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Simple Summary: Different herbivores feeding on the same plant can interact through plant-
mediated effects. Cotton whitefly and diamondback moth are two of the most destructive pests in
the world, and they often occur together in cruciferous plants. However, how the performance and
fitness of them are affected when co-occurring in the same host plant remains unclear. The present
study demonstrates that cotton whitefly has become a dominant competitor by gaining increased
fitness benefits when it is mixed with DBM on the same host plant irrespective of sequences of
their arrival, which may be one of the reasons for the rapid expansion and outbreak of the whitefly
population worldwide.

Abstract: Bemisia tabaci and the diamondback moth (DBM), Plutella xylostella, are two major cos-
mopolitan pests that often occur together and cause severe economic losses to cruciferous crops.
However, little is known about how they interact with each other. To determine the effects of defense
responses induced by the two pests on the biology and population dynamics of the herbivores,
we studied the performance and fitness of B. tabaci and DBM when they damaged Chinese kale
simultaneously and in different orders. The results showed that DBM pre-infestation shortened the
developmental duration, increased longevity, oviposition days, and fecundity of B. tabaci. Meanwhile,
the intrinsic rate of increase (r), net reproductive rate (R0) and finite rate of increase (λ) of B. tabaci
increased significantly with dual infection as compared with only B. tabaci infestation. In contrast,
B. tabaci pre-infestation reduced the longevity and oviposition days of DBM, but the population
parameters r, R0, and λ did not vary significantly compared with only DBM infestation. Thus,
co-infestation of B. tabaci and DBM was beneficial to the performance of the B. tabaci population. The
present findings highlight that B. tabaci has become a dominant competitor when mixing with DBM
on the same host plant.

Keywords: cotton whitefly; diamondback moth; fitness; heterospecific interaction; plant-mediated
insect interaction; performance; population dynamics

1. Introduction

In ecological systems, plants are often infested by various herbivorous insects at the
same time or at different times [1–3]. Damage by herbivores can induce changes in the mor-
phological characteristics and physiological metabolism of host plants [4,5]. The changes
in host plants can affect host selection, survival, fecundity, and population dynamics of
herbivores, as well as their interactions [6–8]. Phytochemical defense responses against
herbivores are often herbivore-specific and depend to some extent on the feeding mode
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of herbivores. In general, leaf-chewing insects induce jasmonic acid (JA) regulated de-
fense, whereas phloem feeders induce salicylic acid (SA) regulated defense [9,10]. The
induction of JA- and SA-related defense compounds in plants and the plant-mediated
indirect interactions between herbivores differ, which have an impact on herbivore per-
formance. The growth and development of herbivores are often negatively affected when
the involved insects belong to the same feeding guilds but positive for subsequent herbi-
vore performance when they belong to different feeding guilds [11–14]. However, there
have been inconsistent reports. The aphid Aphis nerii Boyer de Fonscolombe (Hemiptera:
Aphididae) develops more slowly on milkweed plants Asclepias syriaca L. and A. tuberosa
L. (Apocynaceae) pre-infested with the monarch caterpillars Danaus plexippus L. (Lepi-
doptera: Nymphalidae) [15]. In a recent study, it has been reported that early arriving
herbivores negatively affect subsequent insect developmental duration and population
growth when the involved insects are from different feeding guilds [16]. Therefore, plant
quality-mediated interactions between herbivores may not only depend on the combination
of attackers but also on their sequence of arrival. Moreover, many herbivores have multiple
generations throughout the season and are not restricted to a single sequence of arrival
on a shared host plant. Therefore, it is possible that different herbivorous insect species
simultaneously damage the same plant. This may lead to complex interactions between
different insect species that are derived from physiological and metabolic changes in the
plants [17–19]. Exploring interspecific interactions across different herbivores can allow
us to understand how herbivore performance is affected when herbivores from different
feeding guilds co-occur on the same host plant.

The cotton whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a pest
with piercing-sucking mouthparts, and the diamondback moth (DBM), Plutella xylostella
(L.) (Lepidoptera: Plutellidae), a pest with leaf-chewing mouthparts, are two major cos-
mopolitan pests that attack cruciferous crops [20,21]. During a preliminary investigation,
we found that B. tabaci and DBM usually feed on cruciferous vegetables together in a
mixed-population pattern. It is well known that B. tabaci induces SA-dependent defense
responses [22], and DBM larvae induce JA-dependent defense responses [23]. Some studies
have shown that the glucosinolate content and nutritional quality of cruciferous plants
are upregulated and downregulated, respectively, when they are infested by DBM and B.
tabaci [24–26]. Since the plant defense responses induced by B. tabaci and DBM are different,
their mixed occurrence may lead to the interaction of plant defense responses, resulting in
different effects on the performance and fitness of the two herbivores. To date, however,
how the performance and fitness of B. tabaci and DBM are affected when they co-occur in
the same host plant remains unclear.

