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Abstract: The measurement of eco-efficiency is an important tool to evaluate the level of urban
sustainable development. Therefore; improving urban eco-efficiency in the lower reaches of the
Yellow River ensures the implementation of ecological protection and high-quality development
strategies in the Yellow River Basin. In this study; the dynamic changes of urban eco-efficiency
and spatiotemporal differences in the lower reaches of the Yellow River were investigated using the
Super-SBM (Super-Slack measure model) model with undesirable outputs and standard deviation
ellipse. The STIRPAT (Stochastic Impacts by Regression Population; Affluence and Technology) model
was introduced to analyze the factors affecting the change in urban eco-efficiency. The results showed
that the overall urban eco-efficiency in the lower reaches of the Yellow River has not reached the
optimal level. The overall eco-efficiency in the lower reaches of the Yellow River in Shandong Province
was higher than that in Henan Province but the gap is narrowing. The spatial differentiation of urban
eco-efficiency in the lower reaches of the Yellow River showed the following trends: “blooming in the
middle and reverse development at both ends” in the high-value area and gradual decrease in the
low-value area. From 2007 to 2018; a direction was notable with respect to the development of urban
eco-efficiency in the lower reaches of the Yellow River; with the centripetal force weakening. Although
the mean center of urban eco-efficiency located in Shandong Province; it notably shifted to the west
during the study period. In terms of driving factors; affluence and technological progress play
positive roles in driving eco-efficiency; while investment intensity; industrial structure; and foreign
investment intensity hindered the optimization and improvement of urban eco-efficiency in the lower
reaches of the Yellow River. The results of this study show that urban eco-efficiency in the lower
reaches of the Yellow River is improving; but the regional coordination is poor. The main methods
promoting the sustainable development in the study area include changing the mode of extensive
investments and the introduction of foreign capital; which improve the energy efficiency and promote
faster and better economic development.

Keywords: eco-efficiency; Super-SBM; STIRPAT; lower reaches of Yellow River

1. Introduction

As economic, political, and cultural centers, cities accommodate more than 50% of the world’s
population and contribute to 80% of the gross domestic product (GDP) growth [1,2]. Urbanization has
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promoted economic growth and profound changes in the population structure [3]. However,
unrestricted urbanization severely affects the ecological environment and leads to changes in global
and regional resources, such as global warming, environmental pollution, food security, and so on [4,5].
China has experienced large-scale urbanization and industrialization since the reform and opening
up (since 1976) [6]. While urbanization promotes rapid development of the social economy, it has
caused serious damage to the ecological environment, which has become the key factor restricting
the sustainable development of Chinese cities [6–9]. Methods to effectively maximize economic
output while minimizing environmental pollution and to promote the transformation of the extensive
development model of cities to an “intelligent”, “sustainable”, and “healthy“ development model have
become the focus of governments and scholars worldwide [10–13].

The concept of eco-efficiency, put forward by Schaltegger and Sturm in 1990 [14], refers to a
cross-efficiency that connects environmental problems with economic problems and embodies the
relationship between economic development and utilization of resources and the environment [15,16].
Embedding the ecological consumption of resources into traditional socioeconomic input–output
accounting provides a new cut-in point and perspective for the comprehensive study of the level and
quality of urban development [17]. The World Council for Sustainable Business defines eco-efficiency
as the provision of competitive goods and services to meet human needs and improve the quality of
life, while gradually reducing ecological impacts and the resource intensity throughout the life cycle to
meet the carrying capacity of the planet [18]. After more than 20 years of development, the evaluation
of eco-efficiency has become an important tool for the comprehensive analysis of urban sustainable
development and a focus of academic research pertaining to urban geography [19,20].

Scholars have conducted extensive research on eco-efficiency with respect to evaluation indicators,
measurement methods, and driving factors [21]. In this study, the progress and challenges of current
research as well as methods for improvement are discussed. The evaluation index of the eco-efficiency
has changed from a single ratio to a comprehensive index system including resource input, energy
consumption, economic output, and environmental pollution output. However, urban CO2 emissions
are rarely included in the index system in current research, mainly because CO2 plays an important
role in the development and sustainability of life, and thus is not regarded as a pollutant [22]. However,
CO2 produced by fossil fuel combustion during urban development is the main carbon source leading
to global warming [23] and is regarded as an undesirable output in the evaluation of eco-efficiency in
this study. Based on this perspective, the measurement results better reflect the actual development
processes of cities.

Efficiency is a multi-dimensional concept because the units used to measure the input and output
are different [16]. Current research on urban eco-efficiency mainly focuses on life cycle analysis [24],
the ecological footprint [25], frontier analysis [26], and data envelopment analysis (DEA) [27].
Although many standardized and normalized statistical methods are available, both subjective
and objective methods have limitations. The DEA is widely used in the study of eco-efficiency
because it is not affected by index units and weights and is easy to operate [28,29]. Research on urban
eco-efficiency based on DEA is mainly divided into three aspects. First, during the processing of
undesirable indicators, undesirable data generated in the process of urban production are classified into
the input part to measure, which is usually based on traditional or super-efficiency DEA models [16].
Second, some scholars have used DEA model based on mixed distance function to solve the deviation
of measurement results of DEA model based on radial and non-radial angle. [30,31]. Third, when faced
with decisions in different directions, the traditional DEA model is not sufficiently comprehensive to
measure the undesirable output (e.g., pollutants); hence, there may be a deviation in the efficiency [32].
To obtain accurate results, scholars generally process undesirable outputs using the SBM (slack
measure model), which better reflects the actual situation [33,34]. However, during the calculation,
multiple decision making units (DMUs) efficiency values might equal 1. In order to solve the defects,
the Super-SBM model is often introduced for the calculation of eco-efficiency [35]. Because the
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Super-SBM model can not only measure the undesirable output but also compare the eco- efficiency of
each DMU, it is the most suitable model for this study.

