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Autoimmune diseases are a group of heterogeneous diseases with diverse clinical
manifestations that can be divided into systemic and organ-specific. The common
etiology of autoimmune diseases is the destruction of immune tolerance and the
production of autoantibodies, which attack specific tissues and/or organs in the body.
The pathogenesis of autoimmune diseases is complicated, and genetic, environmental,
infectious, and even psychological factors work together to cause aberrant innate and
adaptive immune responses. Although the exact mechanisms are unclear, recently,
excessive exacerbation of pyroptosis, as a bond between innate and adaptive
immunity, has been proven to play a crucial role in the development of autoimmune
disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell
rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such
as IL-1b and IL-18. This overactive inflammatory programmed cell death disrupts immune
system homeostasis and promotes autoimmunity. This review examines the molecular
structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the
switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated
pyroptosis pathways, including the canonical caspase-1-mediated pathway, the
noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated
pathway, and the caspase-independent pathway, are also described. We highlight the
recent advances in pyroptosis in autoimmune diseases, such as systemic lupus
erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren’s syndrome
and dermatomyositis, and attempt to identify its potential advantages as a therapeutic
target or prognostic marker in these diseases.
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INTRODUCTION

In 1992, pyroptosis was originally defined as macrophage lysis
following Shigella flexneri infection, although researchers
mistakenly regarded it as apoptosis at the time (1). It was not
until 2001 that Cookson and Brennan first proposed the term
“pyroptosis” to define this process of cell death. Pyro, originating
from Greek roots, means fire or fever, which is used to highlight
the features of inflammation. Ptosis, deriving from Greek roots,
means to “fall off,” is adopted as the common suffix root in cell
death (2). As a form of inflammatory programmed cell death, the
primary feature of pyroptosis is membrane pore formation,
which is dependent on the N-terminal domains of the
gasdermin protein family. These domains are often (but not
always) cleaved by the activated caspase family, leading to cell
swelling, final rupture, and the outflow of IL-1b, IL-18, and
cytoplasmic contents (3).

In innate immunity, moderate pyroptosis can eliminate the
replication niche of intracellular pathogens, making them
vulnerable to killing by innate immune cells and protecting the
remaining cells from microbial invasion (4). Nevertheless,
emerging evidence demonstrates that the aberrant activation of
pyroptosis may initiate autoimmune disease. Pyroptosis is not
only a silent type of cell death similar to apoptosis, resulting in
the partial loss of the structure and function of tissues or organs,
but also leads to the release of abundant inflammatory media at
the end of cell life. This prolonged release of inflammatory
factors triggers an overactive immune system and leads to the
continuation and progression of autoimmune diseases (5).
Specifically, the uncontrolled release of pro-inflammatory
cytokines assists differentiated mature T cells in inducing
adaptive immunity. The subsequent dysregulation of adaptive
immunity leads to autoimmune system dysfunction and loss of
tolerance to normal tissues and organs. Under these conditions,
autoantibodies and/or autoreactive T cells will mistakenly attack
the body, causing autoimmune diseases (6–8).

Thus, in this review, we comprehensively elaborate on
the pathophysiological mechanism and molecular signal
pathways of pyroptosis and its role in the pathogenesis of
autoimmune diseases.
PIVOTAL INFLAMMASOMES IN
PYROPTOSIS

As an immune signaling multi-protein complex, the canonical
inflammasome is assembled by a specific sensor, adaptor protein
apoptosis-associated speck-like protein containing a CARD
(ASC), and effector pro-caspase-1 (9). Thus far, canonical
inflammasomes that enable the induction of pyroptosis include
NLRP1, NLRP3, NLRC4, AIM2, and Pyrin (10). However, given
that NLRP3, AIM2, and P2X7-NLRP3 are the most thoroughly
studied in terms of pyroptosis in the context of autoimmune
disease, we mainly introduce the biological characteristics of
these inflammasomes and discuss their activation and
modification patterns.
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NLRP3 Inflammasome
As a representative of the nucleotide-binding leucine-rich repeat
proteins (NLRs) family, the NLRP3 protein mainly contains the
following three components: a C-terminal leucine-rich repeat
(LRR) domain; a central adenosine triphosphatase (ATPase)
domain known as NACHT; and N-terminal pyrin domain
(PYD) (11). The NLRP3 family also contains a caspase
activation and recruitment domain (CARD) at the C-terminus
and a PYD at the N-terminus, which assemble into ASC (12).
Following detection of pathogens and endogenous danger signals
by the LRR, the oligomeric NLRP3 inflammasome gathers
together through its NACHT domains and recruits ASC
through PYD-PYD interactions to nucleate PYD filaments of
ASC. Finally, the adaptor protein ASC attracts pro-caspase-1 via
CARD-CARD interactions, inducing the self-cleavage of
caspase-1 (13).

The activation of the NLRP3 inflammasome is a two-step
signal model. The first signal (priming) is provided by Toll-like
receptor (TLR) and cytokine receptors, such as leukin-1 receptor
(IL-1R) and tumor necrosis factor receptor (TNFR) (14).
Following identification of microbes or inflammatory cytokines
by NF-kB-activating receptors, NF-kB is immediately
translocated to the nucleus with the assistance of FADD and
caspase-8, which raises the content of NLRP3 and pro-IL-1b by
boosting their gene transcription and translation (14, 15). The
second signal (activation) is triggered by extensive stimuli,
including pore-forming toxins, ATP, and different particulates
(16, 17). Owing to the second step, the NLRP3 inflammasome
completes assembly and activates caspase-1, which processes
pro-IL-1b and pro-IL-18 into their mature forms at the
microtubule-organizing center (MTOC) distributed in the
perinuclear and punctate regions (11, 18). It has been
suggested that NLRP3 inflammasome activation is mediated by
intricate cellular signaling events, including potassium efflux,
calcium overload, reactive oxygen species (ROS) generation,
mitochondrial dysfunction and lysosomal rupture (19–23). Yet,
the specific mechanism of ion flux changes or organelle
dysfunction in the activation of the NLRP3 inflammasome
remains controversial.

Additionally, NIMA-related kinase 7 (NEK7) has recently
been authenticated an essential activator of the NLRP3
inflammasome (24, 25). Initially, histone deacetylase 6
(HDAC6) may carry the NLRP3 inflammasome to the MTOC,
where NEK7 is located, with the aid of microtubule transport
(18). Subsequently, Sharif et al. found that the curved LRR and
globular NACHT domains together made up the earring-shaped
NLRP3. The former interacts with the first half of the NEK7
C-lobe, while the latter interacts with the second half of the
NEK7 C-lobe via its NBD and helical domain 2 (HD2) (26), thus
unveiling that even though the NLRP3-NEK7 complex alone is
insufficient to support NLRP3 inflammasome activation, NEK7
can be responsible for signal transduction generated by the above
stimuli during NLRP3 activation.

Remarkably, the post-translational modification (PTM) of the
NLRP3 inflammasome is also an indispensable step in regulating
its activity. NLRP3 deubiquitination and ASC ubiquitination or
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phosphorylation are expected to promote activation, while
NLRP3 phosphorylation has dual-directional effects, depending
on when and where this modification occurs (27–31). There is a
prevailing notion that that high expression of NLRP3
inflammasome is observed in patients with autoimmune
diseases; thus, the NLRP3/IL-1 axis is highly susceptible to
initiate an overreaction of the immune system.

