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Abstract: Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness 
worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and 
molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional 
tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of 
neurodegenerative metabolites, which increases influx through several metabolic pathways which in turn induce an 
increase in oxidative stress and a decrease in neurotrophic factors, thereby damage retinal neurons. Loss of neurons may 
implicate in vascular pathology, a clinical signs of DR observed at later stages of the disease. Here, we discuss diabetes-
induced potential metabolites known to be detrimental to neuronal damage and their mechanism of action. In addition, we 
highlight important neurotrophic factors, whose level have been found to be dysregulated in diabetic retina and may 
damage neurons. Furthermore, we discuss potential drugs and strategies based on targeting diabetes-induced metabolites, 
metabolic pathways, oxidative stress, and neurotrophins to protect retinal neurons, which may ameliorate vision loss and 
vascular damage in DR. 
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INTRODUCTION 

 Diabetic retinopathy (DR) is the leading cause of vision 
loss and blindness in the working-age population worldwide. 
DR is being recognized as a neurodegenerative disease of the 
retina as opposed to previously considered solely as a 
microvascular disease. Numerous studies in diabetic patients 
showed functional deficits in the neural retinas [1-3]. In 
addition, a large body of cellular and molecular studies 
suggest changes in the neural retina before any vascular 
changes shortly after diabetes [2, 3]. Moreover, various 
studies reported damage of neurons due to apoptosis in the 
diabetic retina [3-6]. Glial cells, a vital component of neural 
retina are found to be activated in diabetes which is another 
feature of retinal neurodegeneration [5]. Thus, neural retina 
comprising of both glial and neuronal cells are compromised 
in diabetes thereby disturbing the homeostasis and interaction 
between these cells. Diabetes being a metabolic disease, 
alters levels of a number of metabolites both systemically 
and locally in the retina of diabetic patients and rodents. 
Dysregulated metabolites increases flux through a number of 
metabolic pathways which in turn increases oxidative stress 
and decreases neurotrophic support as shown in the flow 
diagram (Fig. 1). These altered factors, may damage neurons 
early in diabetic retina leading to progression of DR. 
However, the exact link between the levels of those potential 
metabolite(s) or factor(s) and their mechanism of neuronal 
damage at early stages in the disease progression has not 
been fully understood. In this review article, we discuss 
mechanisms of neurodegeneration especially due to altered  
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levels of metabolites and neurotrophic factors in the diabetic 
retina and also highlight a number of potential neuro- 
protective strategies, drugs and treatments. 

MECHANISM OF NEURODEGENERATION IN THE 
DIABETIC RETINA: IMPLICATION OF ALTERED 
METABOLITES IN DIABETES 

Hyperglycemia 

 Among metabolites, hyperglycemia is known to be the 
major factor which activates several metabolic pathways 
including increases in flux through polyol, hexosamine, 
protein kinase C (PKC) pathways and advanced glycation 
end products (AGEs) which have been nicely summarized in 
few recent review articles [7, 8]. These activated pathways 
mediate an increase in oxidative stress by decreasing the 
level of antioxidant glutathione, leading to tissue damage. 
These pathways also activate nuclear factor kappa B, a 
transcription factor which in turn activates a number of 
genes of inflammatory molecules, cytokines, chemokines 
and decreases expression and signaling through various 
growth factors leading to a feedback loop in increasing 
oxidative stress and severe damage to neurons in the retinal 
tissue [9, 10]. Diabetes also induce a number of other 
metabolites and factors including various excitatory amino 
acids, lower vitamins, nutrients, hormones, and neurotrophic 
factors which affect several pathways and factors implicated 
in cellular damage and more specifically neuronal damage in 
the diabetic retina.  

GLUTAMATE 

 An increased level of glutamate has been reported in the 
diabetic retina and also in the vitreous of diabetic patients, 
suggesting a neurotoxic role of glutamate which may 
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damage retinal neurons and especially retinal ganglion cells 
by excitotoxicity [11, 12]. Increased extracellular level of 
glutamate in the neuronal tissue activates N-methyl D-
Aspartate (NMDA) receptors, depolarizing the neuronal cells 
which increases the influx of calcium and sodium ions into 
the cell and in turn generates free radicals and induce 
apoptosis [14]. Exact reasons for the increase in glutamate 
level in diabetic retina is not known. However, we found a 
high level of branched chain amino acids (BCAA) level in 
the serum and retina of diabetic rat, which may also be 
responsible for extracellular glutamate levels in the retina 
[15].  

 In addition, recently Jiang et al [16] found an increased 
level of D-serine in the aqueous and vitreous humour of PDR 
patients. Earlier, the same group reported high level of serine 
racemase, D-serine and glutamate in the diabetic eye [17]. 
Since, D-serine acts as an agonist of NDMA receptor, 
causing excitotoxicity to neurons [18, 19]. It is likely that 
increased levels of both D-serine and glutamate in diabetic 
retina might equally implicate in neurodegeneration in 
diabetic retina. Thus, by lowering extracellular level of 
glutamate, D-serine and/or inactivating NMDA receptor, 
excitotoxicty of glutamate/D-serine can be ameliorated [13]. 

