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Abstract: Effective treatments for brain tumors remain one of the most urgent and unmet needs in
modern oncology. This is due not only to the presence of the neurovascular unit/blood–brain barrier
(NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results
in what is referred to as the blood–tumor barrier (BTB). Herein, we discuss this heterogeneity, how
it contributes to the failure of novel pharmaceutical treatment strategies, and why a “whole brain”
approach to the treatment of brain tumors might be beneficial. We discuss various methods by
which these obstacles might be overcome and assess how these strategies are progressing in the clinic.
We believe that by approaching brain tumor treatment from this perspective, a new paradigm for
drug delivery to brain tumors might be established.

Keywords: blood-brain barrier; BTB; NVU/BBB; brain metastases

1. Introduction

The blood–brain barrier (BBB) remains one of the greatest obstacles to effective pharmaceutical
interventions in the treatment of central nervous system (CNS) disease, including brain tumors. While it
is true that some loss of neurovascular and barrier integrity may occur in and around brain tumors,
the magnitude of this change is not consistent, and new pharmaceutical strategies for the treatment of
brain tumors have yet to show significant efficacy in the clinic [1–3]. This lack of efficacy is largely
attributed to insufficient drug delivery due to the presence of the BBB. The dense vascular network of
the brain works to strictly regulate the transport of substances into and out of the brain parenchyma
in order to maintain ionic homeostasis, nutrient supply, and removal of waste for optimal neuronal
function. In recent decades, research has revealed that the BBB is composed of specialized endothelial
cells (ECs), which are surrounded and supported by pericytes and astrocytes and are regulated
by neuronal signaling, forming what is referred to as the neurovascular unit (NVU) [4]. A lack of
vesicular transport across these specialized ECs and the presence of active efflux proteins help to
further restrict the access of drugs to the CNS [5]. Currently, treatment for the majority of brain tumors
involves maximal surgical resection, if possible, followed by radiation, and in the case of glioblastoma
multiforme (GBM), concomitant temozolomide (TMZ) [3]. However, these treatments often prove to be
palliative, and malignant brain tumors are nearly always fatal within five years of initial diagnosis [6,7].

While treatments for peripheral malignancies have improved dramatically in recent decades
with the advent of earlier diagnosis, improved imaging, targeted small molecule inhibitors, and large
molecule biologics, the treatment of brain tumors has lagged far behind, and their incidence is on
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the rise [7]. Therefore, it is imperative to understand how the NVU/BBB may be altered in the case of
brain tumors and how to design pharmaceutical interventions specifically to overcome this challenge
while maintaining neurovascular integrity as much as possible. To this end, a number of strategies
have been proposed to improve drug delivery to the brain and brain tumors. Invasive strategies to
bypass the NVU/BBB include convection-enhanced delivery (CED) and direct injection, in addition
to polymer-based, biodegradable implants for drug delivery. Noninvasive strategies might include
focused ultrasound (FUS) and hyperosmotic disruption of the NVU/BBB, as well as inhibition of efflux
transporters, nanoparticle-based strategies, and the use of endogenous transport mechanisms across
the brain EC by receptor-mediated transcytosis. In this review, we will introduce brain barrier anatomy
and physiology, discuss the heterogeneous impacts of tumor growth and signaling on NVU/BBB
integrity, and provide brief overviews of the strategies investigated to deliver drugs to CNS tumors.

2. Barriers and Boundaries in the Brain

Rational drug delivery to any organ requires a thorough understanding of the structures
and properties of the target tissue. This section includes detailed features of the dynamic NVU
model that is rapidly supplanting the former static BBB concept. Furthermore, the role that these
features serve in guiding the molecular basis for current therapies for CNS tumors is illustrated.

2.1. CNS Blood–Tissue Barriers

Any strategy for blood-borne drug delivery into the CNS must consider several structural obstacles
related to blood–tissue interfaces [8,9]. First, the brain is covered by layers of cells collectively described
as the dura–arachnoid–pia membranes. The dura separates peripheral vessels within the cranium
from the cerebrospinal fluid (CSF) in which the brain resides. Several compact layers of epithelial
cells, with tight junctional contacts and relatively low surface areas, prevent materials from traversing
this boundary. Within the CSF compartment, the pial layer contains vessels that penetrate the brain
parenchyma. These vessels also exhibit very low permeability and surface area. Other major barriers
include relatively small regions of CNS circulation and include the choroid plexus, circumventricular
organs (CVOs), and ependymal cells. Each of these has specialized epithelial cells with properties that
highly restrict water-soluble chemicals from penetrating the mass of parenchymal tissue. The choroid
plexus that produces CSF, for example, contains specialized epithelial cells with tight junctions (TJs)
encasing a fenestrated vascular endothelium that allows the exchange of blood constituents with
the extracellular space. The CVOs are also composed of fenestrated endothelial cells, but their location
is confined by surrounding tanycytes, a specialized epithelial cell that also has tight junctional contacts
that localize and restrict the interstitial fluid. Direct exchange between the CSF and interstitial fluid
is restricted by ependymal cells that line the ventricular surface and form a selectively permeable
cellular barrier.

2.2. Neurovascular Unit

By far, the major blood–tissue interface in the brain is the microvasculature network extending
from arterioles to capillaries and to venules. By illustration, in one gram of human brain, the length of
vessels, if joined end to end, approximates the length of 4.5 football fields and almost a quarter (~23%) of
the surface area of a sheet of photocopy paper. The current model of the brain microvasculature consists
of several different cell types working collectively to form a functional NVU [4,10]. The endothelial
cells and their tight junctional contacts that block paracellular diffusion are surrounded by pericytes
that form gap junctions with multiple adjacent endothelial cells and by astrocytic endfeet that cover
>99% of the endothelial–pericyte cell surface (Figure 1). The astrocytes, in turn, extend processes
that monitor synaptic activity and react by signaling endothelial cells and pericytes to respond to
increased metabolic demands by increasing nutrient delivery. Microglia, the resident immune cells,
are extravascular when dormant but react swiftly to remove cellular debris (phagocytosis) or respond
to inflammatory signals associated with disease or injury. Loss of pericytes and their signaling
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in the NVU by injury or genetic means leads to reduced expression of endothelial tight junction
proteins and dysfunction of their permeability barrier [11,12]. These examples illustrate the remarkable
dynamics, plasticity, and interdependence of signaling among the NVU cells to maintain functional
stability in the contemporary model of the neurovasculature.
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Figure 1. The neurovascular unit/blood–brain barrier (NVU/BBB) is composed of specialized endothelial
cells and support cells, including pericytes and astrocytes. The cross-sectional view illustrates that
the majority of the abluminal surface of the endothelial cell is covered by pericytes and astrocytic
foot processes. Paracellular transport across the BBB/NVU is restricted by tight junction proteins,
and even small, lipophilic molecules that might diffuse across the BBB may be subject to active efflux
by a variety of proteins. Facilitated active transport, receptor-mediated transport, and ion transporters
allow the brain to be supplied with nutrients while maintaining strict homeostasis.

2.3. Blood to Brain Permeability and Transport

As the brain depends on external nutrients for growth and development and yet is
protected from the influence of circulating toxins or xenobiotics, the endothelial cell exhibits
critical membrane-imbedded proteins that function as transporters. One group of transporters
includes facilitated carriers and secondary active transporters for the delivery of energy substrates
and essential nutrients (Table 1). The glucose transporter (GLUT1), monocarboxylic acid transporter
(MCT1), and amino acid transporters are examples of the >40 transporters detected by functional
and transcriptomic analyses [13].
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Table 1. Endothelial cell membrane transporters: partial list of common carriers.