AIM2 Inflammasome
AIM2 (absent in melanoma 2), a member of the pyrin and HIN
domain-containing (PYHIN) protein family, is composed of a
C-terminal HIN-200 domain and an N-terminal PYD. AIM2
senses cytoplasmic DNA via its HIN-200 domain, while the PYD
combines with adaptor protein ASC whose CARD can summon
and activate pro-caspase-1 (32, 33).

As a cytoplasmic DNA sensor, AIM2 has been proven to
respond to DNA from various sources, including bacterial DNA,
such as Francisella tularensis, Porphyromonas gingivalisas,
Legionella pneumophila, Staphylococcus aureus, Brucella
abortus, and Chlamydia muridarum (34); viral DNA, such as
human papillomavirus, and enterovirus 71 (EV71) (35, 36);
influenza virus-induced oxidized mitochondrial DNA
(mtDNA) (37); ionizing radiation-induced DNA (38); and self-
DNA released through exosomes (39). In addition to DNA,
AIM2 can monitor the invasion of fungi, such as Aspergillus
fumigatus, protozoans, such as Plasmodium berghei, and possibly
SARS-CoV-2 (the causative virus of COVID-19) (40–42).

DNA that enters the cytoplasm will have difficulty making
direct contact with the AIM2 inflammasome directly given that it
is always encapsulated by cell membrane to avoid immune
attack. Fortunately, Type I interferon (type I IFN) assumes
responsibility for puncturing this protective film and exposing
bacterial DNA. Taking Francisella novicida as an example, the
nucleotidyl transferase, cGAS, induces the expression of type I
IFN through the STING-TBK1-IRF3 pathway after detecting
foreign DNA (43). Next, the type I IFN signaling formed by the
combination of type I IFN and type I IFN receptor (IFNAR) up-
regulates the expression of interferon regulatory factor 1 (IRF1)
(44). The expression of IRGB10 and guanylate binding proteins
(GBPs) especially GBP2 and GBP5, are up-regulated in response
to IRF1 induction (45, 46). These interferon-inducible proteins
immediately destroy the bacterial membrane of F. novicida, such
that its DNA can enter the cytoplasm and bind to the AIM2
inflammasome (47). Subsequently, the negatively charged
dsDNA sugar-phosphate backbone and the positively charged
HIN domain residues rely on electrostatic attraction rather than
a DNA sequence to bind (48). Yet, the dsDNA length determines
the assembly dynamics of the AIM2 inflammasome. Biochemical
cellular studies have illustrated that the threshold length of
dsDNA that can provoke AIM2 inflammasome is 80 bp, while
200 bp of dsDNA may achieve the peak. A stepwise-amplified
signal, accelerating the formation of AIM2 and ASC filaments,
will be generated from AIM2 to ASC as soon as the dsDNA
length reaches the conditions that trigger inflammasome
assembly (49).

There remain many controversies regarding how the binding
of DNA to AIM2HIN leads AIM2PYD to recruit downstream ASC.
Frontiers in Immunology | www.frontiersin.org 3
Jin et al. initially proposed that with the absence of cytoplasmic
DNA, the PYD and HIN domains of AIM2 preferred to make up
an autoinhibited intramolecular complex; once the HIN domain
met dsDNA, the PYD would be replaced and removed from the
complex, thereby allowing it to interact with downstream ASC
(48). This hypothesis was later challenged by Sohn et al., who
demonstrated that the role of AIM2PYD was not autoinhibition,
but to oligomerize and impel filament assembly, thus
constructing the structural template for downstream ASCPYD

polymerization. This novel discovery may be mainly attributed
to the fact that ASCPYD

filaments have a helical architecture
consistent with AIM2PYD filaments (50), which is a prerequisite
for the unidirectional recognition between AIM2PYD and
ASCPYD, permitting the top of the AIM2PYD filament to make
contact with only the bottom of the ASCPYD

filament (51).
Similarly, due to the plentiful and continuous self-DNA

deposition in patients with autoimmune disease, there is a
potential threat of AIM2 over-activation. Therefore, it is
important for the AIM2 inflammasome to conduct the PTM
with the intention of regulating activity. T. Liu et al. reported that
tripartite motif 11 (TRIM11) binds to AIM2 through its PS
domain and performs polyubiquitination at K458, which could
push AIM2 to the autophagic cargo receptor p62 for autophagy-
dependent degradation (52). In contrast, HUWE1, originated
from the HECT E3 ubiquitin ligase family, was recently
discovered to mediate K27-linked polyubiquitination at the
lysine residues of the AIM2PYD domain, where it promotes the
assembly and activation of the AIM2 inflammasome (53). As
ubiquitination is a reversible process, the regulation of
deubiquitinase activity can be utilized as a new drug design
strategy in the treatment of autoimmune diseases caused by
excessive activation of the AIM2 inflammasome.

P2X7-NLRP3 Inflammasome
The P2X7 receptor (P2X7R) is a ligand-gated nonselective cation
channel, which serves as a unique member of the purinergic type
2 (P2) receptor family. The P2 receptor family consists of two
main subfamilies: a P2X family of ligand-gated ion channel
receptors (P2Y1, 2, 4, 6, 11−14) and a P2Y family of G
protein-coupled receptors (P2X1–7) (54). The structure of the
P2X7 monomer includes two a-helical transmembrane-
spanning regions (TM1 and TM2) linked by a large
extracellular loop containing ten conserved cysteine residues,
which allow the formation of disulfide bonds, an intracellular N-
terminal domain, and an obviously longer intracellular C-
terminal domain compared to other P2X receptors (55). From
the perspective of its three-dimensional structure, the shape of
the P2X7 subunit resembles that of a dolphin (56).

The functional P2X7R, whose extracellular domains bind to
three activator ATP molecules correspondingly, is composed of
three intertwined P2X7 subunits. Among the P2X receptor
family, P2X7R has the lowest affinity for ATP, such that a high
ATP concentration is required for activation (57). The main
source of ATP is pathological cell death, stress, plasma
membrane rupture, and regulatory ATP release via pannexin-
1, connexin-43, ATP-binding cassette (ABC), secretory vesicles,
PRR activation, and P2X7R (58, 59). Stimulation of a low
May 2022 | Volume 13 | Article 841732
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concentration of ATP will open the ATP-gated cation channel
for a few milliseconds to facilitate the inflow of Na+ and Ca2+ and
the outflow of K+. In contrast, a high concentration of ATP will
trigger the formation of macropores across the plasma
membrane within a few seconds to 1 min, which will permit
the penetration of molecules with a molecular weight of up to
900 Da, such as Lucifer yellow, Yo-Pro, propidium, or
ethidium (60).

Equally, the channel opening or pore formation caused by
P2X7R activation has been identified as the main driving force of
NLRP3 inflammasome activation. Particularly, P2X7R-mediated
reduction of K+ in the cytoplasm promotes the interaction
between the NLRP3 inflammasome and NEK7 (61). Besides,
direct contact between P2X7R and NLRP3 inflammasomes at
discrete subplasmalemmal cytoplasmic sites should also be
considered. Franceschini et al. demonstrated that P2X7R and
NLRP3 colocalize in mouse peritoneal macrophages and mouse
Frontiers in Immunology | www.frontiersin.org 4
microglia (62). Therefore, it is reasonable to list P2X7R as a
separate chapter to emphasize not only its profound effect in
NLRP3 inflammasome activation, but also its potential as a
shortcut pathway in the occurrence of autoimmune diseases.
PATHWAYS IN PYROPTOSIS

The dominant pathways of pyroptosis include the caspase-1 and
caspase-4/5/11-dependent pathways. With the deepening of
research, caspase-3-dependent and the caspase-free pathways
have recently been reported. These new discoveries lay a solid
foundation for expanding the territory of pyroptosis (Figure 1).