HOMOCYSTEINE AND VITAMINS 

 Another potential neurodegenerative metabolite is 
homocysteine whose elevated level has been associated with 
various neurodegenerative diseases including diabetic 
retinopathy [20, 21]. Homocysteine is a sulphur containing 
amino acid formed by demethylation of methionine and the 
level is reduced by the enzyme methione synthetase in 

presence of vitamin B12 and folate as cofactors [22, 23]. 
Earlier, we have reported a reduced expression of the folate 
transporter and a decreased folate level in the diabetic retina 
[24]. Thus lower level of folate in diabetic retina may cause 
an increase in the homocysteine levels. The elevated 
homocysteine levels has been found to induce apoptosis in 
retinal ganglion cells (RGC) [25, 26]. Homocysteine has also 
been shown to activate NMDA receptors, thereby may cause 
excitotoxicty of RGCs in diabetic retina [27, 28].  

KYNURENIC ACID 

 Kynurenic acid is the product of tryptophan metabolism 
which is suggested to play an important role in neuro- 
degeneration. A correlation between decreased levels of 
kynurenic acid and glutamate excitotoxicty and free radical 
generation has been found. Kynurenic acid has been found to 
influence the excitotoxcity of neuronal cells by homocysteine 
[29]. In kynurenine pathway, 3-hydroxykynurenine and 
quinolinic acid have neurotoxic effect; however, kynurenic 
acid is a neuroprotectant [30]. Therefore, kynurenic acid 
might be a potential neuroprotective agent in diabetic  
retina. 

RENIN ANGIOTENSIN SYSTEM 

 A large body evidence suggest activated metabolites of 
renin–angiotensin system (RAS) in diabetic retina plays a 
significant role in retinal neurodegeneration. Angiotensin II, 
a component of RAS activates angiotensin type 1 receptor 
(AT1R) and produces reactive oxygen species, which 
damages retinal cells and particularly retinal ganglion cell in 
the diabetic retina [31-33]. Kurihara et al. [32] showed that 

 

Fig. (1). Depicts the stages and potential factors influencing the progression of diabetic retinopathy. *indicates the key site(s) and factor(s) 
early in diabetes progression implicating in diabetic retinopathy. Strategies to ameliorate their levels may arrest or prevent the progression of 
diabetic retinopathy. DR (diabetic retinopathy), NPDR (non-proliferative diabetic retinopathy), PDR (proliferative diabetic retinopathy) and 
BCAA (branched chain amino acid). 
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the increased level of AT1R in diabetic retina resulted in 
impaired neuronal function and the AT1R blocker 
telmisartan suppressed the impaired inner retinal function. 
Recently, we also found a beneficial effect of AT1R blocker, 
telmisartan towards neuroprotection in the retina of diabetic 
rats [34]. Thus role of RAS and its therapeutic target may 
have important role towards neuroprotection in diabetic 
retinopathy. 

OXIDATIVE STRESS 

 Hyperglycemia in diabetic state activates a number of 
metabolic pathways including polyol, hexosamine, PKC and 
AGEs. Increase in flux through these pathways have been 
shown to enhance the production of reactive oxygen and 
nitrogen species (ROS/RNS) [7, 35, 36]. Diabetes induced 
increase in the level of excitatory amino acids in the retina 
also increase the production of ROS/RNS. Thus, ROS/RNS 
becomes a central player in damaging cells which in turn 
increases production of more ROS/RNS activating several 
metabolic and apoptotic pathways associated with 
neurodegeneration [37, 38]. Antioxidant defense systems via 
enzymatic and nonenzymatic pathways counterbalance ROS 
damage. Important enzymatic antioxidants includes superoxide 
dismutase, catalase, glutathione reductase and glutathione 
peroxidase while nonezymatic antioxidants include vitamins 
A, C and E and glutathione (GSH). However, in diabetic 
retina, these antioxidant systems are not effective in 
balancing the levels of oxidants which makes neuronal cells 
vulnerable to be damaged. 