Third, exploring the effects of socioeconomic factors on the difference in the urban eco-efficiency
is the focus of the current research. Many regression models are available to study the socioeconomic
determinants of eco-efficiency, including the spatial and non-spatial regression models [31]. Because the
STIRPAT (Stochastic Impacts by Regression Population, Affluence and Technology) model can accurately
specify the sensitivity of environmental impacts to the driving forces, it has been widely used in the
study of the effects of human activities on the ecological environment [36,37].

At present, Chinese scholars have made great progress in the study of the relationship between
ecology and the economy based on the DEA model. However, research on the regional ecological
environment is mainly focused on urban agglomeration [19], with a high level of urbanization,
the eastern coast [21], and the Yangtze River economic belt [38] with good regional coordination.
There is a relative lack of research on the eco-efficiency of the sub-region of the river basin where
the level of urbanization lags and the pressure of ecological environment is high. The plain area
of the lower reaches of the Yellow River is one of the most important grain-producing areas in
China and has the longest farming history [39]. It is one of the typical areas of the Yellow River
Basin in which the economy develops rapidly and human activities have a greater impact on the
environment [28]. This is characterized by the lack of groundwater, uneven economic development
of regional cities, and serious environmental pollution [40,41]. Ensuring ecological protection and
high-quality economic development in the Yellow River Basin have become national strategies;
further, the green transformation and development of cities in the lower reaches of the Yellow River
are urgent problems to be solved. In this study, we constructed an index system for measuring
urban eco-efficiency including environmental pollution data and explored the temporal and spatial
evolution of urban eco-efficiency in the process of urbanization of traditional agricultural areas in
China. In addition, the factors influencing the change in eco-efficiency are analyzed, which is of great
significance for the sustainable economic development of cities in the lower reaches of the Yellow River.

By combing the relevant research progress of urban eco-efficiency, this study analyzes the
challenges existing in the current research and puts forward corresponding solutions to make the
research reflect the actual process of urban production. In this study, the lower reaches of the
Yellow River, which are characterized by a contradiction between urban economic development
and ecological environment protection, were selected as the study area. The estimated urban CO2,
wastewater, sulfur dioxide, and dust emissions were included in the undesirable output—these
indicators can reflect the efforts made by local governments in the improvement of water quality
and atmospheric environment control. The Super-SBM model was used to measure the change
characteristics of urban eco-efficiency in the lower reaches of the Yellow River during 2007–2018.
Moreover, the STIRPAT model, which is relatively mature with respect to the analysis of the
eco-environmental tradeoff and coordination [42,43], was introduced to determine the effect of
human factors, such as population, affluence, technology, and urbanization, on urban eco-efficiency.
The results support urban development and eco-environmental protection, providing references for
research on the sustainable development of the region and cities with similar environmental and
economic conditions worldwide.

In this study, an index system was established that can better reflect the real urban production.
The most suitable measurement model of urban eco-efficiency was selected based on the characteristics
of the DEA model, with the relatively mature STIRPAT model being used to measure the effects of
social and economic factors of eco-efficiency. Finally, the cities in the lower reaches of the Yellow River
were selected as the study objects to analyze the spatiotemporal variation and driving mechanism
of urban eco-efficiency in traditional farming areas. The overall structure of this study is as follows:
The data resources and method used for the estimation of eco-efficiency are described in Section 2.
The changes in the time series and spatial differentiation of urban eco-efficiency in the lower reaches of
the Yellow River are analyzed in Section 3, as well as the effects of socioeconomic factors, which are
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discussed based on the STIRPAT model of urban eco-efficiency. The novelty and shortcomings of the
study as well as future research directions are discussed in Section 4. Conclusions and suggestions for
the sustainable development of cities in the lower reaches of the Yellow River are provided in Section 5.

2. Materials and Methods

2.1. Study Area

Based on the natural division, the lower reaches of the Yellow River, with a length of 785.6 km,
can be divided from Taohuayu to Lijin County [43]. Because the close relationship between regional
economic development in the lower reaches of the Yellow River and the integrity of administrative
divisions at the prefectural level, the areas covered by the irrigation areas in the lower reaches of the
Yellow River are merged into the study area [41,44] (see Figure 1). Laiwu City in Shandong Province
was merged with Jinan City in 2019, forming the Laiwu District. However, because the research
period of this study is 2007–2018, Laiwu City was still considered as an independent prefecture-level
city. By 2018, the GDP in the study area reached 6.63 trillion yuan, accounting for more than 40% of
the total GDP of the whole basin, while the average level of urbanization and urbanization level of
key cities reached >57% and >70%, respectively. In 2019, the ecological protection and high-quality
development of the Yellow River Basin became national strategies that provided strategic opportunities
for the coordinated development of the regional economy as a unit [45]. Therefore, it is urgent to study
the spatiotemporal differences of the urban eco-efficiency in traditional farming areas in the lower
reaches of the Yellow River and to analyze the influencing factors in order to provide relevant policy
suggestions for the study of regional urban sustainable development.
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Figure 1. Location of the study area.

