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Abstract

Premature birth affects the developmental trajectory of the brain during a period of

intense maturation with possible lifelong consequences. To better understand the

effect of prematurity on brain structure and function, we performed blood-oxygen-

level dependent (BOLD) and anatomical magnetic resonance imaging (MRI) at

40 weeks of postmenstrual age on 88 newborns with variable gestational age (GA) at

birth and no evident radiological alterations. We extracted measures of resting-state

functional connectivity and activity in a set of 90 cortical and subcortical brain regions

through the evaluation of BOLD correlations between regions and of fractional ampli-

tude of low-frequency fluctuation (fALFF) within regions, respectively. Anatomical

information was acquired through the assessment of regional volumes. We performed

univariate analyses on each metric to examine the association with GA at birth, the

spatial distribution of the effects, and the consistency across metrics. Moreover, a

data-driven multivariate analysis (i.e., Machine Learning) framework exploited the high

dimensionality of the data to assess the sensitivity of each metric to the effect of pre-

mature birth. Prematurity was associated with bidirectional alterations of functional

connectivity and regional volume and, to a lesser extent, of fALFF. Notably, the effects

of prematurity on functional connectivity were spatially diffuse, mainly within cortical

regions, whereas effects on regional volume and fALFF were more focal, involving sub-

cortical structures. While the two analytical approaches delivered consistent results,

the multivariate analysis was more sensitive in capturing the complex pattern of pre-

maturity effects. Future studies might apply multivariate frameworks to identify pre-

mature infants at risk of a negative neurodevelopmental outcome.
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1 | INTRODUCTION

Recent improvements in neonatal healthcare have reduced the inci-

dence of severe perinatal brain damage and increased survival rates of

premature newborns. However, even in the absence of evident brain

lesions at standard radiological imaging, this population is still at high

risk of a poor neurodevelopmental outcome (Johnson et al., 2009;

Mento & Nosarti, 2015). Indeed, the last 3 months of gestational age

(GA) are associated with intense brain development, including syn-

aptogenesis, axonal growth, and late neuronal migration (Dehaene-

Lambertz & Spelke, 2015; Gilmore, Knickmeyer, & Gao, 2018; Keunen,

Counsell, & Benders, 2017; Ortinau & Neil, 2015). Changes to the

developmental trajectory of the brain with premature exposure to the

extra-uterine environment can have profound and long-lasting conse-

quences (Allen, 2008). Therefore, it is important to identify early

markers of alterations of brain development that can be used to guide

the treatment of premature infants at a higher risk of poor neu-

rodevelopmental outcomes (Rogers, Lean, Wheelock, & Smyser, 2018).

Advanced magnetic resonance imaging (MRI) techniques have

been used for the investigation of developmental alterations in preterm

brains (Doria, Arichi, & David Edwards, 2014; Ment, Hirtz, &

Hüppi, 2009; Zhang, Shen, & Lin, 2019). Anatomical studies have

shown that preterm birth is associated with reduced brain volume, cor-

tical folding, axonal integrity, and microstructural connectivity (Keunen

et al., 2016; Lubsen et al., 2011; Volpe, 2009). Studies focusing on

functional indices of brain maturation, such as those derived from

resting-state functional connectivity (rsFC) analysis of blood-oxygen-

level dependent (BOLD) fluctuations (Gao, Lin, Grewen, &

Gilmore, 2017; Keunen et al., 2017; Smyser & Neil, 2015), have further

revealed the effects of prematurity on the developing connectome,

from the reduction of network-specific connectivity (e.g., Smyser

et al., 2010) to whole-brain network alterations (e.g., Scheinost

et al., 2015; Smyser et al., 2016; Smyser & Neil, 2015). Despite its lim-

ited use on the infant population, another promising technique to study

the effect of prematurity is represented by the amplitude of low-

frequency fluctuations (ALFF, Yu-Feng et al., 2007; Zou et al., 2008),

which indirectly infers the level of local brain activity from the same

BOLD data used to estimate connectivity. Although there are reports in

literature testing the influence of prematurity on different anatomical

metrics derived from clinical MRI (Ball et al., 2017), to our knowledge

no study has compared anatomical and functional MRI measures for

their association with the degree of prematurity.

Moreover, there is little consensus among studies regarding the

localization of prematurity effects. Accumulating evidence highlights a

specific impact on subcortical structures and thalamocortical connec-

tions, both at the structural (Ball et al., 2012; Ball et al., 2013; Ball

et al., 2015) and functional level (Ball et al., 2016; Smyser et al., 2010;

Toulmin et al., 2015). These findings are consistent with the notion

that the third trimester of gestation is critical for the establishment of

functional thalamocortical connections (Kostovi�c et al., 2014). How-

ever, other functional studies have reported diffuse group differences,

mainly involving cortical networks (Smyser et al., 2016; Smyser,

Snyder, et al., 2016). It is not clear whether this apparent discrepancy

reflects methodological differences or a distinct a-priori emphasis on

specific brain structures across studies. In addition to the cortical/sub-

cortical distinction, it may also be instructive to examine the relative

contribution of short- versus long-range connections and of homo-

topic versus non-homotopic connections, given their distinct develop-

mental trajectories described in the literature (Keunen et al., 2017;

Ouyang, Kang, Detre, Roberts, & Huang, 2017; Zhang et al., 2019).