It is known that B. tabaci and DBM can induce different defense signaling pathways,
and then differential changes in plant chemistry can occur. We hypothesized that these
changes in host plants might result in a facilitative or competitive advantages for B. tabaci
or/and DBM, which may affect their performance and population dynamics. Therefore, in
this study, we addressed this knowledge gap by using the age-stage, two-sex life table on the
interaction between two different feeding guilds, B. tabaci and DBM, mediated by their host
plant Chinese kale. The primary objective of this study was to investigate whether B. tabaci
and/or DBM benefit when feeding on the same host plant at the same time or at different
times. To this end, we first compared the survival, growth, development, fecundity and
longevity of B. tabaci and DBM feeding on plants pre-infested by heterospecific individuals
or co-infested by conspecific and heterospecific individuals. Second, we compared the
population parameters, including the finite rate of increase (λ), intrinsic rate of increase (r),
net reproductive rate (R0), and mean generation time (T) using the age-stage, two-sex life
table. The current study provides a comprehensive insight into the interaction between
herbivores from two different feeding guilds co-feeding on one host plant, and the data can
also be used to predict the population growth and dynamics of B. tabaci and DBM in the
field. Our findings suggest that B. tabaci population has become a dominant competitor
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when it is mixed with DBM on the same host plant, which may be one of the reasons for
the rapid expansion and outbreak of B. tabaci population worldwide.

2. Materials and Methods
2.1. Host Plant and Insect Cultures

Seeds of Chinese kale (Brassica alboglabra var. alboglabra Bailey cv. Zhonghuajianye)
were purchased from Yangling Nongcheng Seed Supplement Company (China) and sown
in a rectangular pot (465 × 175 × 165 mm) containing a mixture of commercial peat
moss (Pindstrup Mosebrug A/S, Ryomgaard, Denmark), perlite, and buldymite at 3:1:1
by volume in climate-controlled growth chambers (RXZ-600C, Ningbo Jiangnan, China)
at 25 ± 1 ◦C, 60–80% relative humidity (RH), and a photoperiod of 16L:8D. After full
expansion of the 2–3 true leaves, the seedlings were selected for uniformity and transplanted
into individual plastic pots (diameter, 120 mm) containing the above-mentioned mixture
and watered every 3 days. The plants were used in all experiments after full expansion of
the fifth and sixth leaves (approximately 45–50 days old).

Bemisia tabaci and DBM were collected from cabbage mustard (Brassica alboglabra
Bailey) plants in a greenhouse in Yangling, Shaanxi, China. Bemisia tabaci was identified
as B. tabaci Middle East-Asia Minor 1 (MEAM1) using a random amplified polymorphic
DNA-polymerase chain reaction with the mitochondrial C oxidase subunit I gene [27].
Bemisia tabaci and DBM were maintained separately on Chinese kale in nylon mesh covered
cages (60 × 60 × 60 cm) in an insectary maintained at 25 ± 2 ◦C, 60–80% relative humidity
(RH), and a photoperiod of 16L:8D. Three cages were used to establish separately B. tabaci
or DBM cultures. Each cage had four potted Chinese kale plants of 5–6-weeks-old, and
about 100 pairs B. tabaci adults or 30 pairs DBM adults (<24 h old) were released into cages.
A cotton ball soaked with 10% sucrose water was used to supply nutrition for DBM adults.
The plants were watered every three days and replaced with fresh plants as needed. It
took about 19–25 days for B. tabaci to complete one generation, and 24–30 days for DBM
to complete one generation. About 100 pairs B. tabaci or 30 pairs DBM adults collected in
the field were mixed into their respective breeding populations every three generations to
avoid the deleterious effects of inbreeding. Bemisia tabaci and DBM cultures were reared for
more than five generations before use in the experiments.