The data were obtained from the 2008–2019 “China City Statistical Yearbook”, 2008–2019
“Shandong Statistical Yearbook”, and 2008–2019 “Henan Statistical Yearbook”. In this study, we used
interpolation to supplement instances of data loss. The yearbook data are obtained from China
Economic and Social Big Data Research Platform [46].

2.2. Indicator Syste

According to previous research results; the actual situation of urban development in the
lower reaches of the Yellow River; and principles of comprehensiveness, scientificity, typicality,
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operability, and dynamics, researchers have established an index system for the determination of
the urban eco-efficiency [9,15–17,19]. This system is based on the principle that the DEA model’s
calculation indicators are less than or equal to one-third of the number of DMU [47]. In this study,
input–output evaluation indicators, including resource input, economic output, and pollution output,
were established. The urban resource input includes the resources, labor, and capital and the GDP is
the desirable output. Pollution data are considered as undesirable output. The specific indicators are
shown in Table 1.

Table 1. Input and output indicator statistics, 2007–2018. n = 240.

Category Variable Units Mean Standard
Deviation (SD) Minimum Maximum

Input

Labor force 104 people 57.109 36.032 13.27 207.555

Capital 104 yuan 6608.376 6480.381 165.322 42,605.902

Energy resource
108 tons of

standard coal
equivalent

184.698 192.969 12.268 1581.735

Desirable output Gross Domestic Product 109 yuan 1156.283 676.978 266 3868.797

Undesirable output

Total wastewater emission 104 tons 10,546.359 7273.71 766 66,452

Industrial SO2 emission ton 61,986.833 42,586.623 917 219,273

Industrial soot emission ton 29,395.089 30,861.296 775 236,000

CO2 emission ton 2920.640 1869.933 678.514 9998.306

2.2.1. Input Index

According to previous studies, the input of production factors calculated using DEA mainly
includes labor, capital, and energy resources. Based on previous studies, energy is an important input
resource for urban development [31]. Because the energy data of prefecture-level cities are difficult
to obtain, in order to make the energy input of different prefecture-level cities comparable with each
other, this study converted the consumption of natural gas, liquefied petroleum gas, and electricity
consumption of different prefecture-level cities into 10,000 tons of standard coal equivalent (SCE).
According to their calorific value, and then added the values up to obtain the total energy input of each
prefecture-level city. Labor resources are expressed in terms of the urban employment population at
the end of the year. The fixed asset investment was reduced by selecting the total fixed asset investment
and using 2007 data as the constant price based on previous depreciation rates [32] and the perpetual
inventory method to simulate the capital stock during the study period. The equation is as follows:

K0 =
I0

g + δ
Kt = (1− δ)K(t−1) + It (1)

where K0 represents the capital stocks of the base period, I0 denotes the gross fixed capital formation of
the base period, g is the annual average growth rate of the regional GDP, and δ is the depreciation rate.
We selected the depreciation rate following the research of Hall and Jones [48].

2.2.2. Output Index

The output index includes desirable and undesirable output indicators. The actual GDP of each
city is used as the desirable output indicator. However, due to differences in the levels of economic
development of various cities, we reduced the GDP using 2007 as the base period according to the
GDP index in the annual statistical yearbook to eliminate the influence of price factors and allow
for comparison.

Many pollutants are generated during urbanization and industrialization. Based on the selection
of traditional pollutant indicators, the city’s CO2 emissions were simulated in this study considering
the availability and consistency of data and actual production and living conditions. For the specific
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method of urban carbon dioxide, see Equation (2). The result of this calculation can reflect the actual
city production process better.

2.3. Research Method

2.3.1. Urban Carbon Emission Estimation

Energy consumption is the main source of carbon emissions [23]. Because it is difficult to collect
energy consumption data of prefecture-level cities in the lower reaches of the Yellow River, we followed
previous studies and used the product of the output values of secondary and tertiary industries and the
energy consumption per unit of GDP as urban carbon emissions [49]. The output values of secondary
and tertiary industries are mainly generated by urban economic activities, and thus choosing GDP
energy consumption data to calculate carbon emissions can better reflect the government’s efforts in
energy saving, emission reduction, and industrial upgrading [50]. The equation is as follows:

Ei = GDP23 ×H ×K (2)

where Ei represents the carbon emissions of the i-th city, GDP23 represents the GDP of the
secondary industry and the tertiary industry of the i-th city, H is GDP energy consumption
(standard coal/10,000 yuan), and K is the carbon emission coefficient of the coal consumption based on
the conversion factor of standard coal into CO2. The value of standard coal K was determined to be
2.7725 t CO2/tce based on previous studies [51].

2.3.2. Super-SBM Model Based on Undesirable Output

The DEA model as a linear programming method for measuring the technical efficiency of DMUs
was first proposed by Charnes et al. in 1978, which can include multiple input–output variables [52].
In order to avoid errors when the traditional DEA model is faced with different directions of decision
making, this study calculated the urban eco-efficiency of the lower reaches of the Yellow River according
to the SBM model based on undesirable outputs proposed by Tone [33]. However, it was found that
there were multiple DMUs whose efficiency values were equal to 1. To make the efficiency value of each
DMU comparable, we introduced the Super-SBM model to measure eco-efficiency. The Super-SBM
model is a new model proposed by Tone in 2002 that is based on the Super-DEA model and the
SBM-DEA model, combining the advantages of the SBM model and the super-efficiency DEA model.
Each DMU can be compared according to the actual situation [35,53]. First, assume that n decision
making units (DMUs), X inputs, and Y output variables, m, s1, and s2 are expressed as the number of
inputs, desirable output, and undesired output, respectively. Each DMU will have m types of inputs
Xij (q = 1, 2, . . . , m), S1 desirable outputs, and S2 undesired outputs (r = 1, 2, . . . , s2). The specific
formula is as follows:

ρ∗ = min
1− 1

m (
∑m

i=1
s−i
xik
)

1 + 1
S1+S2

(∑s1
r=1

sg
r

yg
rk
+

∑s2
r=1

sb
r

yb
rk

) (3)

xk −

n∑
j=1,,k

λ jx j + s− ≥ 0

− yg
k +

n∑
j=1,,k

λ jy
g
j + sg

≥ 0

yb
k −

n∑
j=1,,k

λ jyb
j + sb

≥ 0
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1−
1

S1 + S2

 s1∑
r=1

sg
r

yg
rk

+

s2∑
r=1

sb
r

yb
rk

 ≥ ε
λ, s−, sg, sb

≥ 0

where s−, sg, and sb denote the slack in the inputs, desirable outputs, and undesirable outputs,
respectively. The target function value of ρ is the efficiency value of the DMU. When ρ ≥ 1, the DMU
is effective.

2.3.3. Standard Deviation Ellipse

The standard deviation ellipse (SDE) was proposed by Lefever in 1926 for the characterization of the
spatial direction distribution of geographic elements, focusing on revealing the global characteristics of
the spatial distribution of geographic elements [54,55]. The model includes 4 basic elements—azimuth,
mean center (MC), standard deviation along the long axis, and standard deviation along the short axis,
which indicate the main trend direction of the development of geographic elements and degree of
dispersion in the main and secondary directions and represent the central position of all data [56–58].
The corresponding equations are as follows:

Mean center:

Xq =

∑n
i=1 qixi∑n

i=1 qi
; Yq =

∑n
i=1 qiyi∑n

i=1 qi
(4)

The standard deviations along the x- and y-axes can be calculated as

σx =

√∑n
i=1(qixi cosθ− qiyi sinθ)∑n

i=1 q2
i

σy =

√∑n
i=1(qixi sinθ− qiyi cosθ)∑n

i=1 q2
i

(5)

where xi and yi are the spatial coordinates of the research object, qi is the weight, i is the DMU, and x
and y represent the relative coordinates of each point from the center of the region.

2.3.4. STIRPAT Model

The IPAT (Impact, Population, Affluence, Technology) model has been widely used to analyze
the relationship between human activities and the environment since it was proposed in the 1970s
(Equation (6)) [59]. Dietz et al. proposed the STIRPAT (Stochastic Impacts by Regression Population,
Affluence and Technology) model based on the elasticity coefficient in 1994 [60]. The STIRPAT model
(Equation (7)) more accurately measures the effects of socioeconomic factors on the environment [42,61].
The equations are as follows:

I = P×A× T (6)

I = aPbAcTde (7)

where I is the environmental impact; P is the population concentration; A is the degree of affluence; T is
the technological progress; a is the constant term; e is the error term; and b, c, and d are human-driven
indices of P, A, and T, respectively.

Based on previous studies [43], we used the STIRPAT model in this work to detect the driving
factors that affect the urban eco-efficiency of the lower reaches of the Yellow River. It measures the
6 aspects of population agglomeration, wealth, technological progress, industrial structure, openness,
and investment intensity. After normalization with the dependent variable, application of the natural
logarithm, and regression simulation, we obtained the following equation:

ln E = A0 + b ln P + c ln A + d ln T + g ln F DI + h ln I I + ln ε (8)
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where E represents the eco-efficiency of the city, P is the population agglomeration expressed by the
level of population urbanization, A is the per capita GDP, and T is the technological progress. Based on
previous studies, technological progress is mainly reflected by improvements in the energy efficiency
during urban development [62]. Therefore, the reciprocal of the energy consumption per unit GDP was
used in this study. The parameter FDI indicates the intensity of foreign investment, which is expressed
as the ratio of the actual utilized foreign capital to the GDP. The parameter II is the investment intensity
and is expressed by the ratio of fixed asset investments to the GDP. The parameters a, b, c, d, g, and h
are elastic coefficients.

3. Results

3.1. Spatiotemporal Variation of the Urban Eco-Efficiency in the Lower Reaches of the Yellow River

3.1.1. Temporal Changes in the Urban Eco-Efficiency in the Lower Reaches of the Yellow River

Based on the Super-SBM model with undesirable output, we used MAXDEAultra7.2 software
(Beijing Realworld Software Company Ltd., Beijing, China) to measure the urban eco-efficiency of
20 prefecture-level cities in the lower reaches of the Yellow River from 2007 to 2018 and analyzed
the spatiotemporal evolution of the urban eco-efficiency in China. Figure 2 shows that the value of
urban eco-efficiency in the lower reaches of the Yellow River did not reach 1, and thus the whole
study area had not reached the stage of “efficiency”. The average efficiency in each year ranged from
0.6 to 0.8. The overall average eco-efficiency in the lower reaches of the Yellow River in Shandong
Province was higher than that in the lower reaches of Henan Province. However, optimum efficiency
had not been achieved, indicating that the focus must be placed on green development when
considering the economic development of cities in the lower reaches of the Yellow River in order to
improve eco-efficiency.
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Figure 2. Average change of the urban eco-efficiency in the lower reaches of the Yellow River in 2007–2018.