Transport System Typical Substrate SLC Family Common Name

Carbohydrates

Hexose Glucose SLC2A1 Glut1

Sodium Myo-inositol Myo-inositol SLC5A3 SMIT

Monocarboxylates

Monocarboxylic acid Lactic acid
ketones SLC16A1 MCT1

Amino Acids

Large neutral amino acid Phenylalanine SLC7A5 LAT1

Small neutral amino acid Alanine SLC38A2 SNAT2, -3, -5

Cationic amino acid Lysine SLC7A1 Cat1, CAT3

Beta amino acid Taurine SLC6A6 TauT

Ala-Ser-Cys Ala, ser, cys SLC1A4 ASCT1, -2

Excitatory amino acid Glutamic acid SLC1A2 EAAT-1, -2, -3

Glycine Glycine SLC6A9, A5 GT-1

Others

Fatty acids Essential FA LPC-PC
(DHA) SLC44A1/2 Mfsd2A FATP-1, -4 Mfsd2A

Nucleoside Adenosine SLC29A1 SLC28A1 ENT-1, -2; CNT1–3

Hormones Thyroid T3
Thyroid T4

SLC16A2
OATP1C1

MCT8
OATP1C1

Biotin, pantothenic acid biotin SLC5A6 SMVT

Folic acid Folinic acid SLC46A1 PCFT

Copper Cu+ SLC31A1 CTR1

A second type of transporter that is critical to brain drug delivery is the ABC (ATP-binding cassette)
superfamily that uses the energy of ATP hydrolysis to expel endogenous and exogenous xenobiotics
from the cell (and from the brain) and return them to the blood for transformation and excretion
(Table 2). The most relevant ABC transporters expressed by brain endothelial cells are P-glycoprotein
(P-gp, ABCB1), breast-cancer-related protein (BCRP, ABCG2), and the multiple drug-related proteins
(MRP1, -4, -5; ABCC1, -4, -5). Many anticancer drugs are substrates of the ABC transporters and,
therefore, may influence their effectiveness as brain cancer drugs (Figure 1). The relevance of ABC
transporters in anticancer drug delivery in brain tumors with apparently high permeability is illustrated
by the fact that the most permeable tumor vasculatures have influx rate constants several-fold less
than the rate constants for other organs such as muscle, heart, lung, kidney, and liver [14]. Therefore,
efflux mechanisms are likely important even in CNS tumors, in which the permeability of the brain
vasculature is compromised and elevated compared to the surrounding tissue.
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Table 2. Brain endothelial cell transporters of xenobiotics/drugs. Members of the ABC (ATP-binding
cassette) superfamily of transporters demonstrated in brain endothelial cells and non-ABC transporters
of organic chemicals potentially present are listed.

Transport System Common Name Typical Substrate

ATP Binding Cassette Transporter (ABC)

ABCB1 P-gp Broad-spectrum, xenobiotics

ABCG2 BCRP mitoxantrone anthracycline
xenobiotics

ABCC1 MRP1 GSSG, leukotrienes

ABCC5 MRP5 Thiopurines, cyclic nucleotides

ABCC4 MRP4 Organic anions

Non-ABC Transporters

SLC22A7 OAT2-3

Organic ions
SLC22A8 OATP1A4
SLC20A2 OATP2B1
SLCO1A4 OCTN2
SLCO2B1 OCT1-3

3. Heterogeneous Blood–Tumor Barrier Permeability

The understanding of the BBB’s physical and biochemical barrier functions, including
the expression of tight junction proteins, restricted paracellular transport, and active efflux mechanisms,
has been well established. However, determining the integrity of the NVU/BBB in and around tumors
and how this affects tumor treatment has been less straightforward. In the case of both primary
and metastatic tumors, the NVU/BBB is subject to changes due to tumor growth and signaling,
and these alterations in NVU/BBB integrity and physiology result in what will hereafter be referred to
as the blood–tumor barrier (BTB). The BTB may be characterized by an inflammatory environment with
increased numbers of activated astrocytes, vascular endothelial growth factor (VEGF)-induced reduction
in the expression of tight junction proteins like claudin-5, breakdown of the basal lamina, and tumor
cell interference in associations between endothelial cells and astrocytic endfeet (Figure 2) [15–17].
There is also evidence for a change in the phenotype of BTB-associated pericytes, which may show
decreased platelet-derived growth factor receptor-β (PDGFR-β) expression in addition to increased
desmin expression [18]. As a result of these changes, the BTB can be, on average, somewhat “leakier”
(more permeable) than the normal NVU/BBB in the absence of disease [17,19,20]. The predominant
question with regards to BBB breakdown and the treatment of brain tumors has therefore been,
is the breakdown of the NVU/BBB in the case of brain tumors significant and uniform enough to allow
for the accumulation of efficacious drug concentrations?

As this question has been repeatedly investigated, various preclinical tumor models have routinely
led to conflicting results. In some cases, tumor vascular permeability, assessed by the accumulation of
fluorescent tracers, has been previously correlated with growth patterns, tumor size, or peripheral
tumor of origin [21]. In other cases, including a variety of brain-trophic metastatic breast cancer
models developed at the National Institutes of Health (NIH), no correlation between tumor size
and permeability has been found [14,19]. These studies also found that the variability of BTB
permeability among tumors in the same animal and even among regions of the same tumors,
as assessed by the accumulation of fluorescent tracers and small molecules like paclitaxel, doxorubicin,
and lapatinib, could be as much as 100-fold [14,22,23]. More recent studies in HER2+ brain-trophic
breast cancer metastasis models have shown a poor correlation between drug accumulation and tracer
accumulation, as well as inconsistent drug uptake and variable efficacy of biologics like trastuzumab
and other antibody-based therapies [22,24,25]. Another model of lung cancer brain metastases found
two-fold increases in permeability to small molecules like 3H-mannitol but concluded that this small
relative increase in addition to functional P-gp was still a significant limitation to systemic drug
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therapy [26]. In addition, a number of studies utilizing transporter-knockout mice and patient-derived
xenograft (PDX) models of GBMs and brain metastases have shown that the efficacy of systemic
administration of various small molecules is consistently limited by the presence of the NVU/BBB
and BTB, active efflux, and the fact that vascular permeability is widely variable within and around
the tumor region [20,27–33]. This heterogeneity in permeability at the BBB leads to wide variability
in drug/tracer accumulation and has also been confirmed by elegant correlated ultramicroscopy
and MRI techniques in preclinical tumor models [34]. These studies point to the conclusion that
relying on the potential for increased BTB permeability is unlikely to result in efficacious treatment
through the systemic administration of novel therapies and their subsequent regulatory approval for
such applications.
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Figure 2. The blood–tumor barrier (BTB) is characterized by increased cytokine and VEGF signaling
from the tumor, which may lead to decreased expression of tight junction (TJ) proteins like claudin-5.
Alterations in pericyte phenotype and disruption of astrocytic associations with endothelial cells may
contribute to decreased barrier integrity. However, this is not a uniform phenomenon within or among
tumors, and the expression of efflux transporters limits drug permeation into the tumor. Evidence exists
showing decreased permeability of the BTB in regions distant to the core of the tumor, which more
closely resemble “unaffected” brain.