2.2. Bemisia Tabaci Performance

To evaluate herbivore performance, B. tabaci adults were added to plants that were
assigned one of the following three treatments (Figure 1A,C,D): (1) Single herbivory (i.e., B.
tabaci infestation alone, BT)—20 pairs of newly emerged whitefly adults (<24 h old) from
the insectary were collected and released into a leaf-clip cage (diameter, 4 cm; height, 2 cm)
on the undersurface of the fourth leaf of Chinese kale. The edge of the leaf-clip cage was
covered with a sponge to prevent mechanical wounds on the leaf. The whitefly adults were
allowed to lay eggs for 2 h before being removed. Approximately 7 days later, most of the
B. tabaci eggs hatched into the first instar nymphs. (2) Simultaneous herbivory (i.e., B. tabaci
and DBM simultaneous infestation, BT + PX)—20 pairs of newly emerged whitefly adults
(<24 h old) from the insectary were collected and released into the same leaf-clip cage
on the undersurface of the fourth leaf of Chinese kale. The whitefly adults were allowed
to lay eggs for 2 h before being removed. After 7 days, when most of the B. tabaci eggs
hatched into the first instar nymphs, two newly hatched first instar larvae of DBM (<6 h old)
were introduced onto the fifth leaf on the same plant and this leaf was encased in a small
nylon-mesh bag (length,10 cm; width, 8 cm). The opening of the bag was closed with a fine
zipper. (3) Prior herbivory (i.e., DBM infestation followed by B. tabaci, PX − BT)—20 pairs
of newly emerged whitefly adults (<24 h old) from the insectary were collected and released
into the same leaf-clip cage on the undersurface of the fourth leaf. After 2 h, the clip-cage
and whitefly adults were removed from the plants. Meanwhile, two newly hatched first
instar larvae of DBM (<6 h old) were introduced to the fifth leaf on the same plant and
this leaf was encased in the same small nylon-mesh bag. Approximately 7 days later, the
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DBM larvae were removed. At this time, most of the whitefly eggs hatched into first instar
nymphs. Six plants (one plant represented a replication) from each treatment were used in
the experiments.

Figure 1. Schematic illustration of experimental setup. Bemisia tabaci (BT) and Plutella xylostella (PX)
performance and fitness benefits were evaluated when feeding as single herbivore on Chinese kale
(A,B, respectively), on plants with prior herbivore damage (D,E, respectively) and with simultaneous
damage (C).

When most of the B. tabaci eggs hatched into the first instar nymphs, that is, 7 days
later, about 30 first instar nymphs were left, and others were removed with the help of a
stereomicroscope. The duration of development and survival for each immature stage of
B. tabaci were examined daily using a stereomicroscope until they reached the adult stage.
In order to study the reproduction, a pair of newly emerged adult whiteflies (<24 h old)
was placed on the lower surface of the leaf enclosed in a clip cage in a different plant. The
number of eggs laid by females daily was counted using a dissecting microscope after the
pair and clip cage were transferred carefully to another new leaf from a different plant. A
total of ten pairs of newly emerged adult whiteflies (<24 h old) from each treatment were
used in the experiments, and each treatment was repeated three times. These observations
continued until the death of female insects. All experiments were carried out in climate
growth chambers (RXZ-600C, Ningbo Jiangnan, China) at 25 ± 1 ◦C and 60–80% RH and a
photoperiod of 16L:8D.

2.3. Plutella Xylostella Performance

A similar bioassay was designed to evaluate the developmental time and survival
of DBM in the presence and absence of whitefly infestation (Figure 1B,C,E): (1) Single
herbivory (i.e., DBM larvae feeding alone, PX)—Two newly hatched first instar larvae (<6 h
old) were introduced onto the fifth leaf encased in a nylon-mesh bag. (2) Simultaneous
herbivory (PX + BT)—This treatment was the same as that of BT + PX in 2.2. (3) Prior
herbivory (BT − PX)—This treatment was the same as that of BT in 2.2. When most of the
B. tabaci eggs hatched into the first instar nymphs, about 30 first instar nymphs were left,
and others were removed with the help of a stereomicroscope. After 7 days, the B. tabaci
nymphs were removed. Meanwhile, two newly hatched first instar larvae of DBM (<6 h
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old) were introduced onto the fifth leaf and this leaf was encased in a small nylon-mesh
bag. Ten plants (one plant represented a replication) from each treatment were used in the
experiments.

The developmental time and survival rate of DBM were examined daily. In order to
study reproduction, the males and females were paired after the adults emerged (<24 h
old). The pair was released onto an undamaged new leaf encased in a small nylon-mesh
bag (length,10 cm; width, 8 cm) in a different plant, and a small cotton ball dipped in
10% sucrose solution was placed into the bag to provide nutrition. The number of eggs
laid in the leaf was counted daily after the adults were transferred to a new leaf every
day. Meanwhile, the small cotton ball was also replaced by a new one. A total of six pairs
of newly emerged DBM adults from each treatment were used in the experiments, and
each treatment was repeated three times. These observations continued until the death
of the females. All experiments were carried out in climate-controlled growth chambers
(RXZ-600C, Ningbo Jiangnan, China) at 25 ± 1 ◦C, 60–80% RH, and a photoperiod of
16L:8D.