Caspase-1-Mediated Canonical Pathway
Once the classical inflammasome sensors (NLRs, AIM2, P2X7R,
and pyrin) recognize pathogen-associated molecular patterns
FIGURE 1 | The signal pathways of pyroptosis. Various factors can activate the gasdermin famliy to trigger pyroptosis. (1) Classical inflammasomes/caspase-1/
GSDMD-dependent pyroptotic pathway. (2) LPS/caspase-4, 5, or 11/GSDMD-dependent pyroptotic pathway. (3) Chemotherapy drugs/BAK/BAX/caspase-3/
GSDME-dependent pyroptotic pathway. (4) YopJ/TAK1/caspase-8/GSDMD-dependent pyroptotic pathway. (5) Granzyme B/GSDME-dependent pyroptotic
pathway. (6) Granzyme A/GSDMB-dependent pyroptotic pathway.
May 2022 | Volume 13 | Article 841732
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(PAMPs) or danger-associated molecular patterns (DAMPs),
inflammasomes will assemble automatically (63). Subsequently,
pro-caspase-1 proceeds self-cleavage to form the effective p10/
p20 heterotetramer (64); this not only cleaves GSDMD to release
the functional gasdermin N-terminal from the suppressive
gasdermin C-terminal, but also cleaves the inactive precursor
pro-IL-1b and pro-IL-18 into their respective mature secretory
forms. Then, the gasdermin N-terminal migrates and adsorbs
onto acidic lipids of the cell membrane, where it can generate
negatively charged gasdermin pores 10–14-nm in inner
diameter, promoting IL-1b and IL-18 discharge by electrostatic
filtering and leading to cell burst and pyroptosis (65–67). In
contrast, high mobility group box protein B1 (HMGB1) is an
intracellular DAMP, and its release during pyroptosis was shown
to be independent of gasdermin D pore but accompanied by cell
lysis (68). Recent evidence suggested that plasma membrane
rupture (PMR) after pore formation required the participation of
Ninjurin-1 (NINJ1), a double transmembrane cell surface
protein, rather than simply being a passive event. Reduced
secretion of HMGB1 and cell retention of bubble morphology
has been shown to occurred in NINJ1-deficient pyroptotic bone
marrow-derived macrophages (BMDMs) (69). Therefore,
NINJ1-related PMR can effectively enhance the host defense to
microbial infections by releasing DAMPs to activate innate
immunity while NINJ1 can also behave as a candidate target
for suppressing excessive inflammation.

Benefiting from the activation of classical inflammasomes by
various intracellular PAMPs, bacterial or viral DNA, and fungal
hyphae (70), the induced pyroptotic cell death of infected cells
can directly destroy the breeding grounds of pathogens, so as to
minimize damage to the host. Thus, caspase-1-mediated
pyroptosis represents a key defense pathway for the host in the
context of extensive microbial infection. However, the excessive
production of proinflammatory cytokines (mainly IL-1b and IL-
18) in pyroptosis leads to a persistent of inflammatory state,
resulting in inflammation and immune crosstalk. As pore
formation serves as the final checkpoint for pyroptosis, drugs
that block this critical step could offer considerable hope for
therapies of pyroptosis-related autoimmune diseases. Either
disulfiram or dimethyl fumarate (DMF) can modify Cys191/
Cys192 in GSDMD of both human and mouse to diminish the
capability of pore formation (71, 72). Regarding those already
formed holes, the ESCRT-III complex, revealed by calcium
influx, is devoted to restoring the plasma membrane for the
sake of easing the privation of cell integrity (73). Furthermore,
Kayagaki et al. found that IRF2 was essential for the
transcriptional expression of the driller GSDMD. Moreover,
IRF2 silencing significantly attenuated canonical and
noncanonical inflammasome-mediated pyroptosis and IL-1b
release (74), suggesting that IRF2 is a reliable drug target for
the treatment of autoimmune disease.

Caspase-4/5/11-Mediated Noncanonical
Pathway
Dixit and Shao et al. successively ascertained that caspase-4/5 in
humans, or caspase-11 in mice directly binds to lipid A of
Frontiers in Immunology | www.frontiersin.org 5
lipopolysaccharide (LPS) located at the outer membrane (OM)
of Gram-negative bacteria with high specificity and affinity,
inducing its own oligomerization and activation (75, 76). The
driving force of this combination may be attributed partially the
electrostatic attraction between the basic CARDs in caspase-4/5/
11 and the acidic phosphate of the lipid A backbone in LPS.
Later, active caspase-4/5/11 processes GSDMD to liberate the
gasdermin N-terminal p30 fragment with pore-forming ability,
followed by pyroptotic cell death (77, 78). The discovery that
caspase-4 or caspase-5 in human and caspase-11 in mouse are
capable of sensing intracellular LPS improves our previous
understanding of the host surveillance of Gram-negative
pathogens (79). Meanwhile, it perfectly compensates for the
deficiency that only extracellular LPS can be detected by the
Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2)
complex, thereby accomplishing the complete intracellular and
extracellular clearance of LPS infection (80).

Nevertheless, the detailed mechanism underlying how lipid A
from extracellular bacteria enters the cytoplasm is still being
explored. A recent study demonstrated that once exposed to the
inhabitable environment, Gram-negative bacteria increase the
secretion of outer membrane vesicles (OMVs) whose main cargo
is lipid A. Subsequently, OMVs are absorbed through clathrin-
mediated endocytosis, ultimately unloading LPS at the cytosol
from early endosomal compartments (81). Further research
revealed that GBPs are first attracted by LPS to establish
caspase activation platforms, and in turn facilitate the
combination of caspase-4/11 and LPS with the assistance of
interferon-inducible protein IRGB10 (82, 83). For bacteria that
gain entry directly into the cell such as F. novicida, Man et al.
indicated that after being recruited by GBPs, IRGB10 could co-
localize with GBPs under the LPS layer encapsulation,
collaborating to trigger the explosion of the bacterial outer
membrane for adequate release of LPS (34). The remaining
small part of free lipid A connected to HMGB1 released by
hepatocytes, which were stimulated previously by circulating
PAMPs such as LPS or poly (I:C), is then internalized into the
lysosome of macrophages via the receptor for advanced glycation
end products (RAGE). Subsequently, HMGB1 gradually
permeabilizes the phospholipid bilayer under an acidic
environment until the lysosomal membrane is destroyed,
causing LPS to leak into the cytoplasm and activate caspase-11
(84). Moreover, secretoglobin 3A2 (SCGB3A2) secreted by
epithelial cells of the respiratory airways, binds and promotes
LPS access to the cytoplasm through interacting with the cell
surface protein syndecan-1, thereby inducing pyroptosis (85). As
cells from different parts of the body can take up LPS, it is no
wonder that the noncanonical inflammasome activation by
intracellular LPS can cause systemic clinical symptoms in
autoimmune diseases.