Although the aforementioned evidence has been largely preclinical, it agrees with clinical
observations when considered in the appropriate context. Increased permeability of the BTB, relative to
normal brain, is observed clinically, as increased uptake of tracers in magnetic resonance imaging
(MRI) and positron emission tomography (PET) imaging allows for definitive diagnosis of brain
tumors and informs many aspects of their treatment [35]. However, especially in the case of diffuse
and invasive tumors like GBM, it has also been shown that nonenhancing, infiltrating regions of brain
tumors often exist outside of the region of T1-weighted contrast enhancement [36,37]. This indicates
that some portions of the malignant tumor are protected by a relatively uncompromised NVU/BBB.
The patterns of treatment failure are strongly correlated with and attributed to these nonenhancing
regions, and maximal resection that includes these regions improves survival [38–40]. Increasingly,
early-phase studies, in which patients receive drugs prior to tumor resection and biopsy, are being
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utilized to determine the real extent of antineoplastic drug permeability to the BTB [1,2]. Although
fold-increases in drug concentrations relative to normal brain may be observed at the core of the tumor,
this may still not be adequate to cause cell death. As has been evidenced in many of the aforementioned
preclinical models, it is unlikely that these drug concentrations are representative of concentrations in
the entirety of the tumor. In the case of GBM, the infiltrative boundaries of the tumor are likely to have
a more competent and intact BTB, closer to that of “unaffected brain” [20,31,41,42]. This heterogeneous
drug distribution among different regions of the tumor is also clinically evidenced in drug concentrations
from biopsies of non-contrast-enhancing tumor regions [43].

As there has been a great success with novel treatments of peripheral disease, the culmination
of decades of brain tumor research has led to the conclusion that it is imperative that molecules
and delivery strategies be designed foremost with an intact NVU/BBB in mind. As an example,
GNE317, a small molecule that was designed specifically to avoid active efflux, showed significantly
higher activity in a model of brain metastases of lung cancer than another counterpart PI3K inhibitor not
designed to penetrate the BBB/NVU [44,45]. Other brain-penetrant inhibitors like osimertinib, an EGFR
inhibitor, have also shown better preclinical and potential clinical efficacy [46,47]. While designing
small lipophilic molecules in an attempt to optimize tumor penetration and minimize active efflux
is certainly one potential method towards effective treatments for brain tumors, there are a vast
number of other drug delivery strategies and novel molecules in development for this application.
These strategies will be discussed in the following sections.

4. Invasive Technologies

The NVU/BBB poses numerous challenges for efficient drug delivery to the brain and brain tumors,
as discussed in the previous section. To address these challenges, various invasive and noninvasive
strategies have been developed to improve the delivery of therapeutic agents to the brain. Invasive
technologies are based on local delivery of therapeutics to the brain, bypassing the NVU/BBB entirely.
They include drug delivery to the cerebrospinal fluid (CSF) via intrathecal or intraventricular injections
and interstitial delivery via biodegradable wafers or catheters (Figure 3).

4.1. Intrathecal and Intraventricular Injections

Intrathecal (IT) administration involves direct injection of therapeutics into the CSF that fills
the thecal space and encompasses intrathecal–lumbar injection but can also be used to describe
intracerebroventricular or intracisternal magna injections [48]. Chemotherapy may be administered
directly into the lumbar thecal sac via lumbar puncture or infused into the lateral ventricle through
a subcutaneous reservoir and a ventricular catheter, allowing the drug to distribute into the target
sites via diffusion [49]. Drug delivery via lumbar puncture may require multiple administrations, is
highly invasive, causes discomfort to the patient, and is not likely to allow effective drug delivery
to brain tumors. Alternatively, intraventricular infusions are often administered via the Ommaya
reservoir, invented in 1963 by Ayub Ommaya, which is inserted into one of the lateral ventricles
(Figure 3) [50,51]. Clinically, it is essential to ensure correct placement of the catheter in the ventricle,
and, to this end, new state of the art technology using smartphones is being developed as a guide for
accurate neuronavigation and catheter placement, which may make these procedures more accessible
to a variety of clinics [52].
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include intrathecal injection via a lumbar puncture and various intracranial techniques. These include
(A) intracerebroventricular injection using the Ommaya reservoir, (B) convection-enhanced delivery
(CED) by way of intracerebral catheter placement, and (C) placement of drug-loaded polymeric wafers.

In the landscape of brain tumor treatment utilizing this technique, there are several clinical
reports of intrathecal (IT) administration of large molecules, including trastuzumab, in patients with
leptomeningeal metastatic brain tumors [53–59]. However, these studies also utilized concomitant
systemic administration of trastuzumab, and, therefore, the positive symptomatic benefit cannot be
solely attributed to IT administration. There are other case reports that have combined trastuzumab
with other cytotoxic agents like methotrexate and/or cytarabine, resulting in prolongation of disease
control in HER2+ brain tumor patients [60–66]. In the preclinical setting, prophylactic IT administration
of adeno-associated virus serotype 9 (AAV9) gene therapy vectors and tumor tropic neural stem
cells (NSCs) loaded with chemotherapeutic agents shows that IT administration has the potential for
efficient drug delivery of large molecules and biological vectors to the subarachnoid space [48,67–69].

From amongst small molecules, methotrexate and cytarabine are frequently prescribed for IT
administration. However, there are numerous reports of neurotoxicity and other complications such
as transverse myelopathy associated with the IT administration of these drugs [70–75]. Therefore,
although high concentrations can be attained in the CSF using IT injections, reducing the total dose
and risk of systemic toxicity, this method of administration has its drawbacks. The rate of drug
distribution is slow and inversely proportional to the molecular weight, meaning large molecules often
have very low or undetectable concentrations when distant from the site of injection [76]. Additionally,
rapid CSF turnover, as compared to the rate of diffusion, results in faster clearance of the therapeutics
from the site of administration [77,78]. For years, there has been a common misconception that
the distribution of drugs into the CSF is indicative of NVU/BBB permeability and that delivery of
drugs to the CSF would ensure delivery to the deeper brain tissues. However, it is now more widely
accepted that this is not the case, and the reader is directed to a review of this topic [79].
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4.2. Convection-Enhanced Delivery

Convection-enhanced delivery (CED) is one of the most explored techniques to bypass
the NVU/BBB; it was developed in the early 1990s by Edward Oldfield’s group at the NIH [80].
CED involves the infusion of fluids locally under pressure into the interstitial space in the brain or
tumor using stereotactically placed catheters. CED primarily utilizes bulk flow, and diffusion is a
minor component. While diffusion relies on the concentration gradient, and macromolecules penetrate
only up to a few millimeters under diffusive forces, the distribution pattern attained with CED can be
described by Darcy’s law, in which the velocity of the molecule is dependent on the pressure gradient
and hydraulic conductivity of the medium [81,82].

CED is being widely studied in preclinical and clinical studies for GBM and diffuse intrinsic
pontine glioma (DIPG). Souweidane et al. studied CED in combination with PET imaging to deliver
a PET-visible histone deacetylase (HDAC) inhibitor, PETobinostat, for theranostic applications in
DIPG [83]. Various nanotechnology-based drug delivery systems, like liposomes, nanoparticles,
and polymeric micelles, are being administered via CED to increase the volume of the brain tissue
accessible to these systems, which are otherwise limited by poor diffusion [84–91]. Models of CED
could help inform treatment design and optimization of other parameters like volume of infusate,
duration of infusion, catheter design and placement and can guide treatment design [92]. A model
was recently developed to understand the flow and distribution of carmustine and paclitaxel solutions
and doxorubicin-loaded liposomes post-CED [93,94]. Gill et al. studied CED of panobinostat to
understand its pharmacokinetics in brain tissue [95]. A vast number of clinical trials have been initiated
to investigate CED for delivery of both large and small molecules, and some of these have been
compiled in Table 3.

CED is a promising technique that has the potential to overcome the limitations posed by systemic
delivery. Successful translation of this technique to the clinic would have varied applications to treat a
multitude of CNS disorders. For CED to reach its full therapeutic potential, characteristic challenges
like catheter design and placement, prevention of reflux, tracking infusate delivery, reduction in
mechanical tissue damage and edema, and the potential requirements of multiple infusions need to
be addressed. Other challenges associated with CED include cost of the procedure, specific clinical
expertise, and postprocedural imaging [86].
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Table 3. Summary of clinical trials with convection-enhanced delivery (CED) for brain tumors from the clinicaltrials.gov database (accessed on 20 September 2020).