2.4. Statistical Analysis

The raw life table data of individual B. tabaci and DBM were analyzed using the
TWO-SEX-MSChart program [28], based on the age-stage, two-sex life table theory [29] and
the method described by Chi [30]. The survival rate (sxj) (x = age, j = stage), which is the
probability that a newly laid egg survives to age x and stage j, and fecundity fxj, which is the
number of hatched eggs produced by an adult female at age x, were calculated. Age-specific
survival rate (lx) was calculated as lx = ∑m

j=1 sxj, where m is the number of stages. Age-
specific fecundity (mx) was calculated as mx = ∑m

j=1 sxj fxj/ ∑m
j=1 sxj. The net reproductive

rate, which is defined as the total number of offspring that an individual can produce during
its lifetime, is calculated as R0 = ∑∞

x=0 lxmx. The intrinsic rate of increase was calculated
using the Lotka–Euler equation with age indexed from 0 as ∑∞

x=0 e−r(x+1)lxmx = 1. The
mean generation time represents the period that a population requires to increase to R0-
fold of its size as time approaches infinity and the population settles down to a stable
age-stage distribution. Mean generation time is calculated as T = InR0

r . Age-stage-specific
life expectancy (exy) (i.e., the time that an individual of age x and stage y is expected to
live) was calculated as exy = ∑n

i=x ∑m
j=y s′ij, where s′ij is the probability that an individual of

age x and stage y will survive to age i and stage j. In the age-stage, two-sex life table, it is
calculated as vxy = er(x+1)

sxy
∑n

i=x e−r(i+1) ∑m
j=y s′ij fij.

The means and standard errors of developmental time, pre-oviposition period, adult
longevity, fecundity, oviposition day, total preoviposition period, sex ratio, and population
parameters, i.e., the finite rate of increase (λ), intrinsic rate of increase (r), net reproductive
rate (R0), and mean generation time (T) of B. tabaci or DBM for each treatment, were
calculated using the bootstrap method with 100,000 replicates, and the differences among
treatments were measured and compared using the Tukey–Kramer procedure with a
significance level of p < 0.05.

3. Results
3.1. Performance of B. tabaci

The egg-adult (from embryonic development to adult emergence) developmental
duration of B. tabaci was 7.9% and 6.2% lower in plants that were pre-infested with DBM
(PX− BT treatment) or simultaneously exposed to whiteflies plus DBM (PX + BT treatment)
than in plants infested with whiteflies only (BT, control treatment) (p < 0.05), respectively
(Table 1). Female whitefly adult longevity, oviposition days, and fecundity increased by
77.8%, 82.8%, and 75.1%, respectively, in the PX + BT treatment as compared with the BT
treatment (p < 0.05). Similarly, these parameters increased by 36.1%, 43.4%, and 76.4%,
respectively, in the PX − BT treatment as compared with the BT treatment (p < 0.05).
The egg duration, male adult longevity, total preoviposition period (TPOP), and female
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proportion (Nf/N) ratio were not significantly different among the different treatments
(p > 0.05) (Table 1).

Table 1. Developmental duration and reproduction (M ± SE) of Bemisia tabaci when feeding on
Chinese kale alone (BT), with prior DBM damage (PX − BT) or with simultaneous DBM damage
(PX + BT).

Stage BT PX − BT PX + BT

Egg 7.4 ± 0.1 a 7.4 ± 0.1 a 7.6 ± 0.1 a
First instar 4.5 ± 0.2 a 3.6 ± 0.1 b 3.5 ± 0.1 b

Second instar 2.4 ± 0.1 a 2.1 ± 0.0 b 2.1 ± 0.1 ab
Third instar 2.9 ± 0.2 a 2.5 ± 0.1 b 2.6 ± 0.1 ab

Fourth instar 7.4 ± 0.3 a 6.7 ± 0.1 b 6.8 ± 0.1 ab
Egg-adult 24.1 ± 0.6 a 22.2 ± 0.2 b 22.6 ± 0.3 b

Female adult longevity 10.8 ± 1.2 c 14.7 ± 1.2 b 19.2 ± 1.6 a
Male adult longevity 11.8 ± 1.1 a 10.8 ± 1.2 a 12.8 ± 1.4 a

Oviposition days 9.9 ± 1.1 c 14.2 ± 1.2 b 18.1 ± 1.6 a
Fecundity (egg/female) 66.2 ± 9.6 b 116.8 ± 11.3 a 115.9 ± 10.9 a

TPOP 24.2 ± 1.0 a 22.3 ± 0.3 a 22.6 ± 0.4 a
Nf/N ratio 0.362 ± 0.06 a 0.476 ± 0.06 a 0.391 ± 0.06 a

TPOP represents total preoviposition period. Nf/N ratio represents female proportion. Means in the same row
followed by different lowercases represent a significant difference among treatments (p < 0.05).

The population parameters of B. tabaci, i.e., the finite rate of increase (λ), intrinsic
rate of increase (r), net reproductive rate (R0), and mean generation time (T) are listed in
Table 2. The r, R0, and λ increased by 26.3%, 131.3%, and 3.1% in the PX − BT treatment as
compared to in the BT treatment (p < 0.05), respectively. The R0 notably increased by 88.6%
in the PX + BT treatment as compared to in the BT treatment (p < 0.05). However, T did not
show any significant difference among the different treatments (p > 0.05) (Table 2).

