 42), =2 yr! (ref. 43). The rate of reacti-
vation is considered three times higher in South East Asian than in Western
populations: @ =0.0013 yr~! in Brazil and Portugal; @ =0.0039 yr~! in Vietnam
(ref. 44). The mean effective contact rate () was calibrated to enable model
solutions to meet country-level incidences estimated by the WHO for 2002
(Supplementary Figs. 9, 10 and Fig. 7a). Risk group frequencies are set at q; = 0.96
and ¢, =0.04 and the relative risk parameters (o; and «,) estimated as described
below. The results are then displayed in terms of the non-dimensional parameter
Ry, which is linearly related to § according to Egs. (6), (8), (14).

The same procedure was carried out for the mean field approximations of the
respective models. At this point it can be confirmed that R, estimates are typically
higher under heterogeneity!2. We adopt heterogeneity in contact rates (i) as the
default model throughout the paper, and use the susceptibility (ii) and disease
progression (iii) variants for completion. Hence, unless specified otherwise, the
results shown in the paper refer to heterogeneity in contact rates.

Risk distributions. Given a Lorenz curve (Fig. 1a), any discretization can be
assumed to define how concentration of risk will enter the model. We adopt a
division into 96% low-risk and 4% high-risk groups, but the procedure is not

specific to the chosen discretization. A distribution of incidences is then con-
structed as to produce the same RIC as the original curve: a segment g, = 0.96
of the population accounts for (100 — y)% of the incidence, while the remaining
segment ¢, = 0.04 accounts for the remaining y% (Fig. la). The transmission
model is solved as above, and the relative risk parameters «; are calculated (Fig. 2a,
d, g) so as to output the country-specific incidence distributions (see Fig. 2¢, f, i).
This was performed numerically by binary search to adjust the variance in the
parameters «; such that the variance in the output incidences agrees with the
notification data.

Under any positive force of infection, the two risk groups segregate differently
to populate the various epidemiological compartments, as depicted in Fig. 2b, e, h,
resulting in mean risks that differ from one for specific compartments, and thereby
deviating from homogeneous approximations. Crucially, the mean risks among
individuals that occupy the various epidemiological compartments (square brackets
in the figure) respond to dynamic forces of infection causing divergence from
predictions made by homogenous models.

Moving targets. The model, with the estimated risk distributions, parameters, and
initial conditions, fitting the 2002 incidences (189 in Vietnam, 52 in Brazil, and 49
in Portugal, all per 100,000 person-years), is run forward in time with a constant
decline in reactivation rate as to meet an arbitrarily fixed target of halving the
incidence in 10 years. As in the calculation of risk variance above, also here we refer
to a simple numerical calculation performed by binary search. We write the
reactivation rate as w(t) = w(2002)e"=(*=2%92) per year, and approximate r,, in order
to meet the desired incidence target by year 2012.

Starting with initial reactivation rates of 0.0039 per year in Vietnam, and
0.0013 per year in Brazil, and Portugal, we find that meeting the target by this
strategy alone, would require values of r,, as specified in the heterogeneous
column of Supplementary Table 1, or equivalently a decline in reactivation by
1 — ¢’« each year. This is to say that, in 10 years, the reactivation rates would
have been reduced to values also shown in the respective column of
Supplementary Table 1.

Suppose that these estimations and projections were being made by the mean
field approximation of the same model, and the outcomes were monitored yearly
and readjusted if necessary. The expectations would have been that lower absolute
values would be required for the decay rate parameters . Since the real population
is heterogeneous, however, we simulate this decline for the first year with the
heterogeneous model. The result is that, instead of achieving the incidences
projected by the homogeneous model (“target” homogeneous column in
Supplementary Table 1), the reality would lag behind (“achieved” homogeneous
column in Supplementary Table 1), a result that the homogeneous model would
attribute to insufficient effort exerted in reducing reactivation. From the
homogeneous frame, an observer would have likely concluded that the decline had
been lower due to some implementational failure, would have re-estimated the
effort to meet the target over the remaining 9 years, now with an intensification to
compensate for the lag of the first year. This process is simulated recursively for
10 years to populate Supplementary Table 1 and to generate Fig. 3. The insets
in Fig. 3b, d, f, depict the relative error committed each year.