Title Purpose NCT Number Phase Status/Outcome Ref

MTX110 by Convection-Enhanced
Delivery in Treating Participants
With Newly-Diagnosed Diffuse

Intrinsic Pontine Glioma
(PNOC015)

To study the side effects of panobinostat
nanoparticles formulation MTX110 in

participants with newly diagnosed DIPG
NCT03566199 I/II Active, not recruiting [96]

Chronic Convection Enhanced
Delivery of Topotecan

Primarily to establish the safety of prolonged
intracerebral CED of chemotherapy in

patients with recurrent HGG. Secondly to
determine topotecan distribution

and radiographic tumor response under the
given CED conditions

i. NCT03154996
ii. NCT03927274
iii. NCT02278510
iv. NCT00308165

i. I
ii., iii. Early phase I

iv. I/II

i.Active, not recruiting
ii. Recruiting

iii. Completed: Safety of
CMC catheters has been

reported
iv. Recruiting

[97–101]

CED With Irinotecan Liposome
Injection Using Real-Time Imaging
in Children With Diffuse Intrinsic

Pontine Glioma (DIPG; PNOC 009)

Phase I and Early Efficacy Study of CED of
irinotecan liposome injection (nal-IRI) using

real-time imaging with gadolinium in
children with DIPG who have completed

focal radiotherapy

NCT03086616 I Recruiting [102]

CED of 124I-Omburtamab for
Patients With Non-Progressive

Diffuse Pontine Gliomas Previously
Treated With External Beam

Radiation Therapy

To studythe safety of 124I-omburtamab
given by CED at different dose levels for

DIPG
NCT01502917 I Recruiting [103]

CED of MTX110 Newly Diagnosed
Diffuse Midline Gliomas

To find the maximum tolerated dose of
MTX110 (a water-soluble Panobinostat

nanoparticle formulation) and Gadolinium
that can be given safely in children with

newly DIPG

NCT04264143 I Recruiting [104]

Carboplatin in Treating Patients
With Recurrent High-Grade

Gliomas

To evaluate the safety and toxicity of
carboplatin administered by CED in HGG. It

is a dose-escalating study.
NCT01644955 I Completed [105]

Convection-Enhanced Delivery
(CED) of MDNA55 in Adults With

Recurrent or Progressive
Glioblastoma

Single-arm study with the primary endpoint
of median overall survival (mOS) and a

secondary endpoint of objective response
rate (ORR) following a single intra-tumoral

infusion of MDNA55 in adult recurrent
GBM subjects

NCT02858895 II

Completed: mOS 12.4
months for all patients vs.

7.2 months in synthetic
control arm (SCA); 13.2
months in patients with
high IL4R expression vs.

6.1 months in SCA

[106–108]
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Table 3. Cont.

Title Purpose NCT Number Phase Status/Outcome Ref

An Open-Label Dose Escalation
Safety Study of

Convection-Enhanced Delivery of
IL13-PE38QQR in Patients With

Progressive Pediatric Diffuse
Infiltrating Brainstem Glioma

and Supratentorial
High-Grade Glioma

Test the safety and feasibility of giving
IL13-PE38QQR directly into regions of the

brain in pediatric patients with DIPG or
HGG, using CED

NCT00880061 I

Terminated: did not reach
the entire MRI-defined
tumor volume in any

patient, short-term
radiographic effects were

observed in 2 of the 5
patients treated.

[109,110]

Study of Convection-Enhanced,
Image-Assisted Delivery of

Liposomal-Irinotecan In Recurrent
High-Grade Glioma

Dose toleration study to determine MTD of
nanoliposomal irinotecan in adults with

recurrent HGG by CED
NCT02022644 I Recruiting [111]

IL13-PE38QQR Infusion After
Tumor Resection, Followed by

Radiation Therapy With or Without
Temozolomide in Patients With

Newly Diagnosed
Malignant Glioma

Determine the highest dose of
IL13-PE38QQR that can be safely

administered by CED to the area around the
tumor site after surgical resection
and concurrent radiation or TMZ

NCT00089427 I

Completed: Positive
results, overall survival

linked to catheter
placement

[112,113]

Safety and Efficacy Study to Treat
Recurrent Grade 4 Malignant

Brain Tumors

To study the safety and efficacy of TP-38 at
100 ng/mL NCT00104091 II Completed: Results

pending [114]

Maximum Tolerated Dose, Safety,
and Efficacy of Rhenium

Nanoliposomes in Recurrent
Glioma (ReSPECT)

A multicenter, sequential cohort, open-label,
volume, and dose-escalation study of the

safety, tolerability, and distribution of
186RNL given by CED to patients with

recurrent or progressive malignant glioma
after standard surgical, radiation, and/or

chemotherapy treatment

NCT01906385 I/II Recruiting [115]

Safety Study of
Replication-competent Adenovirus

(Delta-24-RGD) in Patients With
Recurrent Glioblastoma

To determine the safety and tolerability of
Delta-24-RGD administered by CED to the

tumor and the surrounding infiltrated brain
in patients with recurrent GBM

NCT01582516 I/II

Completed: Safe
and robust replication of
the AAV, killing of rHGG
cells. ≥95% reduction in

tumor size in some
patients, 5 patients
survived >3 years

[116,117]
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Table 3. Cont.

Title Purpose NCT Number Phase Status/Outcome Ref

A Dose-Escalation Phase I Study Of
Human-Recombinant Bone

Morphogenetic Protein 4
Administered Via CED

In GBM Patients

To evaluate the feasibility and safety of
intratumor and interstitial therapy with

hBMP4 in increasing doses in patients with
progressive and/or multiple recurrent GBM

NCT02869243 I Recruiting [118]

The PRECISE Trial: Study of
IL13-PE38QQR Compared to

GLIADEL Wafer in Patients With
Recurrent Glioblastoma Multiforme

To determine whether overall survival
duration, safety, and quality of life are

improved for patients treated with
IL13-PE38QQR compared to patients treated
with GLIADEL® Wafer following surgical

tumor removal in treatment of first
recurrence GBM

NCT00076986 III

Completed: There was no
survival difference

between CB administered
via CED and Gliadel®

Wafer

[119,120]

Phase 1 Trial of D2C7-IT in
Combination With i. 2141-V11 for

Recurrent Malignant Glioma
ii. Atezolimab for
recurrent gliomas

Phase 1 study of D2C7-IT in combination
with monoclonal antibodies

i. NCT04547777
ii. NCT04160494
iii. NCT02303678

I i. Not yet recruiting
ii, iii. Recruiting [121–123]

Phase 1b Study PVSRIPO for
Recurrent Malignant Glioma

in Children

Confirm the safety of the selected dose
and potential toxicity of oncolytic poliovirus

(PV) immunotherapy with PVSRIPO for
pediatric patients with recurrent WHO grade

III or IV malignant glioma, to determine
MTD for phase 2

i. NCT03043391, ii.
NCT01491893, iii.