Table 2. Population parameters (M ± SE) of Bemisia tabaci when feeding on Chinese kale alone (BT),
with prior DBM damage (PX − BT) or with simultaneous DBM damage (PX + BT).

Population Parameters BT PX − BT PX + BT

Intrinsic rate of increase (r) (d−1) 0.11 ± 0.01 b 0.14 ± 0.01 a 0.13 ± 0.01 ab
Net reproductive rate (R0) (egg) 24.00 ± 5.15 b 55.54 ± 8.35 a 45.27 ± 8.20 a
Finite rate of increase (λ) (d−1) 1.12 ± 0.01 b 1.15 ± 0.01 a 1.14 ± 0.01 ab
Mean generation time (T) (d) 28.59 ± 0.42 a 28.59 ± 0.39 a 29.62 ± 0.54 a

Means in the same row followed by different lowercases represent a significant difference among treatments
(p < 0.05).

3.2. Life Table Analysis of B. tabaci

The age-stage specific survival rate (sxj) illustrated the probability that a B. tabaci egg
can survive to age x and stage j in the three different treatments (Figure 2). Significant
overlaps between stages were found among the three treatments of B. tabaci owing to
variable developmental rates among the individuals. The survival rate of eggs or first
nymphs reached more than 90% in the PX − BT and PX + BT treatments. The peak survival
of the second and third nymphs was observed at 11 and 13 days, respectively, in the PX
− BT and PX + BT treatments, respectively, one day earlier than that in the BT control
group. The survival rate of the fourth nymphs had increased by 21.2% in the PX − BT
treatment and by 16.7% in the PX + BT treatment as compared with the BT treatment. The
peak survival of females in the PX − BT and PX + BT treatments was observed at 25 days,
which was 3 days earlier than that in the control treatment. Similarly, the peak survival of
males was observed at 26 days in the treatment groups, 2 days earlier than the control.



Biology 2022, 11, 72 7 of 17

Figure 2. Age-stage specific survival rate (sxj) of Bemisia tabaci when feeding on Chinese kale alone
(BT), with prior Plutella xylostella damage (PX − BT) or with simultaneous P. xylostella damage
(PX + BT).

The age-specific survival rate (lx), female age-stage specific fecundity (fx), age-specific
fecundity (mx), age-specific net maternity value (lxmx) and cumulative lxmx value (Cumu.lxmx)
of B. tabaci in the three different treatments were shown in Figure 3. The lx curve declined
from 100% to 60.9% in the control BT treatment, from 100% to 63.4% in the PX − BT
treatment, and from 100% to 67.2% in the PX + BT treatment in the first 30 days. After
30 days, the survival rate quickly dropped to zero. In the control BT treatment, the fx and
mx curves reached reproductive peaks at 31 days of age, with the highest fecundity being
10 and 4 hatched eggs, respectively. However, in the PX − BT treatment, fx had three peaks,
suggesting that the oviposition periods of B. tabaci were not concentrated due to DBM
pre-infestation. The Cumu.lxmx values were 55.6 for the PX − BT treatment and 45.3 for the
PX + BT treatment, which were 2.32 and 1.89 times those for the BT treatment, respectively.
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Figure 3. Age-specific survival rate (lx), female age-stage specific fecundities (fx), fecundity (mx) and
net maternity (lxmx) of Bemisia tabaci when feeding on Chinese kale alone (BT), with prior Plutella
xylostella damage (PX − BT) or with simultaneous P. xylostella damage (PX + BT).

The age-stage specific reproductive values (vxj) of B. tabaci represented the contribution
of an individual at age x and stage j to the future population (Figure 4). The reproductive
peaks of 43.5 and 43.7 occurred at 20 and 24 days of age, respectively, in the BT treatment. In
contrast, the peaks of vxj that occurred at 23 and 21 days were as high as 56.5 and 53.9 eggs
in the PX − BT and PX + BT treatments, respectively, which were significantly higher than
the peaks in the BT treatment.
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Figure 4. Age-stage specific reproductive value (vxj) of Bemisia tabaci when feeding on Chinese kale
alone (BT), with prior Plutella xylostella damage (PX − BT) or with simultaneous P. xylostella damage
(PX + BT).