During the study period, the average urban eco-efficiency in the lower reaches of the Yellow River
steadily increased, except for the period of 2010–2012. In 2011, the eco-efficiency of the study area was
at the lowest level in the study period, and began to rebound in 2012, mainly due to the implementation
of the Twelfth five-year plan for the prevention and control of air pollution in key areas in 2012,
which strengthened the efforts of environmental protection and control. The urban eco-efficiency in
the lower reaches of the Yellow River in Shandong Province shows an overall “decline–rise–decline”
trend, while the urban eco-efficiency in the lower reaches of the Yellow River in Henan Province
fluctuated in the early stage and steadily increased in the later stage. From a phased point of view,
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the eco-efficiencies of the cities in the lower reaches of the Yellow River showed a downward trend in
the early stage of the study period (2007–2009), mainly due to the government increasing infrastructure
investments and vigorously promoting the development of the economy to slow down the impact of
the global economic crisis. This led to inefficient economic development and serious environmental
pollution. In the middle of the research period (2009–2014), the urban eco-efficiency in the lower
reaches of the Yellow River significantly fluctuated. The urban eco-efficiency in Shandong Province
first declined, then rose, and then declined. The urban eco-efficiency in Henan Province first increased,
then decreased, and finally steadily increased. In the later period of the research period (2014–2018),
the gap in the urban eco-efficiencies between the two provinces gradually decreased. In the past two
years, the level of the urban eco-efficiency in the lower reaches of the Yellow River in Henan Province
has been the same as that in Shandong Province, indicating that the mode of economic development in
Henan Province has changed since 2011 and the efficiency of economic development has improved on
the basis of energy conservation and emission reduction, which greatly improves urban eco-efficiency.

Figure 3 shows the differences in urban eco-efficiency in the lower reaches of the Yellow River from
2007 to 2018. First, the fluctuation at the upper and lower edges of the box map weakened, indicating that
the high and low eco-efficiency values obtained for each year were stable. Second, except for the
low efficiency value corresponding to the 75th percentile of the boxplot in 2011, the efficiency value
corresponding to the 75th percentile in other years remained basically stable, and the efficiency was ~1,
i.e., almost optimal. The median value decreased from 2007 to 2011 and was close to the lower edge of
the box, indicating that the average level of urban eco-efficiency in the lower reaches of the Yellow
River decreased during this period. During this period, urban development was mainly restricted by
the traditional economic development model, the government’s economic stimulus policy, and the
relatively weak environmental protection. The median distribution of the eco-efficiency fluctuated
from 2011 to 2014 and gradually increased from 2015 to 2018, indicating that the average eco-efficiency
improved during this period. During this period, the Chinese government promulgated a series of
policies and measures to strictly protect the environment and promote the transformation of urban
economic development and the upgrading of industrial structure. The gap between the upper and
lower edges of the box map decreased in the past two years, indicating that the gap between the
eco-efficiencies of cities has been reducing since 2017.
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3.1.2. Spatial Differentiation of the Urban Eco-Efficiency in the Lower Reaches of the Yellow River

The analysis of the temporal evolution of the urban eco-efficiency in the lower reaches of the Yellow
River in Section 3.1.1 indicates a significant difference, although the difference in the eco-efficiency in the
research area was alleviated later in the study period. Therefore, to explore the spatial differentiation
of the urban eco-efficiency in the lower reaches of the Yellow River, we selected four time points in this
study (2007, 2011, 2015, and 2018) and used the visualization tools of ArcGIS10.1 software to obtain
spatial differentiation maps of the urban eco-efficiency for those years (Figure 4).
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The analysis of Figure 4 shows that the level of urban eco-efficiency in the lower reaches of
the Yellow River showed a deteriorating trend from 2007 to 2011, showing a trend of improvement
from 2015 to 2018. The high-value area showed a “blooming in the middle and developing in the
opposite direction at both ends” trend. This means the high value areas of urban eco-efficiency in
Henan Province are gradually increasing, while the cities in Shandong Province with high eco-efficiency
show a downward trend. In the border area of the two provinces, the urban eco-efficiency also showed
improvement. Meanwhile, the urban eco-efficiency in the low-value area gradually decreased. In 2007,
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the high-value area in the lower reaches of the Yellow River was in Shandong Province, and only
Xuchang and Zhoukou in Henan Province exhibited efficiency values greater than 1. The junction
of Shandong and Henan provinces has become a low-value agglomeration area with respect to
eco-efficiency. Hebi was the city with the lowest eco-efficiency in the study area (Figure 4a). In 2011,
areas with low eco-efficiency expanded and the efficiency values of Zhengzhou, Zhoukou, Jinan,
Dongying, and Zibo significantly decreased. The eco-efficiency values of Anyang and Laiwu declined
below 0.4 (Figure 4b). In 2015, the high-value area rebounded and the area with an eco-efficiency
below 0.4 gradually disappeared. The high-value area in Henan Province returned to the state of 2007.
Dezhou City in the Shandong Province did not reach an efficient level, but the urban eco-efficiency of
Heze City reached the optimum level (Figure 4c). In 2018, the range of areas with low eco-efficiency
decreased, areas with high eco-efficiency in Henan Province expanded, and Zibo City in the Shandong
Province reached an efficient level, while the eco-efficiency of Liaocheng City decreased (Figure 4d).