NCT04479241
I i. Recruiting

ii. Active, not recruiting [124–126]

Phase IIb Clinical Trial With
TGF-β2 Antisense Compound AP
12009 for Recurrent or Refractory

High-Grade Glioma

Multinational dose-finding Phase IIb study
of the efficacy and safety of two doses of AP

12009 (OT-101/trabedersen) compared to
standard chemotherapy (TMZ or PCV) in
adult patients with confirmed recurrent

high-grade glioma

NCT00431561 IIb

Completed: OT-101 is an
effective agent against

recurrent gliomas without
the myelosuppression

effects of chemotherapy,
which is unavailable

[127–129]
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4.3. Biodegradable Wafers

The development of biodegradable polymers for drug delivery has surged ahead in recent
decades, and numerous controlled release implants have been developed. Such implants allow
precise control over the rate of drug release, prolong local exposure, and reduce systemic toxicities.
A major landmark of this technology in brain tumor treatment is the Gliadel® polymeric wafer
technology that was approved by the Food and Drug Administration (FDA) in September 1996 as an
adjunct to surgery to prolong survival in patients with recurrent GBM, for whom surgical resection is
indicated [130,131]. The wafers are surgically implanted at the time of tumor resection and gradually
release the loaded DNA and RNA alkylating agent, carmustine (BCNU), with the intention of drug
diffusion into surrounding tissue. The polymer is polyanhydride poly[1,3-bis (carboxyphenoxy)
propane-co-sebacic-acid] (PCPP:SA), of which more than 70% is biodegraded within three weeks of
implantation [131]. Stea et al. conducted a systematic literature review of clinical trials and reports
of Gliadel® wafers in combination with radiation therapy and TMZ, and their findings suggest
a positive additive effect without an increase in toxicity [132]. This warrants the need for larger
prospective trials that combine Gliadel® with TMZ and radiation therapy with scientifically backed
study design and patient selection for confirming and establishing the anticipated synergy between
these treatments [133–140].

Recent research efforts are examining the efficacy of wafers after coloading BCNU and TMZ
to determine if there is prolonged survival compared to wafers of the individually loaded drug or
orally administered TMZ in rodent glioma models. These PLGA wafers used a pre-encapsulation
process and reported 25% long-term survivors (survived >120 days compared to median survival
of 28 days) in the F344 rat model [141]. Other chemotherapeutic agents that have been explored for
sustained local delivery via polymeric implants include taxol, camptothecin, minocycline, doxorubicin,
and others [142–156]. Novel polymeric implants and microchips can be used to deliver several drugs
locally at varying time points in a controlled manner, and various formulations such as nanoparticles,
liposomes, and microparticles can also be delivered via these implants.

A major challenge for this technology is to ensure biocompatibility and biodegradation, as there are
reports of incompletely biodegraded materials found up to 68 weeks after implantation; hence, patients
must be monitored carefully [157]. The success of these therapies is limited due to their inability to
reach distant, invasive, and dense tumor cells due to poor diffusion characteristics. Focused treatments,
in combination with localized delivery, are required to target these cells, and local delivery via implants
will play a critical role in this mode of drug delivery [158,159].

5. Blood–Brain Barrier Disrupting Strategies

Apart from these invasive methods, other noninvasive techniques have been investigated to
transiently disrupt the neurovasculature to enhance drug delivery to the CNS. These methods may have
better patient compatibility compared to invasive approaches such as CED and IT injection and will
perhaps allow lower dosage, thus reducing toxicity compared to traditional systemic administration
routes like intravenous injection.

5.1. Osmotic Blood-Brain Barrier Disruption

The tight junctions of the cerebrovascular endothelium can be transiently and reversibly disrupted
by the infusion of a hyperosmolar solution into a cerebral artery putatively because of the shrinkage of
endothelial cells following the splitting of tight junctions. The resulting intracellular spaces increase
paracellular diffusion and facilitate the delivery of therapeutic, diagnostic, and functional agents
relevant to CNS disease. This method was first proposed by Rapoport et al. in 1972, who exposed the pia
arachnoid surface of the cerebral cortex of healthy rabbits to different osmotic concentrations, resulting
in osmotically induced and reversible cell shrinkage (Figure 4) [160]. In practice, this method involves
the infusion of 1.4 M mannitol, which has been FDA-approved for administration to patients [161].
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Besides mannitol, other hypertonic solutions used for transient barrier disruption include arabinose,
lactamide, saline, urea, and several radiographic contrast agents [162]. The first Phase I clinical trial on
osmotic BBB disruption (BBBD) for enhanced drug delivery to the brain was initiated in 1979 [163].
Using this technique in experimental and clinical treatment of brain tumors, permeability enhancements
of greater magnitude were observed for tumors with low, rather than high, initial permeability relative
to that of normal brain [164].
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Figure 4. Drug delivery to the brain may be increased by noninvasive BBB disruption (BBBD)
techniques, including (A) osmotic disruption and (B) focused ultrasound. In osmotic disruption,
infusion of a hyperosmolar solution via a cerebral artery results in endothelial cell shrinkage, temporarily
disrupting tight junctions. Focused ultrasound uses an infusion of inert gas-filled microbubbles, which,
upon application of focused ultrasound, may burst and temporarily disrupt tight junction proteins.
Advantages and disadvantages of both are listed.

In the clinical setting, chemotherapeutics used in combination with osmotic BBBD include
methotrexate (MTX), carboplatin, melphalan, cyclophosphamide, etoposide, and etoposide
phosphate [165]. A clinical study by Neuwelt et al. during the 1980s demonstrated that osmotic
BBBD plus MTX produced long-term remission and improved survival in patients with primary CNS
lymphoma (PCNSL) [166]. Another clinical study from 1982 to 2005, involving more PCNSL patients
treated with osmotic BBBD and methotrexate at four institutions, showed durable tumor control over a
23-year period [167]. Additional clinical studies have demonstrated relatively low toxicity [168,169].

Although the disruption is transient and is fully reversed within several hours [170,171], one risk
of osmotic BBB disruption is the additional mass effect in the brain that results from a 1.5% increase in
brain fluid content [172,173]. Assessment of the extent of the tumor and the associated mass effect
prior to osmotic BBB disruption is important for optimizing protocols and minimizing the risks of this
procedure [174].
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5.2. Microbubble-Mediated Focused Ultrasound

A localized disruption of the neurovasculature using focused ultrasound (FUS) has been suggested
as an anatomically or functionally targeted method for drug delivery from the vasculature into
the brain parenchyma. FUS-induced BBB opening in the presence of microbubbles is local, transient,
and reversible, usually within several hours [175]. Its feasibility and efficacy to promote the delivery of
therapeutic agents into the brain have been examined extensively since 1997 when Kullervo Hynynen
and Ferenc Jolesz first demonstrated the potential feasibility of BBBD through the intact human
skull utilizing short, high-intensity ultrasound [176]. More recently, with the application of magnetic
resonance-compatible transducers, image-guided FUS has allowed targeted localization to brain tumors
and reduced the risk of off-target effects [177–179].

Therapeutic FUS is generally applied in conjunction with intravenously administered microbubbles
(Figure 4). These microbubbles are lipid, protein, or polymer-shelled, inert gas-filled bubbles that
are usually between 0.5 to 10 µm in diameter [180]. They are currently FDA-approved for use as
contrast agents in ultrasound imaging and are utilized in the context of drug delivery to help reduce
the energy threshold required for BBBD [181]. The energy threshold is, to some extent, determined by
the size of microbubbles, and, typically, the smaller the diameter of these microbubbles, the higher
the pressure required for effectiveness [182]. It is important to carefully control the energy level of FUS,
as high pressure and frequency may cause an inflammatory response and/or tissue damage, such as
hemorrhage and apoptotic neuronal damage [183]. Extensive research into the safety and feasibility of
FUS has been initiated in a variety of CNS diseases, and recently, clinical studies have been conducted
to determine the safety and efficacy of the application of FUS with intravenously injected microbubbles
in human brain tumors [184–186].

FUS with microbubbles has been applied to glioma treatment to assist in the delivery of free
therapeutic agents, including small molecules such as doxorubicin [187,188], as well as large molecules
like bevacizumab and trastuzumab [189–191]. It has also been used for gene- [192,193] and drug-loaded
nanoparticle delivery [192–195]. An alternative way to increase the penetration of therapeutic drugs
into the brain is to load the drug of interest into the microbubbles themselves [196,197]. These studies
demonstrated that the drug release process could be controlled by the acoustic emission provided by
ultrasound imaging. FUS has also been combined with magnetic targeting of magnetic nanoparticles
(MNPs) in conjunction with MRI monitoring for CNS drug delivery [198,199]. In this synergistic system,
FUS facilitates delivery through the vascular wall via passive enhanced permeability and retention
(EPR) effects, while magnetic forces actively enhance the deposition of MNPs into the brain.