3.3. Performance of DBM

The first instar, third instar, pupa, and egg-adult (from embryonic development to
adult emergence) developmental duration of DBM were 12%, 21.1%, 14.9% and 10.8% lower
when feeding on plants that were simultaneously exposed to whiteflies plus DBM (BT + PX)
(p < 0.05) (Table 3). In contrast, the fecundity of DBM was markedly increased by 31.7%
with BT + PX treatment compared with the PX treatment (p < 0.05). However, the female
adult longevity and oviposition days of DBM markedly decreased by 28.6% and 27.3%,
respectively, after the BT − PX treatment (p < 0.05). Egg duration, male adult longevity,
adult preoviposition period (APOP), TPOP, and sex ratio (Nf/N) were not significantly
different among the different treatments (p > 0.05) (Table 3).

The net reproductive rate (R0) of DBM was greatly increased by 32.2% in the BT + PX
treatment as compared with the PX treatment (p < 0.05). In contrast, the intrinsic rate of
increase (r), finite rate of increase (λ), and mean generation time (T) of DBM were not
significantly different among the BT − PX, BT + PX, and PX treatments (p > 0.05) (Table 4).
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Table 3. Developmental durations and reproduction (M ± SE) of Plutella xylostella when feeding
on Chinese kale alone (PX), with prior whitefly damage (BT − PX) or with simultaneous whitefly
damage (BT + PX).

Stage PX BT − PX BT + PX

Egg 3.0 ± 0.0 a 3.0 ± 0.0 a 3.0 ± 0.0 a
First instar 2.5 ± 0.1 a 2.5 ± 0.2 ab 2.2 ± 0.1 b

Second instar 2.1 ± 0.1 a 1.8 ± 0.1 a 1.8 ± 0.1 a
Third instar 1.8 ± 0.1 b 2.1 ± 0.1 a 1.5 ± 0.1 c

Fourth instar 2.7 ± 0.1 a 2.8 ± 0.1 a 2.5 ± 0.1 a
Pupa 4.7 ± 0.1 a 4.7 ± 0.1 a 4.0 ± 0.1 b

Egg-adult 16.7 ± 0.3 a 16.8 ± 0.5 a 14.9 ± 0.1 b
Female adult longevity 11.9 ± 1.0 a 8.5 ± 0.7 b 12.6 ± 1.2 a
Male adult longevity 24.8 ± 2.1 a 19.1 ± 2.8 a 23.6 ± 1.7 a

Oviposition days 8.8 ± 0.8 a 6.4 ± 0.5 b 7.7 ± 1.1 ab
Fecundity(egg/female) 145.4 ± 16.9 ab 109.4 ± 20.9 b 191.3 ± 29.9 a

APOP 0.6 ± 0.2 a 0.4 ± 0.2 a 1.5 ± 0.6 a
TPOP 17.4 ± 0.6 a 16.3 ± 0.5 a 16.3 ± 0.6 a

Nf/N ratio 0.5 ± 0.1 a 0.4 ± 0.1 a 0.5 ± 0.1 a
APOP represents adult preoviposition period; TPOP represents total preoviposition period; Nf/N ratio represents
female proportion. Means in the same row followed by different letters represent a significant difference among
treatments (p < 0.05).

Table 4. Population parameters (M ± SE) of Plutella xylostella when feeding on Chinese kale alone
(PX), with prior whitefly damage (BT − PX) or with simultaneous whitefly damage (BT + PX).

Population Parameters PX BT − PX BT + PX

Intrinsic rate of increase (r) (d−1) 0.22 ± 0.01 a 0.21 ± 0.01 a 0.25 ± 0.02 a
Net reproductive rate (R0) (egg) 67.83 ± 9.29 b 45.58 ± 8.35 b 89.69 ± 11.74 a
Finite rate of increase (λ) (d−1) 1.24 ± 0.01 a 1.23 ± 0.02 a 1.28 ± 0.02 a
Mean generation time (T) (d) 19.52 ± 0.58 a 18.10 ± 0.61 a 18.28 ± 0.50 a

Means in the same row followed by different letters represent a significant difference among treatments (p < 0.05).

3.4. Life Table Analysis of DBM

The age-stage specific survival rate (sxj) illustrated the probability that a DBM egg
can survive to age x and stage j in the three different treatments (Figure 5). The survival
rates of second, fourth instar larvae and pupae decreased by 37.8%, 21.1%, and 25.6%,
respectively, in the BT − PX treatment as compared with the control PX treatment, and the
pupal stage ended at 25 days, which was five days slower than that observed in the PX
treatment. In contrast, the survival rates of third and fourth instar increased by 26.9% and
20.2%, respectively, in the BT + PX treatment as compared to the PX treatment, and the
pupal stage ended at 17 days, which was three days faster than that in the PX treatment.
The peak survival of females was observed at 18 and 17 days in the PX − BT (36.1%) and
PX + BT treatments (46.9%) treatments, respectively, which were two to three days earlier
than that in the PX treatment (46.7%). Similarly, the peak survival of males was observed at
16 days in the PX + BT treatment (46.9%), which was three days earlier than that in the PX
treatment (50%). In contrast, the peak survival of males was observed at 22 days in the BT
− PX treatment (41.7%), which was three days slower than that in the PX treatment.
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Figure 5. Age-stage specific survival rate (sxj) of Plutella xylostella when feeding on Chinese kale alone
(PX), with prior Bemisia tabaci damage (BT − PX) or with simultaneous B. tabaci damage (BT + PX).