Regarding the late stage of infection, pyroptotic innate
immune cells express superfluous proinflammatory mediators
and tissue factor (TF)-positive microvesicles, which is involved in
the induction of blood coagulation and sepsis (86, 87).
Consequently, it is essential to use inhibitors of the LPS-
mediated noncanonical pyroptosis pathway to suppress
May 2022 | Volume 13 | Article 841732
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hyperactive inflammation. Regarding promoter LPS, either
glutathione peroxidase 4 (GPX4) attenuation of lipid
peroxidation or heat shock protein A12A (HSPA12A)-mediated
reduction of LPS in the cytoplasm has been shown to be an
effective approach to restrain caspase-11-mediated pyroptosis
(88, 89). Similarly, Serpin family B member 1 (SERPINB1)
could restrict the CARD oligomerization of caspase-4/5/11,
while Stearoyl lysophosphatidylcholine (LPC) prohibited
caspase-11 from binding to LPS, both of which are negative
regulators of caspase activation (90, 91). Even although more in-
depth explorations of the noncanonical pyroptotic pathway in
autoimmune diseases needed to be conducted, related inhibitors
can be used in the first instance to prevent sepsis, which is
particularly prevalent in patients with autoimmune diseases after
receiving immunosuppressive therapy.

Caspase-3-Mediated Emerging Pathway
In situations with a combination of high expression of GSDME
with chemotherapy drug stimulation, caspase-3, generally
classified as the apoptosis execution caspase, can cleave
GSDME to obtain the gasdermin N-terminal that initiates
pyroptosis (92). Subsequent studies further revealed that
chemotherapy-induced pyroptosis mainly occurred through the
BAK/BAX-caspase-3-GSDME pathway (93). Based on these
discoveries, the strong adverse effects of chemotherapy drugs
may be explained by the higher expression of GSDME in normal
tissue cells compared to most cancer cells, which increases the
ability of normal tissue cells to execute pyroptosis induced by
chemotherapy, resulting in tissue damage and weight loss. On
the contrary, in various tumors with high GSDME expression,
chemotherapeutic drug-mediated pyroptosis is recognized as a
powerful weapon to induce cancer cell death (94–96).
Furthermore, we speculate that the exacerbation of the
conditions of some patients with autoimmune diseases during
the treatment process is closely related to the pyroptosis of
normal cells caused by inappropriate medication, similar to the
side effects caused by chemotherapeutic drugs, although further
study is required to test this possibility.

Apart from caspase-3, caspase-8, as the upstream activator to
regulate apoptotic cell death, has also been demonstrated to elicit
pyroptosis by cleaving GSDMD in BMDMs infected with
Yersinia. Specifically, Yersinia outer protein J (YopJ), the
effector protein of the type III secretion system (T3SS) of
pathogenic Yersinia, inhibited the activity of TGF-b activated
kinase-1 (TAK1) to activate Receptor-Interacting Protein 1
(RIP1) and caspase-8 by virtue of its acetyltransferase activity
(97, 98). Therefore, whether there are more caspases originally
involved in apoptosis that can also mediate pyroptosis and under
what conditions do these promote the transition of cell death
type from apoptosis to pyroptosis require further exploration.

Caspases-Free Pathway
Nevertheless, several recent studies have overturned the
conventional belief that the gasdermin family can only be
cleaved by the caspase family. Indeed, if the expression of
GSDME in tumor cells was up-regulated accompanied by
increasing tumor-infiltrating NK and CD8+ T lymphocytes,
Frontiers in Immunology | www.frontiersin.org 6
these killer cells could release perforin to form pores on their
own cell membrane, permitting granzyme B to burst into the
cytoplasm of target tumor cells, thereby cleaving GSDME after
D270 to induce pyroptosis in a similar manner to caspase-3 (99).
Furthermore, in patients with B cell leukemia, the occurrence of
cytokine release syndrome (CRS) was associated with GSDME-
mediated pyroptosis, which is also triggered by granzyme B
liberated from chimeric antigen receptor (CAR) T cells (100).
Remarkably, it has also been reported that granzyme A
originating from cytotoxic lymphocytes supports cleaving
GSDMB at Lys244 to debunk pore-forming fragments, and
eventually encourages pyroptotic killing of GSDMB-expressing
cells (101). Collectively, these findings indicate that the only
reliable marker of pyroptosis seems to be the members of the
gasdermin family.
ROLE OF PYROPTOSIS IN AUTOIMMUNE
DISEASES

Systemic Lupus Erythematosus (SLE)
The etiology of SLE such as environmental precipitants,
hormonal factors, and genetic susceptibility can readily drive
abnormal autoimmune reactions. As a result, immune complexes
are extensively deposited in the kidneys, skin, blood vessels, brain
and so forth, leading to impaired tissues and organs and
establishing highly heterogeneous of clinical manifestations
(102, 103). Recently, the relationship between pyroptosis and
SLE has been gradually unraveled.

The latest evidence shows that the expression of NLRP3
inflammasome-related constituents expression were elevated in
various cells, including bone marrow-derived mesenchymal stem
cells and monocytes/macrophages, in patients with SLE, such as
bone marrow-derived mesenchymal stem cells and monocytes/
macrophages, and even the content of active caspase-1 in
monocytes was positively correlated with the serum titer of
anti-double stranded DNA antibodies (anti-dsDNA Abs) (104,
105). Anti-dsDNA Abs, the hallmark antibodies of SLE, can
trigger NLRP3 inflammasome activation in monocytes/
macrophages in patients with SLE by inducing mitochondrial
ROS production and activating the TLR4-NF-kB signal pathway
(106). Moreover, the latest analysis by Baxter et al. showed that
monocytes that sustained pyroptosis after being treated with
LPS/nigericin released numerous extracellular vesicles (EVs)
(107), whose content, transport distance, and final destination
remains a mystery worth further exploration. Nevertheless, as
EVs can migrate freely to different organs of the body, they may
be responsible for the pathogenic features of multisystem
involvement in patients with SLE. Similarly, the highly
expressed mammalian target of rapamycin (mTOR) in lupus
mice has also been shown to induce lupus nephritis (LN)
through activation of mTOR/mitochondrial ROS/NLRP3
signaling (108). Another function of anti-dsDNA Abs is to
help DNA in the plasma or on the cell surface enter normal
monocytes through endocytosis to activate the AIM2
inflammasome, forming a vicious cycle of SLE pathogenesis (109).
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Naik et al. recently revealed that epithelial stem cells (EpSCs)
with stored inflammatory memories can accelerate wound tissue
repair, in which pathway analysis showed that the AIM2
inflammasome and its downstream effectors IL-1b jointly
participated (110). From another aspect, the memory of
inflammation experience in EpSCs may lay the foundation for
the frequent recurrence of autoimmune skin diseases such as
SLE, where the AIM2 inflammasomemay play the key role.M. Li
et al. found that the content of P2X7R in Th17 cells in patients
with SLE was evidently ascended and positively related the SLE
Disease Activity Index (SLEDAI) score (111). However, Furini
et al. pointed out that P2X7R expression on PBMCs was
significantly reduced in patients with SLE (112). We
hypothesize that the differential expression of P2X7R among
different cell subtypes and the different disease duration of
selected patients with SLE are the main reasons for the
contradictory results. Therefore, to maximize the efficacy of
P2X7R inhibitors in the treatment of SLE, it is necessary to
continuously monitor the expression level of P2X7R in different
disease courses and cells, and then administer P2X7R inhibitors
in cases where P2X7R is highly expressed. Interestingly,
researchers found that stimulation of bone marrow cells with
bisphenol A (BPA), an environmental estrogen, could increase
levels of NLRP3, while levels of Aim2 mRNA and protein also
increased in cells treated with androgen (113, 114). Combined
with the epidemiological findings that the incidence of SLE in
women is much higher than that in men, it is reasonable to
doubt that the NLRP3 inflammasome is more pathogenic
than the AIM2 inflammasome to lead to this sex preference.
The momentous duty of the NLRP3 inflammasome, AIM2
inflammasome, and P2X7 receptor, is as pyroptotic
combustion improvers in the initiation and deterioration of
SLE or even LN.