The majority of previous studies have traditionally used mass-

univariate testing (Friston, 1994) to investigate the effect of prematu-

rity on MRI metrics. However, finding the link between regional MRI

metrics and prematurity can be straightforwardly conceived as a mul-

tivariate regression problem (Johnson & Wichern, 2006). Data-driven

multivariate approaches (i.e., Machine Learning) have been recently

applied to data from preterm newborns, strongly improving the ability

to concurrently correlate multiple neuroimaging features with GA at

birth (Ball et al., 2016; Smyser, Dosenbach, et al., 2016). These models

can be a-posteriori analyzed to identify significant variables and can

be used for single-subject inference.

In the present study, we examined the effect of prematurity on

measures of resting-state functional connectivity (rsFC), resting-state

functional connectivity nodal strength (rsFCNS), local activity (fALFF),

and regional volume in 90 regions of interest (ROIs) covering the

whole brain (Shi et al., 2011). The first aim of the study was to charac-

terize and compare the effect of prematurity on different measures of

brain anatomy and function. Thus, we performed region-based univar-

iate analyses of each metric to explore the association with GA at

birth and the spatial consistency across metrics. The second objective

was to assess the ability of multivariate analyses to exploit these

effects and infer the extent of prematurity. To this aim, we

implemented a Machine Learning framework, using partial least

square (PLS) regression (Abdi & Williams, 2013) and a cross-validation

scheme (Filzmoser, Liebmann, & Varmuza, 2009).

2 | METHODS

2.1 | Population

Infants were recruited from the Neonatology Unit of the University

Hospital of Chieti from 2010 to 2018. Neonates underwent standard

clinical MRI examination for premature birth or suspected perinatal

suffering at the 40th week of postmenstrual age (PMA). Neonates

born before 37 weeks of GA were selected based on the following

exclusion criteria:

1. Chromosomal abnormality or suspected or proven congenital

infection (e.g., HIV, sepsis, toxoplasmosis, rubella, cytomegalovirus,

and herpes simplex virus).

2. Neurological abnormalities, including germinal matrix hemorrhage

of any grade, cystic periventricular leukomalacia, moderate–severe

cerebellar hemorrhage, or lesions in the deep or cortical gray

matter.

3. Absent functional MRI.
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Neonates born within or after 37 weeks of GA were selected

from a group of consecutive neonates without asphyxia that under-

went MRI because of periventricular hyperechogenicity at routine

early cranial ultrasound. The neonates did not present signal abnor-

malities at standard MR sequences and had normal neurologic status

at a 12-month clinical follow-up. The selection resulted in a group of

88 infants born between 25 and 40 weeks (mean = 33 weeks,

SD = 3.7 weeks), 43/88 patients were female and 15/88 were born at

term (>37 weeks of GA at birth). Table 1 summarizes the main demo-

graphic and clinical information that were available and their associa-

tion with GA at birth for the complete population.

The study was part of a clinical radiological screening on prema-

ture neonates conducted in the Abruzzo region, Italy, and led by the

Local Health Authority. Moreover, the implementation of functional

sequences at the end of standard clinical examinations, as well as

functional data availability for research purposes, were approved by

the Ethics Committee of the University G. D'Annunzio of Chieti-

Pescara. Parental informed consent was obtained for each subject

before participation in the study, in accordance with the Declaration

of Helsinki and with guidelines set by the Human Studies Committee

of G. D'Annunzio Chieti University.

2.2 | MRI acquisition

MR imaging was performed with a 3 T whole-body system (Achieva

3.0 T X-Series) from Philips Healthcare (Best, Netherlands) using an

eight-channel head-only receiver coil. Participants were fed and then

sedated with 0.05 mg oral Midazolam per kilogram of bodyweight

immediately before the scans to minimize motion artifacts (Ball

et al., 2012; Ball et al., 2016; Stoecklein et al., 2020; Toulmin

et al., 2015; van den Heuvel et al., 2015). Neonates were laid in the

scanner in a supine position and swaddled in blankets. A molded foam

was placed around the body to minimize head movement. Neonatal

earmuffs (MiniMuffs; Natus Medical, San Carlos, California) and

adapted ear-canal plugs were used for hearing protection. Heart rate

and oxygen saturation were monitored during the MR imaging session

by an intensive care neonatologist. Within the standard clinical MRI

examination, the structural images used in this study were collected

using the T1-weighted Turbo Field Echo (TFE) sagittal sequence (Flip

Angle: 8�; TR: 9 ms; TE: 4.2 ms; voxel size: 1 � 1 � 1 mm3; FOV:

200 � 200 � 150 mm3) with a whole-body SAR below 0.2 W/Kg. At

the end of standard clinical MRI sequences, whole-brain functional

images were acquired using a T2*-weighted, echo-planar imaging

(EPI), FFE axial sequence (Flip Angle: 90�; TR: 1555 ms; TE: 30 ms;

voxel size: 2.5 � 2.5 � 3 mm3; FOV: 180 � 180 � 75 mm3; slice gap:

0 mm) with a whole-body SAR within 0.8 W/kg. The functional scan

duration was 4 min and 15 s.

2.3 | MR image preprocessing

The MR image processing workflow is reported in Figure 1.

The 90 subcortical and cortical ROIs used in this study were

defined based on the University of North Carolina (UNC) Infant Atlas

(Shi et al., 2011). Given the difficulties of directly registering each

infant anatomical image with the atlas, an intermediate in-house

structural template was built by averaging the infants' T1-weighted

anatomical images (Avants et al., 2010; Avants et al., 2011) and

segmenting the brain of the average template by hand (Yushkevich

et al., 2006). The T1 in-house template was built by using the

Advanced Normalization Tools (ANTs, http://stnava.github.io/ANTs/)

with default settings (Avants et al., 2010; Avants et al., 2011). The

segmented brain of the intermediate template was registered to

the UNC Infant Atlas. After registering each subject's anatomical

image to the in-house template, inverse transformations into the in-

house template, and then into each structural image, were applied on

the UNC Infant Atlas to identify the ROIs in the original subject ana-

tomical space.