DYSREGULATION OF NEUROTROPHINS IN 
DIABETIC RETINA 

 Dysregulation of neurotrophic factors is considered as the 
major hallmark of neurodegeneration in diabetic retina. 
Neurotrophins are important for neuronal survival, growth 
and functional maintenance [39-43]. It is reported that 
imbalance of these factors cause damage to retinal neurons 
both in case of proliferative diabetic retinopathy and oxygen-
induced retinopathy [44, 45]. Neuronal retina produces a 
substantial amount of neurotrophic factors. Among these, 
brain derived neurotrophic factor (BDNF) is produced by 
retinal neurons and glia which affects cell differentiation, 
growth and neurotransmission [46-48]. We and others have 
reported a reduced level of BDNF in the serum and retina of 
diabetic rodents [48]. Absence or reduction in the level of 
BDNF and its receptor cause serious alteration in retinal 
function. Another important neurotrophic factor is nerve 
growth factor (NGF) whose level is found to be increased in 
DR patients [49]. NGF levels positively correlated with the 
stages of DR and other diabetic parameters [39]. 

 Pigment epithelial derived factor (PEDF) plays a 
significant role in retinal homeostasis since it has both 
antiangiogenic and neuroprotective properties. PEDF blocks 
the production of ROS and also prevents glutamate 
excitotoxicity [50, 51]. Therefore, reduced level of PEDF 
seems crucial for neurodegeneration in diabetic retina. 

 Insulin is an important neurotrophic factor for retinal 
neurons. An increase in neuronal apoptosis and cell death 
has been observed in insulin deficient diabetic retina [52-54]. 
It is observed that diabetes impairs the retinal insulin 

receptor signaling pathway that may initiate the progression 
of DR [55]. Thus retinal neurons survival depend on insulin 
and insulin receptor signaling [56].  

 Erythropoietin (Epo) is another potent neuroprotective 
factor synthesized in the retina [57, 58]. In addition to 
neuroprotection, Epo helps in the mobilization of endothelial 
progenitor cells (EPCs) toward injured retinal sites, thus 
involves in the neurovascular repair [59, 60]. Therefore, a 
better understanding of the molecular mechanism and 
function of neurotrophins in the retina is necessary which 
may contribute as therapeutic agents in neuroprotection. 

NEUROPROTECTION STRATEGIES AND POTENTIAL 
DRUG TARGETS 

 One of the primary steps toward prevention or amelioration 
of neurodegeneration in diabetic retina is targeting 
dysregulated metabolites and blood pressure control, the root 
cause of neurodegeneration early in diabetes. The most 
effective strategy to ameliorate metabolic alterations such as 
hyperglycemia, hyperlipidemia, increased level of excitatory 
amino acids, metabolites of RAS which exacerbate diabetic 
complications including DR is through lifestyle modifications. 
Numerous reports suggest that modifications in diet and 
exercise prevent or slow the progression of the disease, 
thereby ameliorate neuronal damage in DR. In addition, a 
number of neurorpotective treatment strategies have attracted 
significant interest towards discovering drugs/agents that 
could protect retinal neurons, particularly retinal ganglion 
cells and possibly prevent or protect vision loss. 

 N-methyl D-aspartate (NMDA) receptor antagonist, MK-
801, has been found to be effective in protecting neurons 
after intraocular injection in diabetic rats [61]. Glutamate 
receptor antagonist memantine treatment exhibited neuro- 
protection in diabetic rodents [62]. Pentazocine, a specific 
sigma receptor-1 ligand protected neurons in diabetic rat 
retina, suggesting its potential role in neuroprotection [63]. 
We found that gabapentin (Neurontin) a specific inhibitor of 
the neuronal, cytosolic isoform of branched chain amino- 
transferase (BCATc) inhibited the synthesis of glutamate, 
decreased caspase-3 activity and lowered ROS level in the 
diabetic retina, suggesting a neuroprotective role of the drug 
[64]. Another strategy to decrease the excitotoxic level of 
glutamate might be by increasing the ratio of BCKA/BCAA 
which may decreases glutamate synthesis and increases the 
rate of glutamate oxidation in the Muller cell, thereby may 
protect retinal neurons [13]. 

 Neuroprotective factors such as BDNF, NGF, PEDF, 
VEGF, Insulin and Epo have been shown to be effective in 
protecting neurons in experimental diabetic retinopathy. 
BDNF reduced the damage to ganglion cells under oxidative 
stress conditions [65, 66]. In addition, BDNF promotes the 
survival of neurons and plays a key role in the synaptic 
connections and neurotransmission [67-69]. BDNF also 
provides a neuroprotective effect by detoxifying the 
excitotoxic level of glutamate by increasing uptake and the 
expression of glutamine synthetase in Muller cells under 
stress conditions [70]. Intraocular injection of BDNF in 
combination with ciliary neurotrophic factor is found to 
protect retinal neurons [71].  
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 Intraocular gene transfer of PEDF increased the survival 
of retinal neurons under ischemic damage [72]. In addition, 
intravitreal injections of PEDF prevented neuronal loss and 
vascular damage early in DR [73]. 

 Angiogenic molecule VEGF is also a potential 
neurotrophic factor in the retina. Endogenous VEGF plays 
important role in the survival and maintenance of retinal 
neurons. Inhibition of VEGF in the normal adult retina 
induced a significant loss of ganglion cells [74]. Li group has 
demonstrated that VEGF treatment rescued neurons in the 
retina of mouse models of neurotoxicity [75].  