Strikingly, several new studies recently unveiled that, the
AIM2 inflammasome, P2X7 receptor, and GSDMD play a
double-sword function in the pathogenesis of SLE. Based on
the study of Faliti et al., the P2X7 receptor participates in the
occurrence of GSDMD-mediated pyroptosis in pathogenic T
follicular helper (Tfh) cells, thereby preventing Tfh cells from
assisting B cells in the germinal centers (GCs) to synthesize
immunopathogenic IgG (115) and achieve immunopathology
remission. Moreover, it is undeniable that AIM2 occupies a
major position in the struggle to suppress IFN-b, a risk factor
for SLE. As the Ube2i molecular chaperone, AIM2 can promote
Ube2i-mediated sumoylation and inhibit the expression of IFN
(116). Simultaneously, deficiency of the Aim2 gene was believed
to increase the expression of IFN-inducible proteins such as
STAT1 and p202. Indeed, p202 protein increased the production
time of IFN-b by prolonging the half-life of AIM2 activator
dsDNA, and also nourished IFN-b synthesis through the
STING-TBK1-IRF3 pathway (117). Therefore, AIM2 protein is
expected to become a novel target for reducing lupus
susceptibility. Even GSDMD, regarded as the executioner of
pyroptosis, has recently been found to assume part of the
protective task in SLE. The mortality, pathogenic autoantibody
synthesis, and inflammation in the kidney and lung of
Frontiers in Immunology | www.frontiersin.org 7
imiquimodtreated GSDMD−/− mice were noticeably more
intense than those of imiquimodtreated WT mice (118). One
possible explanation for this phenomenon is that a lack of
GSDMD leads to an increase in uncontrolled necrotic cell
death locally, paving the way for autoantigen outflow and
aggravation of autoimmune disturbance. These results suggest
that we cannot consider the pathogenic effects of pyroptosis at
only one point given that pyroptosis may also be the upstream
source or downstream result of other immune or inflammatory
responses; therefore, we should judge its overall effect from the
whole inflammatory or immunologic cascade reaction.

It is well known that, except for the damage caused by
pyroptotic cell death, cellular contents released from pyroptotic
cells can also enhance immune-mediated inflammation in SLE.
Evidence has shown that the nucleus of cells undergoing
pyroptosis only demonstrate chromatin condensation, while
the nucleus remains intact without nuclear rupture, which
provides convenience for the production of crucial pathogenic
factors antinuclear antibodies (ANA) in SLE (119, 120). In
addition, IL-1b and IL-18 are released in large quantities,
which could amplify the inflammatory response in the process
of pyroptosis. Researchers have reported that compared to
healthy controls (HCs), the serum IL-18 levels in patients with
SLE were significantly increased and closely related to those in
active LN, but there was no significant difference in the serum IL-
1b level (121, 122). This may be because serum may be not the
best source of samples for detecting IL-1b. However, there is no
doubt that the attachment of IL-1bto the IL-1 receptor would
activate the NF-kB pathway, accelerating the synthesis of
downstream proinflammatory agents such as cyclooxygenase-2
(COX-2) and IFN-g. The effect of IL-18 activating the p38-
MAPK signaling pathway achieves an output increase in
inflammatory cytokines, including IL-1a, IL-6, and IL-8 (123).
Moreover, IL-1b and IL-18 can evoke surrounding neutrophils
suffering NETosis to form a positive loop of inflammation in SLE
(124, 125).

Furthermore, several studies have substantiated that the level
of HMBG1 is increased in the serum, cutaneous lupus lesions,
and urine and kidney biopsy samples of patients with SLE,
among which, the level of serum HMBG1 was closely related
to SLEDAI, and the level of urine HMBG1 depends on LN class
(126–129). HMBG1 could not only aggrandize the expression of
NF-kB-dependent pro-inflammatory factors in a TLR4-
dependent manner, but can also combine with RAGE to
induce pyroptosis of adjacent macrophages to expand the
lesion area (130, 131). More importantly, the complex formed
by HMGB1 with DNA, LPS, and histone has the potential to
increase immunogenicity, worsening the autoimmune response
(84, 132). The abundant excretion of the above inflammatory cell
contents is the magic formula to trigger the chronicity and
persistence of an inappropriate immune response in SLE.

To date, many drugs, such as baicalein, oleuropein, melatonin
and piperine, have been illuminated to attenuate murine LN
development by inhibiting NLRP3 inflammasome activation
(133–136). Therefore, these specific inhibitors or bioactive
substances, known to target the NLRP3 inflammasome, may be
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a novel strategy for treating not only kidney dysfunction but even
other system involvement of SLE.
Rheumatoid Arthritis (RA)
Synovial inflammation and progressive joint destruction are
defining characteristics of RA (137). In RA, fibroblast-like
synovial cells (FLS) and immune effector cells, such as
monocytes/macrophages, and T cells secrete IL-1b and TNF-a,
which have a series of pathological effects, including synovial cell
proliferation, massive infiltration of inflammatory cells, pannus
formation, and cartilage and bone tissue destruction (138).
Several reports have demonstrated that pyroptosis participates
in the process of RA.

According to the latest evidence, the synergistic effect of
elevated pentaxin 3 (PTX3) and ligand C1q in the plasma of
patients with RA activate the NLRP3 inflammasome in CD14+

monocytes to cause caspase-1-mediated pyroptosis and
inflammatory cytokines (IL-1b, IL-18, IL-6, and TNF-a)
excretion, the degree of which was consistent with disease
activity. In turn, IL-6 emission facilitates PTX3 plus C1q-
induced monocyte pyroptosis (139), thus forming a positive
inflammatory feedback of RA. In addition, IL-6 with ATP
assistance, utilized the cathepsin B/S100A9 pathway to activate
the NLRP3 inflammasome, promoting collagen-induced arthritis
in mice (140). Moreover, the dual signaling of TNF-a and
calreticulin has been proven to activate the NLRP3
inflammasome and increase IL-1b expression in FLS (141), the
main outcome of which is the transformation of the synovial
membrane into proliferative invasive tissue to destroy the
cartilage and bone.