The analysis of the temporal–spatial characteristics of urban eco-efficiency is of great significance
to the study of the stage and spatial differentiation characteristics of urban eco-efficiency in the lower
reaches of the Yellow River. Therefore, to analyze the spatial evolution of the urban eco-efficiency in
the lower reaches of the Yellow River during the research period, we used the SDE model and MC in
this study. On the basis of the urban eco-efficiency in the study area in 2007, 2011, 2015, and 2018 and
through using ArcGIS10.2 software, we obtained the spatial pattern of the urban eco-efficiency in the
lower reaches of the Yellow River (Figure 5a), the MC migration curve of the eco-efficiency (Figure 5b),
and quasi-elliptical parameters and changes in the eco-efficiency MC (Table 2).
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Table 2. Standard deviation ellipse of the urban eco-efficiency in the lower reaches of the Yellow River
for the period of 2007–2018.

Year The Standard Deviation along the Short Axis (km) The Standard Deviation along the Long Axis (km) Azimuth

2007 88.658 255.235 40.27
2011 89.222 246.574 40.723
2015 89.671 251.485 40.738
2018 90.612 252.518 43.232
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The results of Table 2 show that the spatial distribution of urban eco-efficiency in the lower reaches
of the Yellow River from 2007 to 2018 had a “southwest–northeast” direction, which is consistent with
the overall trend in the study area and the position and trajectory of the Yellow River itself. The main
axis of the SDE of urban eco-efficiency and the MC of eco-efficiency moved westward, which indicated
that the cities located in the lower reaches of the Yellow River in Henan Province are characterized
by better development of urban eco-efficiency and contribute more to the development of regional
eco-efficiency. Based on the distribution pattern of the SDE (Figure 5a), the standard deviation of
the long axis was always larger than that of the minor axis, indicating a notable development of the
urban eco-efficiency in the lower reaches of the Yellow River. Further, on the basis of the results
of the calculation of the SDE parameter (Table 2), the standard deviation along the x-axis increased
from 88.66 to 89.22 km from 2007 to 2011 and the standard deviation along the y-axis decreased from
255.24 to 246.574 km, indicating that the development of the urban eco-efficiency was weakened
and centrifugation had a notable effect during this period. The standard deviations of the x- and
y-axes increased in 2015 and 2018. From 2011 to 2017, the standard deviations increased by 1.39 and
5.94 km along the x- and y-axes, respectively, indicating that the development of urban eco-efficiency
in the lower reaches of the Yellow River had strengthened since 2011, while the centrifugation effect
was weakened.

Based on the change in the MC transfer curve of the urban eco-efficiency (Figure 5b), we found that
the MC of urban eco-efficiency was in Shandong Province but notably shifted to the west. The results
show that the sustainable development of cities in Shandong Province reflected the main development
of urban eco-efficiency in the study region. However, the transformation and development of cities
in the lower reaches of the Yellow River in Henan Province showed good trends, contributing to the
spatial evolution of urban eco-efficiency in the study region.

3.2. Driving Mechanism of the Urban Eco-Efficiency in the Lower Reaches of the Yellow River

3.2.1. Selection of Impact Indicators

Factors influencing the urban eco-efficiency have been studied extensively. Based on the STIRPAT
model, the effect of human activities on the natural environment can be analyzed by considering
three aspects: population, affluence, and technological progress. The STIRPAT model was used in
this study to analyze the effects of the affluence (A), population accumulation (P), industrial structure
(IS), intensity of foreign investment (FDI), technology progress (T), and investment intensity (II) on
urban eco-efficiency. Prior to the analysis in this study, we standardized the selected independent and
dependent variables and applied a natural logarithm. The results of the analysis are shown in Table 3.

Table 3. Driving factors of urban eco-efficiency.

Variable Coefficient Standard Error t-Statistic Probability VIF

Constant −0.143 0.070 −2.047 0.042 **
Affluence 0.220 0.033 6.584 0.000 *** 1.423

Investment intensity −0.201 0.052 −3.839 0.000 *** 1.162
Intensity of foreign investment −0.102 0.017 −5.863 0.000 *** 1.182

Industrial structure −0.159 0.096 −1.651 0.100 * 1.941
Technology progress 0.522 0.046 11.391 0.000 *** 1.939

Population accumulation −0.053 0.040 −1.328 0.186 1.214

Note (1) R2 = 0.520926, F-statistic = 42.22583, Probability (F-statistic) = 0.0000; R2, F-statistic and Probability
(F-statistic) are all indexes to evaluate the simulation effect of STIRPAT model, The R2 represents the coefficient
of determination of the regression model, and refers to the degree of fitting of the model. The higher the value,
the better the simulation effect of the model. (2) The symbols ***, **, and * denote the significance at 1%, 5%, and 10%,
respectively; (3) VIF is an acronym for variance inflation factor.

3.2.2. Analysis of the Driving Mechanism

To solve the problem of inaccurate regression results caused by collinearity between data,
we analyzed the collinearity between independent and dependent variables in this study. The test
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results VIF (variance inflation factor) were less than 7.5 empirical values [63], indicating that there was
no multicollinearity problem among the variables. Based on the analysis results in Table 3, except for
the urbanization level index (P), all indicators passed the significance test. The per capita GDP (A),
investment intensity (II), intensity of foreign investment (FDI), and technological progress (T) were
significant at the 1% significance level and the proportion of industrial added value to the GDP (IS)
passed the 10% significance level test. The coefficients of the affluence and technological progress
were 0.2202 and 0.5217, respectively, indicating that every 1% increase in the per capita GDP and
1% reduction in the energy consumption per unit GDP will lead to a 22.02% and 52.17% increase in
urban eco-efficiency, respectively. The investment intensity, foreign investment intensity, and industrial
structure coefficient were −0.2005, −0.102, and −0.159, respectively, indicating that a 1% increase in the
proportion of fixed asset investment in the GDP, proportion of foreign capital actually utilized in the
GDP, and proportion of industrial added value in the GDP will lead to a 20.05%, 10.2%, and 15.9%
decrease in urban eco-efficiency, respectively.