The age-specific survival rate (lx), female age-stage specific fecundity (fx), age-specific fe-
cundity (mx), age-specific net maternity value (lxmx), and cumulative lxmx value (Cumu.lxmx)
of the DBM in the three different treatments were shown in Figure 6. The lx curve slowly
declined from 100% to 90% in the first 24 days in the PX treatment, in the first 15 days in
the BT − PX treatment, and in the first 21 days in the BT + PX treatment. Subsequently, the
survival rate gradually decreased to zero. The fx curve reached a reproductive peak at 15
and 16 days of age, with the highest fecundity being 43 and 51 hatched eggs in the BT − PX
and BT + PX treatments, respectively, which was lower than that in the PX treatment (at
15 days with 56). The mx reached a reproductive peak at 16 days of age, with the highest
fecundity being 12 and 24 hatched eggs in the BT− PX and BT + PX treatments, respectively,
which was higher than 10 in the PX treatment at 18 days. The Cumu.lxmx values were 45.6
in the BT − PX treatment and 89.7 in the BT + PX treatment, which were 0.67 and 1.32 times
those of the PX treatment, respectively.
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Figure 6. Age-specific survival rate (lx), female age-stage specific fecundities (fx), fecundity (mx) and
net maternity (lxmx) of Plutella xylostella when feeding on Chinese kale alone (PX), with prior Bemisia
tabaci damage (BT − PX) or with simultaneous B. tabaci damage (BT + PX).

The age-stage specific reproductive values (vxj) of DBM indicated the contribution of
an individual at age x and stage j to the future population (Figure 7). The reproductive
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peaks occurred at 15 days of age, reaching a peak of 120.4 in the BT treatment. In contrast,
the peaks of vxj that occurred at 15 and 14 days were 97.3 and 128 eggs in the BT − PX and
BT + PX treatments, respectively.

Figure 7. Age-stage specific reproductive value (vxj) of Plutella xylostella when feeding on Chinese
kale alone (PX), with prior Bemisia tabaci damage (BT − PX) or with simultaneous B. tabaci damage
(BT + PX).

4. Discussion

Different herbivores feeding on the same plant can interact through plant-mediated
effects. Two important herbivore pests B. tabaci and DBM often co-occur in cruciferous
vegetables. However, little is known about how they interact with each other. In the present
study, we found support for our hypotheses that B. tabaci gain more fitness benefits when
mixing with DBM on Chinese kale. Our results indicate that potential plant-mediated
interactions occurred between B. tabaci and DBM feeding on Chinese kale. Bemisia tabaci
gained fitness benefits in adult longevity, oviposition days, fecundity, and R0, r, and λ
from pre-infestation with DBM, while female longevity and oviposition days of DBM were
significantly reduced with pre-infestation with B. tabaci. Furthermore, co-infestation of B.
tabaci and DBM was beneficial to the performance of the B. tabaci population. Therefore,
when they mixed on the same host plant, the induced interactions favored B. tabaci as
a superior competitor, which might be one of the reasons for the rapid expansion and
outbreak of the whitefly population worldwide.

To date, some studies have investigated how infestation with prior herbivores affect the
performance of subsequent herbivores. However, the results are highly variable. Phloem-
feeding pest aphid pre-infestation has been found to have positive [13,15], neutral [31,32] or
negative [33] impacts on leaf-chewing pest caterpillars that subsequently feed on the same
plant. Recently, it has been reported that Myzus persicae (Suiz.) (Hemiptera: Aphididae) pre-
infestation promotes the performance of the Colorado potato beetle Leptinotarsa decemlineata
Say (Coleoptera: Chrysomelidae) [3]. In the present study, we found that pre-infestation
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with the cotton whitefly lowered the longevity and oviposition days of DBM, but DBM pre-
infestation improved the performance and population growth of cotton whiteflies. Similar
to our results, cotton whitefly pre-infestation also negatively affects the performance
of Trichoplusia ni (Huebner) (Lepidoptera: Noctuidae) [34], Liriomyza sativae Blanchard
(Diptera: Agromyzidae) [35], M. persicae [36], and Pieris rapae L. (Lepidoptera: Pieridae) [20].
However, the effects of heterospecific pre-infestation on cotton whitefly performance were
inconsistent. The pre-infestation with Heliothis (Lepidoptera: Noctuidae) larvae favor the
development of B. tabaci [37]. However, the pre-infestation with Helicoverpa zea (Boddie)
(Lepidoptera: Noctuidae) larvae have no effect on B. tabaci survival and development [38].
Cotton spider mite Tetranychus turkestani Ugarov et Nikolski (Acari: Tetranychidae) pre-
infestation reduces the population density of B. tabaci [39]. On the contrary, pre-infestation
with the carmine spider mite Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae)
favors the performance of B. tabaci, but pre-infestation with the mealybug Phenacoccus
solenopsis Tinsley (Hemiptera: Pseudococcidae) leads to the opposite effects [40]. These
studies indicate that the plant defense response induced by B. tabaci first attacking healthy
plants is unfavorable to the population growth of subsequent herbivores, which may help
B. tabaci become a strong competitor. However, the effect of host plants first damaged by
other herbivores on B. tabaci population may vary with insect species, and further research
is needed.