Recently, accumulating studies have demonstrated that
extracellular acidosis can also erode the articular cartilage in
RA via increasing secretion of IL-1b (142, 143), which is closely
pertained to pyroptosis. Wu et al. reported that acid-sensitive ion
channel 1a (ASIC1a) up-regulated the contents of the NLRP3
inflammasome and IL-1b by increasing the influx of Ca2+ into
cells, thereby triggering articular chondrocytes pyroptosis (144).
The latest research indicated that the calpain-2/calcineurin
pathway downstream of ASIC1a may contribute to acid-
induced pyroptosis of articular chondrocytes (145). Moreover,
low expression of circular RNA Hsa_circ_0044235 in patients
with RA was corroborated to rely on the miR-135b-5P-SIRT1
axis to expedite the occurrence of NLRP3-mediated pyroptosis of
chondrocytes (146). Therefore, the occurrence of pyroptosis on
chondrocytes may be the primary cause of the articular cartilage
defects in patients with RA, and it seems fair to suspect that
destruction of bone tissue in the late stage of RA is also related to
pyroptosis. Another study showed that lower expression of the
DNA nuclease MRE11A in the CD4+T cells of patients with RA
compared to HCs caused mtDNA oxidation and leakage into the
cytosol, inducing activation of the NLRP3 and AIM2
inflammasomes to guide CD4+T cell pyroptosis (147). This is a
momentous discovery that urges CD4+T cells to join the ranks of
chronic inflammatory cells and greatly enriches the source of
inflammatory mediators in adaptive immune responses.
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Regarding P2X7R, the expression of P2X7 mRNA in patients
with RA has been shown to be significantly up-regulated
compared to the HCs (148). Further studies by Dong et al.
found that anticitrullinated protein antibodies (ACPAs), as RA-
specific autoantibodies, could activate pannexin channels to
induce release of ATP, resulting in P2X7-NLRP3 inflammasome
activation in macrophages and the maturation of IL-1b (149).
Consequently, ACPA seropositivity can be used at an early stage
as an independent risk factor to predict the probability of joint
injury and disability in patients with RA, and ACPA may also
serve as a promising drug target for inhibiting IL-1b production.
Meanwhile, it has been confirmed that increased extracellular Ca2
+ concentrations ([Ca2+]ex) derived from local bone erosion or
dying cells in the joints contribute to the formation of calciprotein
particles (CPPs). Then, monocytes absorb CPPs through calcium-
sensing receptor (CaSR) in response to increased [Ca2+]ex-
stimulated macropinocytosis, which activate the NLRP3
inflammasome, leading to the release of IL-1b and increased
cell death (150). Although it has not been determined whether
pyroptosis is involved in monocyte death, it is undeniable that
monocytes are the main source of the cartilage degradation
mediator IL-1b in RA.

Intriguingly, according to recent studies, in addition to
traditional IL-1b inhibitors, NLRP3 or P2X7R blockers also
reduce the release of cartilage destruction factor IL-1b, and
alleviate joint inflammation by controlling macrophage or FLS
pyroptosis (151–153), which increases the potential therapeutic
targets of RA.

Inflammatory Bowel Disease (IBD)
As a common chronic gastrointestinal autoimmune disease, IBD
mainly includes two subtypes of ulcerative colitis (UC) and
Crohn’s disease (CD), representing inflammatory disorders
confined to the colon or affecting the entire gastrointestinal
tract, respectively. The pathogenesis of IBD touches upon
intestinal microbiota disorder, immune system homeostasis
imbalance, environmental factors and genetic susceptibility
(154–156). Numerous studies have called attention to the close
interaction between pyroptosis and IBD.

Firstly, X. Chen et al. found that either the mRNA expression
or protein levels of NEK7 and other pyroptosis-related
components, including NLRP3, caspase-1, and GSDMD, in UC
tissues were significantly higher than those in control tissues.
Further, knocking out NEK7 was shown to eliminate ATP+LPS-
induced intestinal epithelial MODE-K cell pyroptosis or reduce
the symptoms of dextran sulfate sodium (DSS)-induced colitis in
mice (157). These findings suggest that the contribution of NEK7
to NLRP3-mediated IEC pyroptosis should not be underestimated,
and that blocking NEK7 may become a welcome sign in IBD
treatment. Similarly, CD147, also named basigin, has been
confirmed to trigger IEC pyroptosis in IBD by activating the
NF-kB pathway, causing massive IL-1b and IL-18 discharge
(158). Subsequently, IL-1b disrupts intestinal epithelial tight
junctions, resulting in increased permeability of intestinal
epithelium, and also coordinates with IL-6 to induce the
differentiation of naive T cells into Th17 cells, which maintain
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the inflammatory state (159, 160). IL-18 destroys the intestinal
mucosal barrier through aggravating loss of mature goblet cells,
resulting in microflora-driven intestinal inflammation (161).
Deeper studies have claimed high expression of monocarboxylate
transporter 4 (MCT4) exacerbates intestinal inflammation in
patients with IBD via activation of the NLRP3 inflammasome
through the ERK1/2-NF-kB axis, which initiates pyroptosis in
IECs (162, 163). Moreover, numerous microRNAs (miRNAs)-
related active agents have been shown to ameliorate colitis by
abrogating cell pyroptosis, namely human umbilical cord
mesenchymal stem cell (hucMSC)-derived exosomal miR-378a-
5p, which inhibits NLRP3 inflammasome assembly (164), and
Roseburia intestinalis-derived flagellin via blocking the miR-223-
3p/NLRP3 axis to decreaseNLRP3 inflammasome activation (165).

As confirmed recently, the extracellular ATP level in the
colon tissue of DSS-induced colitis mice was significantly
enhanced as compared to control; however, the symptoms
were markedly improved by injection of apyrase, an ATP
diphosphohydrolase, or P2X7R inhibitor A438079 (166). In
vitro, Diezmos et al. successfully applied a pannexin-1 channel
blocker or A438079 to control typical IBD lesions in colonic
mucosal strips, such as crypt injury, loss of tight junction, and
increase in cell permeability (167). Indeed, P2X7R oral inhibitors
have already entered the clinic. AZD9056 has been shown to be
effective in lowering the CD Activity Index (CDAI) and relieving
chronic abdominal pain in adult patients with moderately to
severely active CD (168). Additionally, the activation of P2X7
receptors during colitis could also mediate the death of enteric
neurons, causing colonic motor dysfunction, or induce mucosal
Treg cell death, leading to aggravation of inflammation (169–
172). Although these studies indicate the pathogenicity of P2X7R
preliminarily in IBD, whether P2X7R-mediated pyroptosis is
associated with the abovementioned clinical symptoms of IBD
requires stronger evidence. According to the latest reports, the
swelling and shedding of IECs fosters an intimate relationship
with the pyroptosis caused by the TNF-a/IRF1/caspase-3/
GSDME pathway (173). The catastrophic outcome related to
this is the flow of HMGB1 from pyroptotic IECs, which
contributes to the proliferation of cancer cells in colitis-
associated colorectal cancer via the ERK1/2 pathway (174).
Consequently, inhibition of IEC pyroptosis may be a new
approach for the early prevention or treatment of colitis-
related tumors.

Several recent studies have announced that the number of
cells per 1000 IECs that undergo pyroptosis was associated with
clinical response and endoscopic improvement of patients with
CD to vedolizumab (175). Indeed, the serum levels of NLRP3
and HMGB1 have been found to be positively correlated with the
severity of UC (176). Therefore, it is noteworthy that the
incidence of pyroptosis in IECs and the serological levels of
pyroptosis-related components proteins may perform well in
predicting prognosis as well as noninvasive assessment of disease
activity for patients with IBD.