 Basic Fibroblast Growth Factor (bFGF) is a neurotrophic 
factor which plays important role in the survival, maturation 
and regeneration of both glial cells and neuronal cells  
[76, 77].  

 Insulin rescues retinal neurons from cell death in the 
diabetic rat retina. Intraocular injection of insulin restores 
insulin receptor activity and Akt signaling prosurvival pathway 
in diabetic rat retinas [53, 55, 78]. Therefore, insulin delivery 
locally in the retina may protect neurons in the diabetic 
retina. 

 Administration of Epo-peptide either by intravitreal [79] 
or intraperitoneal injection [80] protected degeneration of 
retinal neurons in diabetic rats [81]. Epo may help both in 
protecting neurons as well as repair of vessels, thus making a 
therapeutic agent to protect neurovascular damage in DR.  

ANTIOXIDANTS  

 Evidence from numerous pharmacological studies 
suggest that lowering oxidative stress in diabetic retina is an 
effective way to combat neurodegeneration [31, 82, 83]. 

 Administration of antioxidants showed inhibition of the 
activation of transcription factor NF-kB, which regulates a 
number of inflammatory genes. Feeding rats with diet 
supplemented with antioxidants, including alpha-tocopherol, 
N-acetyl cysteine, ascorbic acid, and beta-carotene, inhibited 
the increase in caspase-3 activity and apoptosis of neurons in 
the diabetic retina. In addition, supplementation of vitamin C 
and vitamin E increased the activities of enzymes such as 
glutathione reductase, glutathione peroxidase, superoxide 
dismutase, and catalase. Benfotiamine (vitamin B1), a lipid-
soluble thiamine derivative, blocked major hyperglycemia-
induced pathways and prevented experimental diabetic 
retinopathy [84]. A combination of oral benfotiamine and 
alpha-lipoic acid reduced AGEs and ROS formation in 
animal studies [85]. The administration of antioxidants in a 
study of type 2 diabetic patients with non-PDR maintained 
the antioxidant plasma status levels as measured by oxidative 
malonyldialdehyde and total antioxidant status [86]. However, 
the antioxidant therapy could not improve visual acuity. The 
use of PEDF as a therapeutic option to block pathways that 
lead to the production of ROS are being extensively studied 
and remain to be validated for human use [87].  

 Polyphenolic compounds are known for their strong 
antioxidant activities. Recently, Sasaki et al 2011 showed the 
beneficial effect of a polyphenolic compound leutin, towards 
amelioration of oxidative stress and neurodegeneration in 
diabetic retina [82]. Previously, a study reported that 

supplementation of leutin to diabetic rats prevented the 
impairment of electroretinogram [88]. More recently, we 
have also found leutin supplementation ameliorated oxidative 
stress and neurodegeneration in the retina of diabetic rats 
(unpublished data). (−)-Epigallocatechingallate from green 
tea has been demonstrated to have neuroprotective properties 
in the retina [83]. Curcumin, a major component of turmeric 
is known for its antioxidant activity, has a promising role in 
preventing a decrease in antioxidant level in diabetic retina 
[89, 90].  

 Lipid peroxidation was found to be significantly higher 
in diabetic retinopathy patients [91]. Clinical studies suggest 
that lipid-lowering agent fenofibrate reduced the progression 
of neurodegeneration in patients with DR possibly by 
reducing apoptosis, oxidative stress and inflammation [92]. 
Thus, fenofibrate may be a useful neuroprotective agent in 
diabetic retina. Therefore, antioxidant therapy may be useful 
as an adjunct treatment in combination with other treatments 
for the prevention of retinal neurodegeneration. 

CONCLUSIONS 

 Continuous efforts toward better understanding of the 
mechanism(s) of neurodegeneration especially due to 
dysregulation of metabolites and neurotrophic factors are 
required in diabetic retina. Amelioration of dysregulated 
metabolites and neurotrophic factors may arrest or prevent 
neurodegneration in diabetic retinopathy. In addition, 
investigation of the root cause of neurodegeneration early in 
diabetes would implicate into better treatment or prevention 
strategy for neurodegeneration. Diabetic patients who develop 
neurodegeneration early in the disease progression require 
early treatment utilizing drugs which may protect neurons. 
Drug delivery into the eye and specifically into the retina is a 
challenge, however, different mode of efficient drug delivery 
system are being developed. Topical administration of 
brimonidine, NGF, PEDF and insulin seems to be effective in 
experimental animals. Neuroprotective drugs in combination 
with other treatments might be better option for retinal 
neuroprotection. Still clinical trials are required for the drugs 
to protect retinal neurons and also to test the safety and 
effectiveness of those drugs in diabetes. 
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