On the basis of the analysis in Table 3, it is clear that the per capita GDP and technological
progress effectively improved the urban eco-efficiency in the lower reaches of the Yellow River.
Note that the positive effect of technological progress was more significant because technological
progress is mainly reflected in the improvement of the energy use efficiency [11]. Energy is not only
the basic guarantee of the life of urban residents and production but also an important source of
environmental pollution. The implementation of the national strategy of eco-environmental protection
and high-quality development in the Yellow River Basin will greatly improve urban energy use
efficiency, change energy use structure, and reduce energy consumption per unit GDP, which can
effectively improve urban eco-efficiency and promote urban sustainable development. The investment
intensity, foreign investment intensity, and index of the industrial structure negatively affect urban
eco-efficiency. The main reason for these negative effects is that the industrial structure in the current
process of urban industrialization in the lower reaches of the Yellow River is unreasonable and there
are many industries with high-energy consumption, low efficiency, and high emissions, which lowers
the urban eco-efficiency. The cities in the lower reaches of the Yellow River are still in the stage of
high-speed urbanization and industrialization and the extensive investment-driven model is one of the
reasons for the low urban eco-efficiency. Furthermore, the process of introducing foreign investments
to promote urban economic development in the lower reaches of the Yellow River includes a type of
industrial transfer characterized by “The Hypothesis of Pollution Haven”, i.e., the transfer of industries
from developed areas to undeveloped areas is usually dominated by high energy-consuming and
high-pollution industries. These factors cause the decrease in urban eco-efficiency in the lower reaches
of the Yellow River.

4. Discussion

Unrestricted urban development causes serious resource and environmental problems; therefore,
the promotion of urban sustainable development is an important goal [64]. According to the basic
connotation of eco-efficiency, research on the evolution and differences of urban eco-efficiency in
the lower reaches of the Yellow River is of great significance in terms of analyzing the stages of
urban development and determining future directions of urban development. First, the undesirable
output in the process of urban economic production was improved in this study and the urban CO2

emissions were estimated based on the ratio of energy consumption per unit GDP to the second and
third output value, yielding an urban efficiency that better reflects the urban economic production.
Second, the Super-SBM model, which can be used to directly measure the undesirable output, was used.
It combines the advantages of the SBM and Super-DEA models and eliminates the limitations of
traditional index analysis. Each decision making unit was analyzed to determine the differences in the
eco-efficiency among regional cities. Finally, the lower reaches of the Yellow River were selected as
the study area. This area is characterized by a contradiction between urban economic development
and ecological environment protection. By measuring the regional eco-efficiency and analyzing the
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effects of socioeconomic factors on the eco-efficiency, we were able to investigate the reasons for the
differences in urban eco-efficiency in this study. Subsequently, a scientific basis was provided for the
formulation of policies to promote sustainable urbanization in areas characterized by a contradiction
between urban economic development and ecological environment protection.

The value of urban eco-efficiency in the lower reaches of the Yellow River did not reach 1, and thus
the whole study area did not reach the stage of “efficiency”. Urban eco-efficiency in Shandong Province
was generally found to be better than that in Henan Province, which is consistent with the results
of previous research [65,66]. This shows that the urban development is still in the stage of high
resource consumption and high environmental impact in areas with the most active urban economic
development in the Yellow River Basin and is facing environmental pressure. The urban eco-efficiency
is closely related to urban economic development, which can be confirmed by the analysis of driving
forces, moreover validating previous research [67,68].

The development of urban eco-efficiency in the lower reaches of the Yellow River can be divided
into stages, which are mainly affected by the government’s economic policies [69,70]. In the early
period (from 2007 to 2011), the economic development model of the cities in the lower reaches of
the Yellow River was a single traditional GDP-oriented development model and the input–output
conversion rate was low. To alleviate economic risks caused by the global financial crisis, the local
government implemented a series of strategies to stimulate economic development. Although these
measures successfully alleviated the risk of financial crisis, environmental management during
this period was relatively inefficient, which caused serious damage to the ecological environment,
serious environmental problems, and the decline of urban eco-efficiency. This also reflected the overall
development of urban eco-efficiency in China during this period [71]. After 2012, the government
strengthened the environmental protection and governance when facing overcapacity, inefficient use
of resources, and serious environmental problems. With the implementation of new urbanization
and ecological civilization construction strategies, the urban development of the study area entered a
new stage.

There was a significant spatial difference in the urban eco-efficiency in the study area. During the
study period, the number of cities in Henan Province that reached an optimum urban eco-efficiency
increased, while the number of cities with an urban eco-efficiency above 1 in Shandong Province
decreased, indicating a trend of “blossom in the middle and reverse development at both ends” in the
high-value area and a gradual decrease in the low-value area. Urban eco-efficiency in Henan Province
is developing, leading to a westward shift of the MC of the urban eco-efficiency in the research region,
which is consistent with the latest research results of Cui [72]. However, the eco-efficiency of many
cities in the study area is still not optimal. Because the development of cities in the lower reaches of the
Yellow River is seriously affected by administrative regionalization and the distance from the core
cities, a positive spillover effect of cities with a higher urban eco-efficiency cannot be observed in the
border area of Henan and Shandong.