This approach for BBBD has been shown to be relatively safe, but it also has limitations [200].
Despite the early increase in drug delivery to the CNS, recent studies with large molecules showed
that enhanced permeability was diminished after 5 days [201]. This could be one explanation for why
many animal studies on FUS conducted with trastuzumab showed nonsignificant differences regarding
survival when comparing FUS- and non-FUS-treated groups [189,190]. Repeated FUS treatment before
drug administration may, therefore, be required, which increases risk. Other obstacles in a wide
clinical FUS application include issues with repeatability of the FUS procedure and dependence on
MRI and specially-trained operators [202].

Overall, FUS-mediated BBBD has provided a promising approach to therapeutic delivery to brain
tumors and other CNS diseases such as Alzheimer’s and Parkinson’s diseases [203]. Meanwhile,
successful and wider clinical translation requires a more extensive and thorough examination of
possible safety issues due to repeated BBBD, the repeatability of FUS treatment, and optimization of
ultrasound parameter settings.

6. Nanoparticles

Nanoparticles are a large category of nanoscale particles (1–1000 nm) with the capacity to adsorb,
entrap, or be modified with various therapeutic agents. These particles are promising strategies to
improve brain drug delivery [204]. This section is focused on nanoparticle strategies to overcome low
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neurovascular permeability and increase drug delivery into brain tumors. A summary of the major
categories of the current nanoparticles is shown in Table 4 and can be broadly categorized into biological
vectors and synthetic vectors of various types.

6.1. Biological Vectors

6.1.1. Viral Vectors

Viral vectors have been repeatedly used in GBM gene therapy clinical trials [205]. Viral vectors
have the ability to naturally infect cells with nucleic acids with high transfection efficiency [206].
Currently, several viruses have been developed into vectors for brain delivery, including retroviruses,
adenoviruses, and adeno-associated viruses (AAVs) [13,205,207–209]. Although viral vectors have been
studied for over two decades, they have only resulted in marginal increases in overall survival. Long et al.
undertook a Phase I clinical trial of p53 gene therapy using an adenovirus vector (Ad-p53). However,
transfected cells were found residing only around the injection site [209]. The limitations of using
viral vectors for drug delivery include poor brain tumor penetration, highly invasive administration
methods, and a prevailing risk of oncogenesis and lethality of viral vectors [13,205,207–209].

6.1.2. Exosomes

Exosomes are small endogenous extracellular vesicles (40–100 nm in diameter) that are secreted
by various types of cells and have drug-loading and signal-carrying capacity [210]. Exosomes
can be loaded with various kinds of cargos, such as nucleic acids, proteins, and small molecules,
due to their bubble-like structure [211,212]. Exosomes are generally stable in circulation and lack
significant immunogenicity [13,212]. They transport cargos among cells and may even cross BBB
via endogenous pathways of intercellular communication [13,210–212]. In addition, exosomes have
also played important roles in cancer immunotherapy by virtue of the biological signals enclosed in
exosomes [210,213]. However, the technologies and strategies to isolate and purify exosomes must be
further developed to ensure quality control, and other side effects such as the potential tumor induction
risk of tumor-cell-derived exosomes have to be taken into account [206,210,212].

6.1.3. Cell Delivery

Cell-based drug delivery is another exciting strategy for the delivery of therapeutics across
the BBB via the innate mobility of cells. There are two cell types that have been evaluated as
therapeutic carriers: immune cells and stem cells. In particular, neural stem cells (NSCs), mesenchymal
stem cells (MSCs), and neutrophils have been studied for cell-based therapy [214–216]. These cell
carriers can deliver a variety of therapeutics, including genes, cytokines, enzymes, and nanoparticles
across the BBB and are naturally recruited to the sites of brain tumors by an inflammation-mediated
pathway [217]. Xue et al. demonstrated that neutrophil-mediated paclitaxel cationic liposomes could
penetrate the brain efficiently and slowed the recurrent growth of tumors in mice, with significantly
improved survival rates [216]. Balyasnikova et al. developed engineered neural stem cells to express
membrane-bound TNF-α-related apoptosis-inducing ligands to induce apoptosis in glioma cells [218].
Detailed mechanisms of the cell carrier’s delivery can be found in the recommended reviews [217,219].
The major difficulties associated with this strategy are the limited therapeutics loading and potential
toxicity of the cargo to the cell carriers themselves. Moreover, the spatial and temporal release of
the therapeutic agents from the cell carriers must be well-controlled during drug delivery in order to
achieve the expected efficacy [217,220].

6.2. Synthetic Vehicles

Synthetic nanoparticles have been broadly investigated to deliver drugs to the brain.
The physicochemical properties of the nanoparticles, including size, surface charge, and lipophilicity,
are important in the brain passive-diffusion process. A growing interest in the application of inorganic
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nanoparticles, especially metallic nanoparticles and metallic oxide nanoparticles, in CNS delivery has
emerged among the BBB research community [221,222]. Iron oxide nanoparticles, such as maghemite
(γ-Fe2O3) and magnetite (Fe3O4), are extensively explored due to their inherent magnetic properties,
coupled with tunable size and surface functionality [223–225]. Mesoporous silica nanoparticles
(MSNPs) are nanoscale silica particles with good loading capacity due to their porous structure
and easily modified surface; they are the most commonly applied silica-based delivery vehicles [226].
These inorganic nanoparticles are produced on the scale of nanometers in order to increase their
ability to cross the BBB, providing photodynamic or contrast imaging functions due to material
properties [223]. However, the potential for neurotoxicity and unspecific distribution are serious
barriers to the broad application of metallic nanoparticles [224].

Actively targeted nanoparticles account for the majority of brain drug delivery systems currently
under investigation. Surface-modified nanoparticles are transported into the brain, bypassing the BBB
by three main routes: adsorptive-mediated transcytosis (AMT), receptor-mediated transcytosis
(RMT), and transporter-mediated transcytosis (TMT) [219,227]. Adsorptive-mediated brain targeting
largely depends on the electrostatic interaction between the positively-charged drug delivery systems
and the negatively-charged BBB [228]. In 2007, Lu et al. evaluated the transcytosis of cationic bovine
serum albumin conjugated poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticles (CBSA-NP) on
the BBB. They found that the transcytosis ability of CBSA-NP increased with the increase of CBSA
surface density per nanoparticle [229]. However, this nonspecific targeting is the inherent limitation
of AMT since negatively charged membranes are present throughout all the vascular system [219].
Moreover, positive nanoparticles have more tendency to adsorb surrounding proteins and form protein
coronas [230]. RMT and TMT target the brain more specifically than AMT through ligand-receptor
recognition. These receptor-mediated strategies will be further introduced in the following section.
The transporters for TMT are usually transporters of nutrient materials like sugars, vitamins, hormones,
and amino acids [219,231,232]. These actively targeted nanoparticles target brain tumors more
specifically and, therefore, have higher accumulation and lower systemic side effects. However,
some concerns such as protein adsorption and corona formation around the nanoparticles, potential
neurotoxicity, and difficulty of manufacturing due to the complex structures need to be further
addressed [219,233].
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Table 4. Nanoparticles for brain drug delivery.