EPI T2*-weighted BOLD images, acquired at rest, were

preprocessed according to a standard pipeline (Dolgin, 2010) using a

combination of AFNI (Cox, 1996) and FSL (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012) tools. The pipeline included:

(a) slice time and motion correction using the 3dTshift and 3dvolreg

functions; (b) marking of motion outliers with the fsl_motion_outliers

tool using DVARS metric and default settings for the definition of out-

liers (motion metric above the 75th percentile +1.5 times the inter-

quartile range) (Jenkinson et al., 2012; Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012) (c) 4D image scaling using fslmaths

(d) linear and quadratic temporal detrending using 3dDetrend

(Churchill et al., 2012). The motion parameters (3 translations, 3 rota-

tions, and motion outliers) were finally regressed out (without scrub-

bing) from the raw BOLD time series, using the tool 3dREMLfit

(Bright, Tench, & Murphy, 2017). Finally, the anatomy-registered atlas

TABLE 1 Demographic and clinical information

All newborns (N = 88) GA at birth (weeks)

GA at birth (weeks)—mean (SD) 33 (3.75) Association with GA at birth 25–32 (N = 46) 33–36 (N = 25) 37–40 (N = 17)

PMA at scan (weeks)—mean (SD) 40 (0) - 40 (0) 40 (0) 40 (0)

Female—n (%) 43 (49) t = 0.34; p = n.s. 24 (52) 12 (48) 7 (41)

Multiple gestations—n (%) 37 (42) t = 2.74; p < .01 22 (48) 15 (60) 0 (0)

Birth weight at birth (g)—mean (SD) 1821 (693) r = .88; p < 10�3 1,460 (328) 1938 (482) 3,210 (423)

APGAR score at birth—mean (SD) 6.4 (2.0) r = .14; p = n.s. 6.3 (2.1) 7.4 (1.4) 5.3 (2.3)
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was registered to the preprocessed BOLD images, and the average

BOLD signal (expressed as relative signal change) was extracted from

each ROI identified in the native BOLD space. Of note, all registra-

tions were performed using the state-of-the-art diffeomorphic regis-

tration method and the mutual information metric from ANTs (Avants

et al., 2010; Avants et al., 2011). The registrations were visually

inspected and approved by an expert neuroradiologist.

2.4 | Functional and structural metrics

2.4.1 | Resting-state functional connectivity

Resting-state functional connectivity (RsFC) matrices were built by

evaluating pairwise associations of BOLD signals in the 90 ROIs while

accounting for the contribution of the global signal. Each normalized

(z-scored) ROI's BOLD timecourse was regressed on each other nor-

malized ROI's BOLD timecourse using the normalized average (among

the 90 ROIs) BOLD signal as an additional independent variable within

a general linear model (GLM) framework (Murphy & Fox, 2017). Note

that this GLM analysis is not commutative between ROIs, generating

a nonsymmetric connectivity matrix. However, to evaluate undirected

connections, the average between the lower and the upper diagonal

portions of the connectivity matrices was computed. The latter com-

putational step delivered 4,005 meaningful rsFC connections. An

additional control analysis focused exclusively on positive correlations

by zeroing out negative correlation values.

2.4.2 | Resting state functional connectivity nodal
strength

We further evaluated an ROI-specific metric derived for rsFC

depicting the connectivity nodal (i.e., regional) strength. We defined

this metric as “resting-state functional connectivity nodal strength”
(rsFCNS). Of note, similar measures have been also referred as

“degree centrality” in the literature on graph theory (Holiga

et al., 2019; Rubinov & Sporns, 2010).

rsFCNS was evaluated from the rsFC matrices by computing, for

the jth ROI, the rsFCNS based on its correlations (rsFC) with the other

ROIs according to the formula:

rsFCNSj ¼ 1
N�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

rsFCij

� �2
vuut 8i≠ j

where N is equal to the total number of ROIs (i.e., 90).

2.4.3 | fALFF

fALFF was evaluated in each of the 90 ROIs of interest using the tool

3dRSFC (Biswal, Kannurpatti, & Rypma, 2007; Yu-Feng et al., 2007;

Zou et al., 2008) and it was computed as the ratio between the BOLD

signal power in the 0.01–0.1 Hz frequency range and its total power

(from 0.0039 Hz up to the Nyquist frequency of 0.32 Hz).

F IGURE 1 Workflow of the anatomical and BOLD MRI Preprocessing as well as rsFC, rsFCNS, fALFF and Volume computation in the
90 ROIs identified based on the UNC Infant Atlas (Shi et al., 2011)
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2.4.4 | Volume

Simple metrics of local brain structure can be derived in preterm new-

borns from standard anatomical images using the deformation field

that maps each image to a template and vice-versa (Ball et al., 2012;

Gaser, Nenadic, Buchsbaum, Hazlett, & Buchsbaum, 2001). The

exploitation of the deformation field can provide estimates of quanti-

tative regional volume without the need for tissue segmentation, a

procedure that is still under development in the newborn population

(Makropoulos, Counsell, & Rueckert, 2018). In the present study, we

evaluated the volume of the 90 ROIs using the UNC Infant Atlas reg-

istered to the individual anatomical images (Ashburner et al., 1998).