Sjogren’s Syndrome (SS)
The main symptoms of SS are xerophthalmia and xerostomia,
which are and are often accompanied by skin, bone, kidney, lung
Frontiers in Immunology | www.frontiersin.org 9
damage, lymphoma and other system manifestations. The
histopathological feature of SS is the progressive infiltration of
lymphocytes into the exocrine glands, which produce
inflammatory agents to accentuate the degeneration of exocrine
glands (177–179). Until fairly recently, some laboratories have
provided evidence of pyroptosis in the exocrine glands of patients
with SS.

Current studies confirmed that compared to HC, the
expression of NLRP3 inflammasome-related elements in PBMC
or macrophages infiltrating into the salivary glands of patients
with SS increased (180, 181). As for NLRP3 inflammasome-
mediated pyroptosis, the culprit was massive inflammatory
circulating cell-free DNA (cf-DNA) accumulated in the serum,
the cytoplasmic part of PBMCs, and the salivary gland tissue of
patients with SS (181). The two major factors that promoted
inflammatory DNA deposition were significantly reduced activity
and expression of DNase, which led to blood-derived cf-DNA
supersaturation, as well as necrotic chromatin release from the
pyroptotic macrophages infiltrating salivary glands, thus forming
an inflammatory vicious cycle. Similarly, due to selective DNase1
deficiency, the exorbitant accumulation of damaged cytoplasmic
DNA in the ductal salivary epithelia of patients with SS can
activate the AIM2 inflammasome, causing intensive expression
of pyroptosomes in the same region (182). Moreover, type I IFN
up-regulated the expression of caspase-1 and GSDMD in salivary
gland epithelial cells (SGECs) of patients with SS and may
accelerate NLRP3 or AMI2 inflammasome-associated pyroptosis
(183). Investigators have also found that after injecting P2X7R
antagonist A438079 into a mouse model of salivary gland
inflammation, there was an evident advance in saliva flow
accompanied by a decrease in lymphocyte infiltration in the
submandibular gland. This finding implies that the P2X7R/
NLRP3 inflammasome/caspase-1/IL-1b and IL-18 axis may
partake in the pathogenesis of SS (184, 185). Taken together,
these results clearly indicate that the number of SGECs will
decrease due SGEC pyroptosis, thereby resulting a considerable
drop in the amount of saliva secretion. More seriously, the
inflammatory cytokines (IL-1b/IL-18) excreted by the pyroptotic
SGECs may cause the infiltration and activation of immune cells
in the salivary glands and induce the dysfunction of adjacent
normal SGECs.

Notably, P2X7R-NLRP3 inflammasome complex expression
levels in the salivary glands of patients with SS were positively
correlated with the incidence of mucosa-associated lymphoid
tissue non-Hodgkin’s lymphoma, although the pyroptosis-
specific mechanism in this phenomenon is still under
investigation (186). Furthermore, there is still a lack of reports
on lacrimal gland epithelial cells pyroptosis, which even
decreases tear secretion in patients with SS; however,
pyroptosis-related inhibitors may replace artificial tears to
guide a new treatment direction for dry eyes to prevent
lacrimal gland epithelial cell loss.

Dermatomyositis (DM)
DM is a rare idiopathic inflammatory myopathy. The lesions
mainly involve the skin and muscles, and are often accompanied
by systemic complaints such as pulmonary interstitial lesions,
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dysphagia, tumors, and diastolic dysfunction (187). Muscle
biopsy specimens of patients with DM are histopathologically
characterized by perifascicular atrophy (PFA) and inflammatory
cell infiltration (188). Recent evidence has shown that cell
pyroptosis contributes to the pathological process of PFA in DM.

Preliminary studies have shownmarked elevation of serum IL-
1b and IL-18 levels, as well as the protein expression of NLRP3
and caspase-1 in muscle samples in patients with DM (189). D.
Liu et al. further demonstrated that pyruvate kinase isozyme M2
(PKM2), not only the main rate-limiting enzyme of glycolysis but
also the activation signal of NLRP3 inflammasome, was highly
expressed in the muscle tissues of patients with DM, subsequently
facilitating GSDMD-mediated pyroptosis of skeletal muscle cells
(190). Another possible explanation for PFA is that
overexpression of GSDME in the muscle fibers can convert
mitochondrial apoptosis into mitochondrial pyroptosis. BAX/
BAK located in the mitochondrion increases the permeability of
the mitochondrial outer membrane to prepare for the release of
cytochrome C, leading to the occurrence of cytochrome
C/caspase-9/caspase-3/GSDME-mediated pyroptosis in
myofibers (191). In addition, the latest study by Chai et al. found
that the caspase-11-mediated noncanonical pathway of pyroptosis
was involved in the pathogenesis of experimental autoimmune
myositis in mice (192). However, further investigation is needed to
understand whether the corresponding caspase-4/5-mediated
noncanonical pyroptosis pathway exists in patients with DM.
Although the pyroptosis of skeletal muscle cells seems to be the
reasonable explanation forPFA inpatientswithDM, it is of concern
that the muscle symptoms of patients with DM are mainly
symmetrical proximal muscle weakness (193). Therefore, whether
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there is a preference of the limb location for muscle cells going
through pyroptosis and the mechanism behind this uneven
distribution still warrants further examination. It is noteworthy
that glucocorticoids have recently been confirmed to induce skeletal
muscle atrophy through the NLRP3/caspase-1/GSDMD pathway
(194, 195), and glucocorticoids are the first choice in the treatment
of patients with DM. Therefore, there may be pathological and
pharmacological crosstalk in the occurrence of PFA in the later
stage of DM, leading to the use of glucocorticoids should be
more cautious.

Additionally, emerging evidence has manifested that the
increased IL-18 in the skin lesions of patients with DM is
mainly released by keratinocytes (196), epidermal atrophy
occurs in patients with DM (193), and sun exposure is an
environmental risk factor of DM flare (197). Meanwhile,
several studies have found that Ultraviolet B (UVB) can trigger
keratinocytes pyroptosis (198, 199). Consequently, whether the
UVB and other environmental factors induced keratinocytes
pyroptosis and release of inflammatory cytokines (IL-18 and
IL-1b) can be responsible for the skin histopathological features
and even systemic manifestations of DM undoubtedly deserve
further studies.
CONCLUSIONS AND PERSPECTIVES

Recently, research on both pyroptosis and autoimmune diseases
has progressed rapidly. An accumulating body of evidence has
affirmed that pyroptosis acts an indispensable part in
pathogenesis of autoimmune diseases, such as pyroptotic
TABLE 1 | Summary of pathway and role of pyroptosis in autoimmune diseases.