Ref [207–209] [210,211,213] [214–216,218] [221,222] [227,228] [230,233,234]
[231,235]

Examples

AAV9-hIFNβ,
retroviral herpes

simplex
virus-thymidine

kinase (HSV-tk), Toca
511 delivers suicide

gene, cytosine
deaminase (CD),

and in combination
with oral prodrug,
adenoviral vector

carrying the
wild-type p53 gene

(Ad-p53)

Paclitaxel with bEND.3
cell-derived exosome,
doxorubicin with U-87

MG cell-derived exosome,
miRNA-486-5p

transferred exosomes,
siKrasG12D iExosomes,

tumor-cell-derived
exosomes and α-GalCer
on a DC-based vaccine

Neutrophil-mediated
paclitaxel cationic

liposomes,
carboxylesterase-expressing

allogeneic neural stem
cells, bone

morphogenetic protein 4
(BMP4) expressing

adipose-derived
mesenchymal stem cells,

neural stem cells
engineered to express

membrane-bound TRAIL
(NSCs-mTRAIL)

Iron oxide nanoparticles,
gold nanoclusters,
mesoporous silica

nanoparticles, lanthanide
upconversion particles

Cationized bovine serum
albumin modified NPs,

polysorbate 80 or
poloxamer 188

overcoated NPs,
apolipoprotein bound

nanoparticles,

Transferrin
receptor-targeted (OX26)

immunoliposomes,
LDLR-DHA

nanoparticles,
insulin-mAb-modified

HSA NPs;
Glutathione-modified

liposomes,
choline-derivate-modified

NPs

Disadvantages

i. Limited brain
tumor penetration
ii. Highly invasive

administration
method

iii. Prevailing risk of
oncogenesis
and lethality

i. Lacking standardized
isolation and purification

procedure,
ii. Donor cells choice
iii. Potential tumor

induction risk of tumor
cell-derived exosomes

i. Potentially toxic effects
of the cargo on the cell

carrier itself
ii. Spatial and temporal

release of the therapeutic
agent

iii. Limited loading
efficiency

i. Neurotoxicity
ii. Unspecific distribution

i. Poor selectivity
ii. Protein adsorption
and corona formation

i. Protein adsorption
and corona formation

ii. Potential neurotoxicity
iii. Difficulty of
manufacturing

Advantages

i. High efficiency for
gene delivery,

ii. Innate ability to
infect cells

i. Nonimmunogenic
ii. Stable and long

circulation
iii. Cross BBB

iv. Target the tissue via
their natural surface

proteins

i. Cross BBB
ii. Naturally recruited to

sites of brain tumors

i. Ultrasmall size
ii. Easily modified

iii. Contrast imaging
iv. Phototherapeutics

i. Electrostatic adsorption
ii. Improve cellular

uptake
iii. Improve penetrating

efficiency

i. High selectivity
ii. Enhanced brain

accumulation
iii. Cross BBB

iv. Decrease systemic
toxicity

Strategy
AMT RMT and TMT

Viral vectors Exosomes Cell carriers Passive diffusion Actively targeted delivery
Biological vectors Synthetic vehicles



Pharmaceutics 2020, 12, 1205 19 of 38

7. Receptor-Mediated Transcytosis

The final strategy to be discussed in this section is the use of endogenous active transport
mechanisms to improve drug delivery to brain tumors, in particular, RMT. This transport is
accomplished by three basic steps: binding of the cargo to the target receptor on the luminal
side of the brain EC; endocytosis, sorting, and transport across the EC cytoplasm; release of the cargo
from the basolateral membrane of the EC into the brain interstitium (Figure 5). As discussed in
reference to the heterogeneity of BTB permeability, it may be beneficial to address the treatment of brain
tumors by utilizing a “whole brain” delivery strategy to address intact NVU/BBB [236]. RMT-based
strategies can be viewed as such an approach because they are generally designed to target transport
mechanisms that are functional throughout the extensive vasculature of the brain. Successful brain
delivery using RMT requires that target receptors have a high relative expression on the luminal
side of the brain endothelium, must mediate transcytosis, and should have high turnover [237,238].
Importantly, the receptor-binding moiety should also have a relatively low affinity for the target
in order to optimize drug delivery and release in the brain parenchyma and to limit trafficking to
the lysosome [237,239].
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Figure 5. Receptor-mediated transcytosis is one of the most common techniques to increase the delivery
of large molecules, nanoparticles, and brain-impermeant drugs to brain tumors. Cargo bound to
endothelial-membrane-bound receptors is pulled into endothelial cells (ECs) and sorted in the early
endosome. Bivalent-binding and high-affinity cargo-receptor complexes are often trafficked to
the lysosome for degradation, whereas cargoes bound with lower affinity are more likely to be trafficked
for transport across the cell. The cargo is then released on the abluminal side of the endothelium,
and the receptor may be recycled back to the luminal membrane.

Common receptor targets at the BBB include transferrin receptors (TfR1), insulin receptors
(IRs), insulin-like growth factor receptors (IGFRs), the low-density lipoprotein-related protein
receptor 1 (LRP1), and nicotinic acetylcholine receptors (nAchRs) [240,241]. This strategy has
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been widely explored in the brain barriers research community for use in a number of CNS
diseases, from brain tumors to lysosomal storage disorders, Alzheimer’s disease, Parkinson’s disease,
and others. As noted in the previous sections, these various RMT-based delivery mechanisms are
often combined with other technologies like BBBD, CED, nanoparticle formulations, gene delivery,
and novel biologics. Herein, we will classify delivery constructs into two categories: shuttle peptides
and antibody-based constructs.

7.1. BBB Shuttle Peptides

Shuttle peptides are relatively short sequences of amino acids (<50 AAs) that bind to a receptor
on the luminal side of the EC to induce endocytosis of the cargo. They are often based on the known
sequences from receptor-binding domains of endogenously transported substances like insulin,
ApoE, and transferrin, but they may also be discovered by phage display biopanning. These peptides
can be directly bound to cargo or associated via noncovalent interactions [238]. Covalently bound
shuttle peptides are more likely to have known and relatively consistent stoichiometry, kinetics,
and affinity. On the other hand, some investigation into noncovalent associations that may be more
prone to cargo release might be more rapidly translated across a number of different drugs for various
applications [242,243]. However, their binding affinity for cargo and optimal stoichiometry must be
determined. The benefits of shuttle peptides, in general, include their relatively small size, simplicity
of synthesis and purification, versatility, and discovery through biopanning. Their limitations include
their liability to proteolytic degradation and relatively short half-life in circulation, which may be
ameliorated somewhat by cyclization [244].

All of the aforementioned receptors have been targeted for drug delivery. Though there is debate
as to the location of LRP1 expression on brain ECs [245,246], a number of shuttle peptides have been
developed to target this receptor, including agiopeps and K16ApoE. The K16ApoE peptide consists of 16
lysine residues and the LRP1-binding domain of ApoE [243,247]. While this has shown some evidence
of improved drug delivery to the brain, the therapeutic window is narrow and may not be suitable
for clinical translation due to acute toxicities observed in mice [242]. Angiopep-2 is one of the most
well-characterized shuttle peptides for brain delivery, and it is derived from the Kunitz domain of
aprotinin [248]. Angiopep-2 has been widely utilized as a targeting moiety for nanoparticle formulations
of antineoplastic agents like TMZ and docetaxel, as well as siRNA, monoclonal antibodies (mAbs),
and various radiosensitizing agents for the treatment of CNS tumors [249–255]. The most developed
shuttle peptide construct is likely ANG1005, an angiopep–paclitaxel conjugate recently investigated in
clinical trials for the treatment of brain metastases from breast cancer, as well as meningiomas [256–258].
Other shuttle peptides include peptide-22, which binds to LDLR, and glutathione, which binds to
the GSH transporter. GSH-coated pegylated nanoparticles show increased CNS penetration and have
been investigated in clinical trials for the delivery of doxorubicin to brain tumors [259,260]. TfR1 has
also been widely investigated as a delivery mechanism due to its expression in tumor cells and brain
ECs [261]. T7 targets TfR1 and is a shuttle peptide that has been investigated to deliver antisense
oligonucleotides to gliomas [262,263]. Delivery of radiosensitizing gold nanoparticles to brain tumors
has been shown to be enhanced by Tfpep [264], and another TfR1-directed peptide, THR, was recently
compared with other previously mentioned peptides for the delivery of AAVs and gold nanoparticles
to the brain but without specific applications towards the treatment of brain tumors [224,265]. A vast
variety of BBB shuttle peptides have been explored, and we direct the reader to an excellent review of
the topic for further reading [238].