This analysis provided a quantitative estimate of ROI volumes

(expressed in mm3) that is directly connected to the extent of regional

deformation linking the original template to each subject's anatomy.

2.5 | Univariate analyses

Univariate analyses were performed on rsFC, rsFCNS, fALFF, and Vol-

ume to test their association with GA at birth (expressed in weeks). A

first analysis was conducted at a whole-brain level to evaluate the aver-

age rsFC, rsFCNS, and fALFF among ROIs, as well as the total ROIs vol-

ume (sum of the individual ROI volumes). Moreover, 4,005

independent rsFC features, each associated with a pairwise correlation

between ROIs, as well as 90 rsFCNS, fALFF, and Volume features, each

associated with a single ROI, were regressed against GA at birth.

For visualization purposes, and to test the extent of ROI-based

spatial effects of GA at birth, the ROIs were grouped into subcortical

(8 ROIs), frontal (34 ROIs), temporal (18 ROIs), parietal (16 ROIs), and

occipital (14 ROIs) regions. Cortical ROIs were further subdivided

according to their medial or lateral location. Pairwise connections

were divided in subcortico-cortical (N = 688 ) and cortico-cortical

(N = 3,317) connections, long-range (N = 2002) and short-range (N =

2003) connections (based on a median split of the distance between

their centroids in the UNC Infant Atlas, median value 48.8 mm) and

homotopic (N = 45) and non-homotopic (N = 3,960) connections.

The same univariate analyses on rsFC and rsFCNS were also per-

formed using only positive rsFC correlations (i.e., zeroing out negative cor-

relations). Additional control analyses for the effects of motion were

performed on the six DVARSmotion signal variances (i.e., the variances of

the three translations and the three rotations [yaw, pitch, and roll] along

themain axis) and the number ofmotion outliers in the BOLD acquisition.

2.6 | Multivariate analyses

A data-driven multivariate analysis framework was implemented to

infer GA at birth from different feature spaces (Figure 2). When ana-

lyzing the complete data set, the feature spaces were composed of

F IGURE 2 The data-driven multivariate PLS analyses implemented to infer GA at birth from rsFC, rsFCNS, fALFF and Volume. The optimal
number of PLS components, the multivariate β-weights and the inference performance were estimated through a 10-fold nCV. The analyses were
performed in both a regression and classification (through a median split) modality, and they were also performed on subsamples of the original
spaces (e.g., considering only subcortical ROIs)
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rsFC (4,005 independent variables), rsFCNS, fALLF, or Volume (all the

three latter feature spaces composed of 90 independent variables).

The number of independent samples was always equal to the number

of subjects, that is, 88.

To account for the large numerosity of independent features

(e.g., ROIs or ROI connections) (Huopaniemi, Suvitaival, Nikkilä,

Orešič, & Kaski, 2009; Kolter & Ng, 2009), we used partial least

square (PLS) regression (Wold, Ruhe, Wold, & Dunn, 1984), which

reduces the predictors to a smaller set of uncorrelated components

maximally associated with the dependent feature/s by exploiting col-

linearity among independent features (Abdi & Williams, 2013;

Chiarelli, Romani, & Merla, 2014). PLS was chosen because of the

reduced sample numerosity and the high collinearity among features

in the data set. Of note, the learning process (fitting) of the PLS algo-

rithm provides regression loadings that can be used to retrieve the

weights (β-weights) of the original independent variables. To optimize

the hyperparameter of the PLS (number of uncorrelated components)

and concurrently evaluate the out-of-training-sample performance of

the algorithm (i.e., the generalization) (Bishop, 2006), a 10-fold nested

cross-validation (nCV) was used (Filzmoser et al., 2009; Kearns &

Ron, 1999; Krstajic, Buturovic, Leahy, & Thomas, 2014). The number

of components allowed during the hyperparameter optimization was

constrained between a minimum of 1 and a maximum of 20. The

expected β-weights of the PLS were finally computed by running a

single analysis on the complete data set using the rounded average

number of components (i.e., the optimal number) delivered by the

inner loops of the 10-fold nCV analysis.

For each feature space, the PLS regression was iterated two

times, one in a “regression modality,” where the attempt was to

regress GA at birth expressed in weeks, and the other in a “classifica-
tion modality,” where the PLS was used to classify whether each sub-

ject had a GA at birth below or above 32 weeks. This latter analysis

was performed by providing to the machinery an output that was

either 0 (for a GA below 32 weeks) or 1 (for a GA equal or above

32 weeks).

For rsFC, the 10-fold nCV analysis was also performed separately

on cortical and subcortical connections, on long- and short-range con-

nections, and on homotopic and non-homotopic connections. For

rsFCNS, fALFF, and Volume, the analysis was also performed sepa-

rately on subcortical and cortical ROIs. To account for pairwise differ-

ences in the numerosity of ROIs, or ROI connections, between

groups, the multivariate analyses were performed multiple times on

the group with the larger numerosity with a random sampling of ROIs

to equalize the number of independent features between groups.

Average results for this latter analysis are reported in the results

section.

In addition, we tested whether combining functional and anatomi-

cal information in the inference of GA at birth resulted in a synergistic

effect. The rsFCNS was excluded from the analysis since this metric is

derived from rsFC and does not encode additional information.

Finally, control multivariate analyses were also selectively con-

ducted on positive rsFC correlations and using motion metrics as

input variables.