In natural ecological systems, different insect species often simultaneously infest the
same plant. Therefore, the co-occurrence of multiple herbivores may have different effects
on the performance of herbivore pests. In the present study, the effects on the performance
of B. tabaci and DBM were significantly different when they simultaneously infested Chinese
kale; the egg-adult developmental duration of B. tabaci decreased, but the oviposition days,
fecundity, and female longevity increased significantly compared with the case of B. tabaci
infestation alone. In contrast, the pre-adult duration of the DBM decreased significantly, but
the oviposition days, fecundity, and female longevity did not change significantly compared
with the case of DBM infestation alone. These results suggest that co-infestation of DBM
and B. tabaci might not only make the plant more susceptible to whiteflies but also facilitate
the performance of the phloem feeder. It has been reported that B. tabaci feeding strongly
represses DBM-induced transcriptional response when feeding together, which would lead
to the repression of the production of defense chemicals indole glucosinolate [41]. This
could be a reason why the whitefly developed better on plants damaged by caterpillars.
Similar to our results, the aphid Brevicoryne brassicae (L.) (Hemiptera: Aphididae) performs
well on black mustard plants co-infested with the butterfly Pieris brassicae L. (Lepidoptera:
Pieridae) [13,42]. However, the butterfly D. plexippus benefits from aphid A. nerii feeding,
while the aphid performance is impaired by butterfly feeding when co-occurring [15].
The damage by L. decemlineata negatively impacts M. persicae performance when they are
feeding together [3]. In addition, plant-mediated interactions between aphid B. brassicae and
DBM are density-dependent, i.e., the growth of DBM is increased at a low aphid density,
whereas DBM feeding on plants colonized by aphids at a high density has a reduced growth
rate [43]. Similar findings have been reported in B. brassicae and P. brassicae on Brassica nigra
Koch plants [2]. The results obtained above indicate that sequences of arrival of different
feeding guild herbivores, insect density, and host plant species might have an important
impact on insect population dynamics and community structure.

The life table provides the most comprehensive information on the survivorship,
development, and reproduction of a population [44,45]; therefore, it is widely used to
evaluate the effects of biological (e.g., host plant species and plant nutrient level) and
abiotic factors (e.g., temperature and chemical pesticides) on insect population growth and
reproduction [46,47]. The population parameter λ summarizes the physiological qualities
of an animal relative to its capacity to increase the population and is often used to evaluate
the fitness of populations across diverse climatic and food-related conditions [48–50].
Therefore, the stronger the adaptability of an insect population, the higher the r-value.
In the present study, DBM pre-infestation significantly increased the r-value of B. tabaci,
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and the r-value of B. tabaci also showed an increasing trend when they fed simultaneously
with the DBM. In contrast, the r-value of DBM did not change significantly with B. tabaci
pre-infestation or simultaneous infestation. To our knowledge, this is the first study to
investigate plant-mediated effects on the performance and fitness of different pest insects
using the life table method. More importantly, our results suggest that B. tabaci has become
a dominant competitor when it is mixed with DBM on the same host plant irrespective
of sequences of their arrival. Furthermore, the present study indicates that a combination
of biological and ecological methods to study plant-mediated interactions between insect
species may be conducive to a better understanding of the complex relationships in plant-
insect associations.

5. Conclusions

Bemisia tabaci and DBM are some of the most destructive pests in the world, and they
often occur together in cruciferous plants. We demonstrate that B. tabaci has become a dom-
inant competitor by gaining increased fitness benefits when it is mixed with DBM on the
same host plant irrespective of sequences of their arrival, which may be one of the reasons
for the rapid expansion and outbreak of the whitefly population worldwide. These findings
broaden our understanding of the population dynamics of herbivores belonging to different
feeding guilds with various arriving sequences in nature. Further research is needed to
explore interactions involving multiple herbivores and their natural enemies, which will
greatly contribute to our understanding of plant responses and their consequences for
trophic interactions and ecological communities in a broader ecosystem framework.
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