Diseases Activators Inflammasomes Caspase
family

Gasdermin
family

Pyroptotic cells Function References

SLE LPS and ATP NLRP3 Caspase-1 GSDMD Proximal tubular epithelial HK-2
cells

Lupus nephritis (136)

eATP P2X7-NLRP3 Caspase-1 GSDMD T follicular helper cells Reduce the synthesis of
autoimmune antibodies

(115)

RA C1q and PTX3 NLRP3 Caspase-1 GSDMD CD14+ monocytes Aggravate inflammation (139)
Extracellular
acidosis

NLRP3 Caspase-1 GSDMD Chondrocytes Cartilage destruction (144, 146)

Hypoxia NLRP3 Caspase-1 GSDMD FLS Aggravate inflammation (151)
mtDNA NLRP3 Caspase-1 GSDMD CD4+ T cells Aggravate inflammation (147)
mtDNA AIM2 Caspase-1 GSDMD

IBD LPS and ATP
MCT4

NLRP3 Caspase-1 GSDMD Intestinal epithelial cells Intestinal barrier impairment (157, 163);

CD147
CD147

NLRP3 Caspase-1 GSDMD (158)
GSDME

IRF1 Caspase-3 GSDME (173)
SS cf-DNA NLRP3 Caspase-1 GSDMD Macrophages infiltrating in the

salivary gland
Loss of saliva secretion (181)

cytoplasmic DNA AIM2 Caspase-1 GSDMD Salivary gland epithelial cells (182, 183)
DM PKM2-dependent

glycolysis
NLRP3 Caspase-1 GSDMD Skeletal muscle cells Perifascicular atrophy (190)

Mitochondrial
damage

Caspase-3 GSDME Myofibers (191)
May 2022 | Volume 13
eATP, extracellular ATP; C1q, complement C1q; PTX3, pentaxin 3; FLS, fibroblast-like synovial cells; mtDNA, mitochondrial DNA; MCT4, monocarboxylate transporter 4; CD147 also
known as Basigin; IRF1, interferon regulatory factor1; cf-DNA, circulating cell-free DNA; PKM2, pyruvate kinase isozyme M2.
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microglia and oligodendrocytes in multiple sclerosis (MS),
pyroptotic thyroid follicular cells in Hashimoto’s thyroiditis
(HT), and pyroptosis-related gene variants in pemphigus
foliaceus (PF) (200–202). In this review, we depict known
pyroptosis pathways in different cells and tissues of well-
studied autoimmune diseases (Table 1), and describe the
incidence characteristics and clinical manifestations related to
pyroptosis. However, there are still many puzzles to be solved
and areas to be explored.

Due to the diversity of the inflammasomes, the caspase
family, and the gasdermin family in the pyroptosis pathways,
there are clear differences in the combination of these
participants between different autoimmune diseases. Even in
the same disease, pyroptosis may occur in different effector
cells, and there are multiple pyroptosis pathways in the same
cell. Therefore, it is necessary to comprehensively evaluate
whether pyroptosis plays a pathogenic or protective role in
certain diseases, which is also applicable to the evaluation of
the role of pyroptosis in tumor progression. Pyroptosis, as an
inflammatory programmed cell death, directly prevents tumor
proliferation and metastasis after the death of cancer cells.
Moreover, pyroptotic cancer cells release a variety of DAMPs
to activate immune cells, constructing the anti-tumor immune
microenvironment. Released inflammatory cytokines may also
induce cell carcinogenesis through chronic inflammation. Thus,
whether pyroptosis plays an anti-tumor or a tumor-promoting
role depends on the type of tumor, the decisive pyroptosis
pathway, and the expression levels of pyroptosis pathway-
related proteins in cancer cells. Furthermore, the current
identification of the occurrence of pyroptosis is mainly through
scanning electron microscopy, to observe cell morphology or q-
PCR/western blot to detect the expression level of classical
pyroptosis-related genes or proteins; some laboratories tend to
Frontiers in Immunology | www.frontiersin.org 11
choose the latter for verification due to the limitation of technical
conditions. Nevertheless, in the newly discovered pathway of
pyroptosis, molecules previously considered to be “classical”may
not be necessary, and many novel molecules have emerged at the
same time. Therefore, if it is not combined with morphological
analysis, it is likely to draw a false negative conclusion. It is
expected that more sensitive, more specific, and more convenient
markers can be exploited in the future to evaluate the severity of
pyroptosis, which may be in accordance with the therapeutic
effect and prognosis of the autoimmune diseases. Additionally,
various inhibitors targeting small molecules that play key roles in
pyroptosis pathways have shown efficacy in clinical trials,
showing broad application prospects.

In conclusion, efforts should be taken to further consummate
the complete signaling pathway and underlying role of
pyroptosis in more autoimmune diseases, with the aim to
usher in a new era for treating autoimmune diseases.
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GLOSSARY

ASC apoptosis-associated speck-like protein containing a CARD
NLRs nucleotide-binding leucine-rich repeat proteins
LRR leucine-rich repeat
ATPase adenosine triphosphatase
PYD pyrin domain
CARD caspase activation and recruitment domain
TLR Toll-like receptor
IL-1R leukin-1 receptor
TNFR tumor necrosis factor receptor
MTOC microtubule-organizing center
ROS reactive oxygen species
NEK7 NIMA-related kinase 7
HDAC6 histone deacetylase 6
HD2 helical domain 2
PTM post-translational modification
AIM2 absent in melanoma 2
PYHIN pyrin and HIN domain-containing
EV71 enterovirus 71
mtDNA mitochondrial DNA
type I IFN Type I interferon
IFNAR type I IFN receptor
IRF1 interferon regulatory factor 1
GBPs guanylate binding proteins
TRIM11 tripartite motif 11
P2X7R P2X7 receptor
P2 purinergic type 2
ABC ATPbinding cassette
PAMPs pathogen-associated molecular patterns
DAMPs danger-associated molecular patterns
HMGB1 high mobility group box 1
PMR plasma membrane rupture
NINJ1 Ninjurin-1
BMDMs bone marrow-derived macrophages
DMF dimethyl fumarate
LPS lipopolysaccharide
OM outer membrane
MD-2 myeloid differentiation-2
OMVs outer membrane vesicles
RAGE receptor for advanced glycation end products
SCGB3A2 secretoglobin 3A2
TF tissue factor
GPX4 glutathione peroxidase 4 1
HSPA12A heat shockprotein A12A
SERPINB1 Serpin family B member 1
LPC lysophosphatidylcholine
YopJ Yersinia outer protein J
T3SS type III secretionsystem
TAK1 TGF-b activated kinase-1
RIP1 Receptor-Interacting Protein 1
CRS cytokine release syndrome
CAR chimeric antigen receptor
SLE systemic lupus erythematosus
anti-dsDNA Abs anti-double stranded DNA antibodies
EVs extracellular vesicles
mTOR mammalian target of rapamycin
LN lupus nephritis
EpSCs epithelial stem cells
SLEDAI SLE Disease Activity Index
BPA bisphenol A
Tfh T follicular helper
GCs germinal centers
ANA antinuclear antibodies

(Continued)
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HCs healthy controls
COX-2 cyclooxygenase-2
RA rheumatoid arthritis
FLS fibroblast-like synovial cells
PTX3 pentaxin 3
ASIC1a acid-sensitive ion channel 1a
ACPAs anticitrullinated protein antibodies
[Ca2+]ex extracellular Ca2+ concentration
CPPs calciprotein particles
CaSR calcium-sensing receptor
IBD inflammatory bowel disease
UC ulcerative colitis
CD Crohn’s disease
DSS dextran sulfate sodium
MCT4 monocarboxylate transporter 4
miRNAs microRNAs
hucMSC human umbilical cord mesenchymal stem cell
CDAI CD Activity Index
SS Sjogren’s syndrome
cf-DNA circulating cell-free DNA
SGECs salivary gland epithelial cells
DM dermatomyositis
PFA perifascicular atrophy
PKM2 pyruvate kinase isozymeM2
UVB Ultraviolet B
MS multiple sclerosis
HT Hashimoto’sthyroiditis
PF pemphigus foliaceus
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