2.7 | Statistical inference

Regarding the univariate analyses, ROI-based regressions of the dif-

ferent metrics with GA at birth were performed and uncorrected, as

well as corrected (using false discovery rate (FDR) (Verhoeven,

Simonsen, & McIntyre, 2005)), statistical significance was evaluated.

To statistically compare the average correlations of rsFC with GA at

birth between different groups of ROIs, or ROI connections, a boot-

strap approach (Kohavi, 1995) with 105 iterations was used. Further-

more, pairwise correlation analyses of the ROI regression weights

between the different metrics were performed to evaluate the extent

of similarity in the spatial distribution of the effect of prematurity. For

this analysis, both the Fisher-z transforms of correlation and the

β-weights were used.

Regarding the multivariate analyses in a “regression modality,”
the performance was assessed through correlation analyses between

the inferred and the true GA at birth. Correlation coefficients were

Fisher-z transformed to treat them as normally distributed and to find

statistically significant differences among metrics. Moreover, correla-

tion analyses were performed comparing the univariate and the multi-

variate regression weights for the different features considering

statistical relevance metrics, that is, Fisher-z transform of correlations

or z-scores, and β-weights.

Unlike the univariate analysis, the statistical relevance of each

multivariate β-weight could not be computed using closed-form solu-

tions (e.g., based on the Fisher-z transform of correlation). Hence, in

this case, z-scores were computed through a bootstrap approach with

105 iterations.

When using the multivariate analysis as a classifier, the perfor-

mance was assessed through receiver operating characteristic (ROC)

analyses. For comparison, the same analyses were also performed on

randomly shuffled labels. The ROC analysis delivered an area under

the curve (AUC) which was transformed into a z-score to test its sta-

tistical significance.

3 | RESULTS

3.1 | MRI preprocessing outcome

Figure 3a–c reports the ANTs registration between T1-weighted ana-

tomical MRI, UNC Infant Atlas, and a motion-corrected BOLD volume

in an exemplar infant. Figure 3d illustrates the preprocessed BOLD

signals extracted from the same infant within the 90 atlas ROIs. The

BOLD signals were extracted transforming the anatomy-registered

atlas into the subject native BOLD space. The absence of residual

localized motion effects in the BOLD series is evident. Moreover, the

amplitudes of BOLD signals of few point percentages are compatible

with hemodynamic oscillations and do not appear to reflect a tempo-

rally diffuse effect of motion. Both these characteristics are likely due

to the mild sedation. As a matter of fact, only an average of seven vol-

umes (SD = 5) per subject were deemed as outliers, which where any-

how accounted for during preprocessing.
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3.2 | Univariate analyses

We here report a summary of the results of the univariate analyses.

Please refer to File S1 for a more detailed description and the associ-

ated figures.

No global effect was found (all p's > .05) and a rather equal

amount of positive and negative correlations were observed between

regional or inter-regional metrics and GA at birth.

For rsFC, the results did not suggest strong focal effects (all

r's < .45 in modulus). Only two connections with the strongest nega-

tive correlations survived multiple comparison corrections.

Subcortico-cortical connections had a significantly lower average cor-

relation with GA at birth compared with cortico-cortical connections

(z = �1.995, p = .0231). Moreover, long-range connections had a sig-

nificantly higher average correlation with GA at birth compared with

short-range connections (z = 2.336, p = 9.8 � 10�3).

When collapsing rsFC into rsFCNS, no ROI was significantly cor-

related with GA at birth after multiple comparison correction (all

r's < 0.3 in modulus, all p's = n.s. after FDR). No specific spatial pat-

tern seemed to emerge, except for stronger medial-frontal connec-

tions in more premature infants (i.e., ROIs associated with negative

coefficients, z = �1.723, p = .0426).

fALFF had weak regional univariate associations with GA at birth

(all r's < .2 in modulus, all p's = n.s. after FDR).

Consistent with previous studies looking at the effect of prematu-

rity on regional volume (Ball et al., 2012; Ball et al., 2013; Ball

et al., 2015), we found a positive relationship with GA at birth in sev-

eral subcortical and medial temporal regions. The effect sizes were

not large (all r's < .3 in modulus) and none survived multiple compari-

son correction (all p's = n.s. after FDR). However, when grouping sub-

cortical ROIs, these regions showed increased correlation with GA at

birth compared with medial frontal ROIs (z = 1.651, p = .0495).

A significant spatial consistency of the effects across metrics was

only observed between fALFF and Volume (r = .252, df = 88;

p = .0165).

Very similar results were obtained when repeating the rsFC and

rsFCNS analyses after zeroing out negative correlations in the rsFC

matrix. Moreover, control analysis indicated the absence of a signifi-

cant correlation between motion metrics and GA at birth (refer to

File S1).

3.3 | Multivariate analyses

Figure 4 shows the generalization outcomes of the 10-fold nCV multi-

variate analyses on the entire data set. The figure illustrates the

results obtained with each metric and each panel reports the outcome

of the regression (with GA expressed in weeks) and the classification

F IGURE 3 (a) Example of a neonate T1-weighted anatomical MRI. (b) UNC Infant Atlas registered to the T1-weighted MRI. (c) Motion-
corrected functional BOLD volume registered to the T1-weighted MRI. (d) 90 preprocessed BOLD signals extracted for the same infant from the
ROIs defined in the atlas by transforming the anatomy-registered atlas into the native BOLD space
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(considering GA at Birth >32 weeks vs. ≤ 32 weeks) approaches. The