The dynamics of the mean risk of infection in the uninfected and latent
compartments as the described interventions proceeds are shown in Fig. 3a, ¢, e,
to demonstrate the action of selection. This is the key process leading to the
deviation between the homogeneous and heterogeneous models.

Meeting End TB targets. The model with initial conditions, parameters and
distributions estimated for 2002, is used to reproduce reported country-level trends
for TB incidence in Vietnam, Brazil, and Portugal. Incidence declines between 2002
and 2015, reported by WHO for each of the three countries, are assigned to
changes in pre-specified parameters (here set as ¢ and w for illustrative purposes
but alternative combinations have also been used). The decline is shared among the
selected parameters as estimated below.

As incidence declines we monitor the reductions being made on each
parameter, namely, on the probability of progression from primary infection to
active disease [1 — ¢(¢)/$(2002)] and on the reactivation rate [1 — w(t)/w(2002)].

Parameter estimation. Assuming that the incidence declines reported by WHO
between 2002 and 2015 for Vietnam, Brazil and Portugal, are due to reducing ¢
and w at constant rates (r, and r,, respectively), resulting in exponentially decaying
parameters such that ¢(t) = ¢(2002)e 22 and w(t) = w(2002)e"(-2002) we
proceed to estimate 4 and r,,. We used a Bayesian Markov Chain Monte Carlo
(MCMC) approach to find posterior sets of these decay rates. We assume Gaussian
priors and base our likelihood on the weighted squared error function

", (BY — B\’
e

i=1 i

(15)

where BY are the data points, B; are the model outputs, and ¢¢ are the corre-
sponding measurement errors. This is equivalent to using the likelihood (L) such
that y> = —2log(L), under the assumption of Gaussian noise*>. In the absence
of the sampling distribution for the data, the error variance is sampled as a con-
jugate prior specified by the parameters g, and n, of the inverse gamma
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distribution where oy is the initial error variance and n, is assumed to be 1 (as
larger values limit the samples closer to 6;)*’. We use the MATLAB MCMC
package developed by Haario et al. (2006)%3. We initially minimize the error
function and use these local minima as initial values for the parameters in the
MCMC run. We infer a MCMC chain of length 10° and adopt a burn in of 2 x 10
after assessing the Gelman-Rubins-Brooks potential scale reduction factor (psrf)
plots of the posterior distributions (see Supplementary Figs. 11, 12).

Comparison with metapopulation models. As implied by Supplementary Fig. 1,
geographical units are not conceptualized as homogeneous patches but rather as
harboring heterogeneity down to the individual level. The transmission dynamics
represented in our models is that of a country’s average patch (with variation in
risk among individuals) rather than a metapopulation consisting of multiple pat-
ches (each occupied by a homogeneous population and variation in risk among
patches). To highlight this essential distinction, we have constructed a metapo-
pulation model consisting of two subpopulations (A and B), each characterized by
a distribution in individual risk (Supplementary Fig. 5).

Subpopulations (or patches) in this toy model are composed of individuals
drawn from a common pool of high and low-risk individuals (in proportions 4 and
96%, respectively), and what characterizes each patch is the fraction of its
individuals who are high-risk (rather than introducing patch-specific effective
contact rates, 8, and S, explicitly as commonly practiced). We assume a single
for the entire metapopulation and vary the proportion of individuals in A who are
high risk (q,4) and calculate the corresponding proportion in B (g,5). Basically, we
have a family of metapopulation models, parameterized by the proportion of high-
risk individuals in one of the patches, that we can completely resolve to match the
incidence and RIC for each of our study countries.

We calculate relevant measures, such as variance in individual risk at the level of
the entire metapopulation and R,. These two metrics are shown as functions of g,
in Supplementary Figs. 6 and 7 (for heterogeneous contact rates and heterogeneous
susceptibility, respectively) and one versus the other in Fig. 8. Open and filled
circles are added to Fig. 8 for comparison of the same metrics under the
homogeneous and heterogeneous models used in this study.

For simplicity we did not include transmission between subpopulations in this
exercise, but there is no reason to expect sudden changes in outcome when this

is added.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Date availability

Estimated country-level incidence obtained from the WHO’s global tuberculosis database
(http://www.who.int/tb/country/data/download/en/). Municipality-level notification and
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Code availability
Computer programs were written in MATLAB R2015b as detailed in Methods. Maps
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