7.2. Antibody-Based Delivery Systems

Antibody-based therapies are one of the most rapidly evolving fields in pharmaceutics due
to their plasma stability, long half-life, and specificity. Antibodies, specifically immunoglobulin G
(IgG), are large, bivalent molecules (~150kDa) composed of two identical heavy chains and two
identical light chains bound by disulfide bonds. These proteins have proved to be incredibly effective
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in the treatment of peripheral tumors, but they do not generally cross the BBB from blood into
brain [265–268]. In fact, without enhanced delivery mechanisms, drug accumulation in the brain is
likely to be much less than 1% [266,269]. However, there is still significant interest in delivering these
drugs to the brain [24,245,270–272], and antibodies are also well-suited to serve the same purpose
as shuttle peptides to promote RMT. With the recent blossoming of innovative protein engineering
and the use of antibody fragments, the somewhat “modular” structure of IgGs has been exploited
to modify and utilize different domains. This allows them to be optimized for use as brain-targeted
therapies and brain delivery vehicles.

A variety of therapeutic antibodies and antibody-decorated NPs have been targeted at the brain
via the TfRs and IRs for treatments of CNS diseases, most notably Alzheimer’s disease and brain
tumors [273,274]. In recent years, a nanocarrier of p53 gene therapy, decorated with anti-TfR1
single-chain variable fragments (scFvs), SGT-53, has been successful in preclinical studies and has moved
into clinical trials [275–277]. Although a study in adult refractory CNS tumors was terminated, actively
recruiting studies for children with refractory solid tumors and planned clinical trials in refractory
CNS tumors in pediatric patients (NCT02354547, NCT03554707) are still ongoing. Other imaginative
antibody constructs explore bispecific or multivalent targeting [278,279]. Recent work from AbbVie
demonstrates the targeting of multivalent, dual-variable-domain IgGs (DVD-Igs) with a dual affinity
for precision targeting. These molecules can bind two targets, TfR1 for RMT and HER2, for prospective
targeting to HER2+ brain tumors while maintaining the Fc domain unchanged, allowing for beneficial
FcRn recycling [280]. Furthermore, recently published work from Denali Therapeutics demonstrates a
novel protein transport vehicle (TV) with an affinity for TfR1 incorporated into the Fc region of the IgG,
allowing for retention of bivalent binding to the therapeutic target [281,282]. Although these are not
explicitly intended to treat brain tumors, they are an exciting contribution.

8. Conclusions and Future Perspectives

In the past decade, there has been a tremendous increase in the understanding of the physiology
of the BBB. However, this has not translated to efficacious treatment of CNS disorders, which range
from epilepsy to brain tumors. In the case of both primary and metastatic brain tumors, the BBB
is disrupted heterogeneously, leading to the formation of the blood–tumor barrier (BTB). The BTB
harbors considerable structural and functional heterogeneity within the tumor microenvironment
and varies across different cancer subtypes [17]. It compels us to question if the leakiness can be used
to our advantage to deliver drugs in desired concentrations to the target site.

While some reports have shown a positive correlation between increased permeability in the tumor
to tumor size and growth patterns, there are reports, including those from NIH, that demonstrate no
correlation between the two. These inconsistencies highlight the problem of heterogeneity of the BBB
breakdown, and this challenge is encountered in the clinical setting as well. Diagnosis of brain tumors
using fluorescent tracers is facilitated by the increased permeability of the BTB, but why does it not
extrapolate to the treatment modalities like chemotherapy? Instead of relying on the altered BBB
permeability to deliver cytotoxic cargo to the tumor cells, it would be better to prepare the delivery
systems to face the most challenging barrier—the intact BBB—and strategize the delivery to efficiently
target the tumor cells and reduce any off-target toxicity.

Over years of research, various strategies have been developed to invasively or noninvasively
overcome the BBB. The invasive strategies bypass the BBB altogether and deliver the therapeutic agents
directly into the brain parenchyma or into the CSF. These strategies prevent systemic exposure of
the drug, thereby limiting its toxicity and side-effects. They have been widely explored in the clinical
setting and there are numerous on-going clinical trials, demonstrating the huge potential of this strategy.
However, invasive procedures need highly specialized instruments and personnel. From a patient’s
perspective, noninvasive strategies are preferred. Various noninvasive BBB-disrupting strategies
and nanoparticle drug delivery systems that bypass the BBB by a number of transport routes are
discussed in the review. Transient disruption of the BBB using focused ultrasound enables the delivery
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of a wide range of therapeutics to the brain, ranging from small molecules to large molecules. It is
imperative to understand the kinetics and time duration of the temporary disruption to effectively
plan the delivery of therapeutics. The first decade of the 21st century saw the “nanoparticle boom”
and nanoparticles proved to be able to deliver conventional drugs, recombinant proteins, vaccines,
and nucleotides. This versatile carrier system can be modified to target various transcytosis pathways
to ensure improved drug delivery using the enhanced permeation retention (EPR) effect [283].

Understanding the physiology of the BBB at the cellular and molecular levels helps researchers
design delivery systems that selectively target the receptors and transporters on the cell surface of
the BBB. A challenge while developing these constructs is to avoid off-target effects. Ensuring delivery
at the site of action is critical to achieving the desired concentrations at that site and minimal off-target
effects. Thus, understanding the pharmacokinetics of the delivery systems would be imperative for
their progress from the preclinical research settings to the clinical scenario.

In conclusion, a better understanding of the BBB/BTB physiology has led to the development
of a multitude of strategies to target the tumor cells present beyond these barriers. As has been
demonstrated on numerous occasions in the past, a “one size fits all” approach is not effective. A rational
combination of drugs and their delivery is now being designed to attain optimal concentrations in
brain tumors. In this way, a comprehensive treatment regime will be established.
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Abbreviations

AAV Adeno-associated virus
ABC ATP-binding cassette protein
AMT Adsorptive-mediated transcytosis
BBB Blood–brain barrier
BBBD Blood–brain barrier disruption
BCRP Breast cancer resistance protein
BTB Blood–tumor barrier
CED Convection-enhanced delivery
CNS Central nervous system
CSF Cerebrospinal fluid
CVO Circumventricular organs
DIPG Diffuse intrinsic pontine glioma
EC Endothelial cells
EGFR Epidermal growth factor receptor
FDA Food and Drug Administration
FUS Focused ultrasound
GBM Glioblastoma miltiforme
GLUT1 Glucose transporter 1
HDAC Histone deacetylase
IGFR Insulin-like growth factor receptor
IR Insulin receptor
IT Intrathecal
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LDLR Low-density lipoprotein receptor
LRP1 Low-density lipoprotein-related protein 1
MCT1 Monocarboxylate transporter 1
MNP Magnetic nanoparticles
MSC Mesenchymal stem cells
MRI Magnetic resonance imaging
MRP Multidrug resistance protein
NSC Neural stem cell
NVU Neurovascular unit
NVU/BBB Neurovascular unit/blood–brain barrier
PDGFR-β Platelet-derived growth factor-β
P-gp P-glycoprotein
PLGA poly(lactic-co-glycolic acid)
RMT Receptor-mediated transcytosis
TfR1 Transferrin receptor 1
TMT Transporter-mediated transcytosis
VEGF Vascular endothelial growth factor
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