scatterplot in Figure 4a shows the good results of the multivariate

inference of GA at birth using rsFC (r = .441, df = 86, p = 1.7 � 10�5,

9 PLS components). The AUC of the classification analysis was 0.825

(z = 5.856, p = 2.3�10�9, 7 PLS components), in line with previous

studies (Ball et al., 2016; Smyser, Dosenbach, et al., 2016). Figure 4b–

d reports the results of the same analyses on the regional metrics of

rsFCNS, fALFF, and Volume. RsFCNS could not be used to infer GA at

birth using a regression modality (r = .111, df = 86, p = n.s., 8 PLS

components) but only using a classification modality (AUC = 0.675,

z = 3.231, p = 6.0 � 10�4, 5 PLS components). The analysis of fALFF

showed a significant inference of GA at birth (r = .268, df = 86,

p = .012, 11 PLS components) and a significant classification perfor-

mance (AUC = 0.662, z = 2.908, p = 1.8 � 10�3, 8 PLS components).

Volume was the metric that reached the highest performance, both in

terms of regression (r = .590, df = 86, p = 1.6 � 10�9, 10 PLS compo-

nents) and classification of GA at birth (AUC = 0.830, z = 7.670,

p = 8.5 � 10�15, 17 PLS components).

Figure 5a,b illustrates the results of the direct comparison of the

regression and classification performance across metrics. RsFC had

better regression performance compared with rsFCNS (z = 2.332,

p = 9.9 � 10�3) and a tendency for a better performance compared

with fALFF (z = 1.280, p = .10). The regression performance of Vol-

ume was significantly higher than that of rsFCNS (z = 3.647,

p = 1.0 � 10�4) and that of fALFF (z = 2.596, p = 4.8 � 10�3) and it

was higher, but only tended toward statistical significance, than that

of rsFC (z = 1.315, p = .094). The statistical comparison of classifica-

tion performance indicated a higher performance of rsFC compared

with rsFCNS (z = 2.057, p = .02) and fALFF (z = 2.219, p = .01). Simi-

larly, significantly higher classification performance was observed for

Volume over rsFCNS (z = 2.136, p = .02) and fALFF (z = 2.298,

p = .01). No difference was observed between rsFC and Volume and

between rsFCNS and fALFF.

We then examined the contribution of different subsamples of

ROIs in the inference of GA at birth within the multivariate frame-

work. Figure 5c illustrates the difference in performance in the multi-

variate inference of GA at birth when using long- versus short-range,

subcortico-cortical versus cortico-cortical, and homotopic versus non-

homotopic connections in the analysis of rsFC. Supporting the

hypothesis of a diffuse effect of premature birth on rsFC, no signifi-

cant difference was observed for connection length. Interestingly, dif-

ferences between groups were instead obtained when comparing

subcortico-cortical with cortico-cortical connections. In this case, a

higher regression performance was obtained when considering

cortico-cortical connections, which was statistically significant when

using all the available connections (z = 1.693, p = .04) and tended

toward significance when controlling for the difference in numerosity

between the two subgroups (z = 1.307, p = .09).

Non-homotopic connections appeared to perform worse than

homotopic connections (z = 3.341, p = 4 � 10�4). However, the

F IGURE 4 Results of the PLS multivariate analysis on the full set of 90 ROIs. The figure reports the generalization outcomes of the 10-fold
nCV framework for the different metrics of interest. Each panel reports the outcome of the regression (with GA at birth expressed in weeks) and
the classification (considering GA at Birth >32 weeks vs. ≤ 32 weeks) approach. The ROC plots true classification curves (black lines) and curves

associated with random shuffled data (gray lines). Outcome of the analysis on (a) rsFC, (b) rsFCNS, (c) fALFF, and (d) Volume (* p < .05, ** p < .01,
*** p < 10�3)
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difference did not reach statistical significance when controlling for

the lower numerosity of the homotopic connections subgroup.

Figure 5d shows the results obtained for the other regional metrics,

which were limited to the subcortical versus cortical ROIs comparison.

Here, significant larger effects were obtained for cortical connections

when considering both fALFF (z = 2.247, p = .01) and Volume

(z = 1.666, p = .04). However, differently from rsFC, these effects

vanished when accounting for the larger numerosity of the cortical

group. Notably, Volume was the only metric that significantly inferred

GA at birth using only subcortical regions (r = .229, p = .03). No sig-

nificant difference was found for rsFCNS.

As a further investigation of the spatial distribution of the effects

of prematurity on the different metrics, we tested for a significant

spatial correlation between regression weights obtained with the

F IGURE 5 (a) Performance in
inferring GA at birth of the 10-fold
nCV PLS multivariate analyses using
either rsFC, rsFCNS, fALFF, or
Volume in a (a) regression or
(b) classification modality. c)
Performance and comparison
between the 10-fold nCV analyses
conducted in a regression modality of

rsFC on GA at birth, when different
subsets of rsFC connections were
used to compare long- versus short-
range, subcortico-cortical versus
cortico-cortical and homotopic versus
non-homotopic connections.
(d) Performance and comparison
between nCV analyses conducted in
a regression modality of rsFCNS,
fALFF and Volume on GA at Birth
when subsets of ROIs were used to
compare subcortical and cortical
ROIs. (+p < .10, *p < .05, **p < .01,
***p < 10–3)
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multivariate and univariate analyses of the whole data set. Figure 6

shows that a robust correlation was observed between multivariate

and univariate rsFC weights (Fisher-z transforms of univariate correla-

tion vs. z-scores of multivariate β-weights, r = .730, df = 4,003,

p � 0), indicating a substantial concordance in the spatial pattern

identified by the two approaches (the same analysis performed on the

β-weights is reported in the File S1). A lower, but still highly signifi-

cant, correlation was found for both rsFCNS (r = .521, df = 88,

p = 1.38 � 10�7) and fALFF (r = .433, df = 88, p = 3.03 � 10�5). Vol-

ume exhibited the lowest correlation between multivariate and uni-

variate weights (r = .263, df = 88, p = .012).