The STIRPAT model more accurately specifies the sensitivity of environmental impacts to the
forces that drive them. Therefore, the STIRPAT model was used in this study to analyze the effects of
population, affluence, technological progress, industrial structure, investment intensity, and foreign
capital utilization intensity on urban eco-efficiency. The results show that all influencing factors passed
the significance test, except for the population elements represented by the population urbanization
index. Affluence and technological progress positively affect urban eco-efficiency, but the industrial
structure and investment intensity hinders the improvement of the urban eco-efficiency, which is
consistent with previous research results [33,68,73,74]. In contrast to relatively developed urban
areas [75], the intensity of foreign investment hinders the optimization of urban eco-efficiency in the
lower reaches of the Yellow River, mainly because the industrial transfer introduced by the cities
in the lower reaches of the Yellow River is related to industries with high consumption and a low
production capacity.
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However, this study has its limitations. Because of the small sample size, some mature spatial
analysis models cannot be applied, such as exploratory spatial data analysis (ESDA), GWR (geographical
weighted regression), and some spatial econometric models. In the future, we are going to take the
county-level cities in the lower reaches of the Yellow River as the research region to expand the sample
size and explore the spatial spillover of urban eco-efficiency and the spatial heterogeneity of driving
factors in the lower reaches of the Yellow River.

5. Conclusions

The plain area of the lower reaches of the Yellow River in China is a traditional agricultural
area. From 2007 to 2018, the area of cultivated land in the study area remained stable, accounting for
about 5.6% of the total area, with grain output increasing by nearly 20% and per capita grain being
0.62 kg, ensuring food security in the lower reaches of the Yellow River. Promoting high-quality
urban development under the premise of ensuring food security will remain as the theme of urban
development in the future. However, the level of urban development lags compared with the developed
areas in the east. Moreover, the mode of economic development that has not yet been fully transformed
and the backward industrial structure have led to a prominent contradiction between urban economic
development and ecological environment protection in this area, while the related research on the
eco-efficiency of the Yellow River Basin is still very weak. This study enriches research on urban
sustainable development in traditional agricultural areas. It is of great significance to study the dynamic
changes, differences, and factors influencing the urban eco-efficiency in traditional farming areas.
Based on data obtained from 2007 to 2018, we extended the study of urban eco-efficiency in this
work to traditional farming areas, calculating the urban eco-efficiency of the lower reaches of the
Yellow River by using the Super-SBM model. By investigating the dynamic changes and spatial
differences, we determined the effects of relevant socioeconomic factors on urban eco-efficiency in
this study. The results show that the overall eco-efficiency of the study area has not reached the
optimal level. Although the overall urban eco-efficiency of Shandong Province is better than that of
Henan Province, the urban eco-efficiency of Henan Province has been improving and the gap between
the two provinces continues to decrease, leading to a continuous westward shift of the center of
eco-efficiency in the study area. In addition, urban economic development and technological progress
promote urban eco-efficiency, while high consumption, low-output industrial structures, extensive
investment, and low environmental benefits of the foreign investment model hinder the optimization
of urban eco-efficiency in the study area.

Based on the results of this study, we provide some policy suggestions for the cities in the lower
reaches of the Yellow River:

(1) Changing the mode of economic development and promoting high-quality development of urban
economy is the theme of urban sustainable development in the lower reaches of the Yellow River.
At the same time, we should take the improvement of urban eco-efficiency as an important
part of government work, and change the traditional single GDP-oriented development model
in order to release the space and potential of urban green development and promote urban
sustainable development.

(2) Although the gap of urban eco-efficiency between Shandong Province and Henan Province in the
lower reaches of the Yellow River has been alleviated in recent years, we should still pay attention
to the coordinated development between regions. The areas with high efficiency should give full
play to the positive spillover effect and encourage the flow of advanced technology and industry
to promote the coordinated development of cities in the river basin.

(3) The local government of the study area should pay attention to the optimization and upgrading of
industrial structure and the adjustment of energy utilization structure. By reducing the proportion
of fossil fuels and energy consumption per unit of GDP, the government should strive to ensure
high-quality urban economic development, let people enjoy more benefits brought about by
high-quality development, and improve people’s living standards.
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(4) At present, urban eco-efficiency in the lower reaches of the Yellow River has been restricted by
an extensive investment-driven model, and high pollution an inefficient industrial structure,
and a foreign investment model with high pollution risk. Therefore, the local government
should strictly abide by the environmental protection policies and regulations issued by the
central government; issue and implement the “three lines and one order” as soon as possible;
and build regional cooperation mechanisms for resource conservation and eco-environmental
protection, as well as formulate energy conservation and emission reduction policies from a
regional and urban perspective. We should give full play to the government’s “visible hand”
and improve the access standards of enterprises, as well as promote high-quality development
of the regional economy and society with high-level protection of the ecological environment.
At the same time, we should give full play to the leading role of Zhengzhou and Jinan as
national central cities, speed up the construction of the Zhongyuan urban agglomeration and
the Shandong Peninsula urban agglomeration, optimize the industrial layout, and form a joint
force for development. Finally, cities should avoid inefficient industries and pay attention to the
introduction of high-tech industries; seize the strategic opportunities of 5G, Internet +, and block
chain; increase support for local emerging industries; adjust measures to local conditions;
and develop local characteristic industries so as to optimize and adjust traditional leading
industries and promote urban transformation and development.
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