The 10-fold nCV multivariate analysis combining rsFC, fALFF, and

Volume resulted in a slightly higher regression (r = .614, df = 86,

p = 2.2 � 10�10,10 PLS components) and classification

(AUC = 0.846, z = 8.2746, p = 1.1 � 10�16,19 PLS components) per-

formance compared with individual metrics (refer to File S1 for the

related figure), although the increase was no statistically signifi-

cant (p's > .05).

A control analysis was performed to assess the impact of negative

correlations on the results of the analyses on connectivity metrics

(rsFC and rsFCNS). When considering only positive correlations, we

found a decrease in performance of the multivariate analysis for rsFC

and rsFCNS (rsFC with positive correlations only, r = .24, df = 86,

p = .02; AUC = 0.72, z = 4.29, p = 8.8 � 10�6; rsFCNS with positive

correlations only, r = �.122, df = 86, p = .25; AUC = 0.47, z = 0.48,

p = n.s., refer to File S1 for the related figure). However, the

decreases were not significant, with a tendency toward statistical sig-

nificance only for rsFC using the regression modality

(z = 1.47, p = .07).

Finally, the multivariate analysis using motion information could

not significantly infer GA at birth (p = n.s.).

4 | DISCUSSION

The present study examined the effect of premature birth on func-

tional and anatomical metrics of brain development derived from MRI

scans, performed at 40 weeks of postmenstrual age (PMA), of

88 infants with gestational age (GA) at birth between 25 and

40 weeks. Note that, since we focused on regression analyses, we

mainly treated GA at birth as a continuous variable and we included

infants born at term by convention (i.e., after 37 weeks of GA at birth)

to increase the numerosity of the sample and the variability of GA at

birth. The aim of characterizing the effect of prematurity extent on

the brain of newborns thus implies investigating the association of

MRI metrics with GA at birth rather than comparing premature infants

and infants born at term. To evaluate this association, we exploited

the variance of GA at birth in the population under study.

F IGURE 6 Scatter plots
showing the spatial
associations between ROIs
Fisher-z transformed univariate
correlations and z-scores of
multivariate β-weights for
(a) rsFC, (b) rsFCNS, (c) fALFF,
and (d) Volume
(*p < .05, ***p < 10�3)
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Multivariate analyses better captured the effect of prematurity

compared with univariate analyses, albeit the two approaches were

generally concordant. In accordance with previous studies, the degree

of prematurity was associated with bidirectional alterations of func-

tional connectivity and regional volume. Here, we further demon-

strated an association between prematurity and the pattern of fALFF,

which is a proxy for regional activity. As expected, relevant volumetric

effects were identified in specific regions, such as subcortical struc-

tures, and their spatial distribution was similar to that of regional

activity. This relative spatial specificity contrasted with the highly dif-

fuse effects observed in functional connectivity, supporting the idea

that local structural alterations are associated with a widespread

effect on the pattern of connectivity.

4.1 | Functional connectivity versus local brain
function and structure

The multivariate analyses showed that rsFC was the functional metric

most sensitive to the effect of prematurity (Figure 4 and 5). Classifica-

tion performance was comparable to that reported in recent studies

adopting similar multivariate approaches (Ball et al., 2016; Smyser,

Dosenbach, et al., 2016). Both univariate and multivariate analyses

indicated that GA at birth was associated with a complex pattern of

increases and decreases of multiple and widespread pairwise connec-

tions. Two results strongly support this interpretation: the lack of an

effect of GA at birth on mean brain connectivity and the subtle effect

on functional connectivity nodal strength, a metric that only provides

a general index of how much a region is connected to the rest of the

brain. Of note, although the interpretation of negative BOLD correla-

tions is not straightforward, the main results of the study are based

on analyses that considered both positive and negative correlations.

The results of additional control analyses limited to positive correla-

tions indicated that negative correlations add information to the mul-

tivariate framework, supporting previous evidence for the functional

significance of anticorrelations in healthy subjects (Kelly, Uddin,

Biswal, Castellanos, & Milham, 2008) and neurological patients

(Baldassarre et al., 2014). Although the issue is still debated, some

authors have proposed that positive and negative correlations might

represent a signature of functional integration and segregation,

respectively. For example, Baldassarre and colleagues have demon-

strated in multiple studies (reviewed in (Baldassarre, Ramsey, Siegel,

Shulman, & Corbetta, 2016)) that the behavioral deficits following

stroke are associated with both reduced interhemispheric functional

connectivity and reduced anti-correlation between the frontoparietal

and the default mode networks. The authors interpreted the former

effect as a loss of functional integration within function-specific net-

works and the latter effect as a loss of segregation between networks

that generally show opposite task-evoked BOLD activity. Regardless

of the specific interpretation given to negative correlations, the results

of the present study indicate the significance of this phenomenon for

the functional development, which deserves further investigations.

Overall, the present results provide support for the crucial role of

establishing, but also balancing, the strength of specific functional

connections in this phase of brain development (Smyser & Neil, 2015;

Zhang et al., 2019).

Convergent evidence about the long-lasting effects of prematu-

rity on resting-state (e.g., Constable 2013) and task-evoked functional

connectivity (e.g., Myers 2010) has led to the hypothesis that

neurocognitive disorders associated with preterm birth might repre-

sent a disease of brain connectivity (Lubsen et al., 2011). However,

we stress that the present direct comparison between different met-

rics did not show a larger effect of GA at birth on measures of con-

nectivity compared with regional volume (Figure 5a,b). Indeed, the

best multivariate predictor of gestational age was regional volume,

although the difference with functional connectivity was not statisti-

cally significant. This result is remarkable, considering that volume

was inferred in a rather coarse manner through deformation fields to

a common atlas (Gaser et al., 2001). We suggest that even better per-

formance might be achieved using brain segmentation algorithms

(Fischl et al., 2002) which, however, are still under development for

this population (Makropoulos et al., 2018).

To our knowledge, this is the first study to show that GA at birth

can be inferred at 40 weeks of PMA using measures of regional activ-

ity (i.e., fALFF). This result extends the findings of a recent study

(Shang 2019) that reported a similar classification performance using

fALFF in adults born preterm. Here we further demonstrated that

regional negative associations between activity and GA at birth

(greater activity in early preterm infants), which has been previously

thought to reflect compensatory effects taking place in later phases of

brain development (e.g., Shang 2019, see also Karolis 2017 for results

on regional volume), can already be detected around birth, simulta-

neously with positive effects (greater activity in late preterm) in other

regions. It remains to be determined if increased regional activity or

volume in premature infants reflects a compensatory phenomenon or

the failure of regulatory mechanisms acting on regional development.

Overall, we believe that the present findings support the view

that premature birth manifests as a complex interaction of processes

taking place within and between tissue compartments and brain

regions (Volpe, 2009) and going beyond what can be described con-

sidering single metrics.

4.1.1 | Focal versus diffuse effects of prematurity
on brain function and structure

Consistent with previous work (Ball et al., 2012), both the univariate

and the multivariate analyses indicated that volume reduction in pre-

mature infants occurred, albeit not exclusively, in subcortical regions

(Figure 5d and File S1). Subcortical volume reduction is thought to

reflect the vulnerability of deep gray matter to the risks of the extra-

uterine environment (Boardman 2006; Srinivasan 2007) and to further

initiate a cascade of functional and structural brain alterations in allied

brain structures (Ball et al., 2012). Of note, regional volume exhibited

the lowest spatial correlation between multivariate and univariate

weights (Figure 6d), suggesting that the multivariate analysis exploited
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interregional dependencies of volume changes with GA at birth that

could not be captured by the univariate analysis.

A spatial consistency of the effect of GA at birth was found

between Volume and fALFF in both univariate (refer to Univariate

Analysis Results and File S1) and multivariate (Figure 5d) analyses, and

this is likely explained by the effect of structural alterations on local

physiology. Previous studies in adults born preterm indicate that pre-

mature birth causes an opposite pattern of volume reduction in medial

temporal regions and volume increase in frontal and lateral

temporoparietal cortices (Karolis et al., 2017; Nosarti et al., 2011;

Scheinost et al., 2015). Here we found partially consistent results, by

showing lower regional activity within medial temporal structures and

increased volume in several medial frontal regions in earlier preterms,

although their relationship with GA at birth was not particularly robust

(refer to Univariate Analysis Results and File S1).

In contrast to regional metrics, functional connectivity appeared

to be diffusely altered by prematurity. First, the connectivity nodal

strength could not predict GA at birth in the multivariate analysis

(Figure 4b), indicating the limited importance of individual nodes. Sec-

ond, univariate analyses did not identify large differences in the asso-

ciation with GA at birth when comparing long- versus short-range,

homotopic versus non-homotopic, and subcortico-cortical versus

cortico-cortical connections. Finally, the multivariate analyses identi-

fied a tendency toward a larger involvement of cortico-cortical con-

nections compared with subcortico-cortical connections. Therefore,

prematurity did not have a selective effect on connections that typi-

cally show earlier development (i.e., homotopic, short-range,

subcortico-cortical, reviewed in (Keunen et al., 2017; Ouyang

et al., 2017; Zhang et al., 2019)) nor on subcortico-cortical connec-

tions that are thought to have a driving role in the formation of

emerging cortical circuits (Ball et al., 2016).

The existing literature on the spatial extent of the effect of pre-

maturity is debated. On the one hand, some studies have demon-

strated a predominant reduction of subcortico-cortical functional

connectivity in preterm newborns (Ball et al., 2016; Smyser

et al., 2010; Toulmin et al., 2015), similarly to the focal effects

observed for regional volume (Ball et al., 2012; Boardman et al., 2006)

and anatomical connectivity (Ball et al., 2013; Ball et al., 2015). On the

other hand, other studies have clearly shown that the effects of pre-

maturity are instead more complex and diffuse (Smyser & Neil, 2015;

Smyser, Snyder, et al., 2016). The results of the present study strongly

support the second view and further point to the advantage of multi-

variate analyses in detecting such complex and distributed patterns of

functional connectivity alterations. Concerning this issue, the multi-

variate analyses comparing groups of ROIs (Figure 5c,d) indicated that

the present results were not driven by the PLS algorithm, which might

emphasize non-sparse solutions. In fact, despite multivariate algo-

rithms generally decrease generalization performance as a function of

the number of independent variables (i.e., overfitting phenomenon), in

our case we observed an increase in the accuracy of the inference as

a function of the number of ROIs included in the analysis, consistent

with a true widespread effect.

Accumulating evidence from research on stroke patients strongly

supports the view that focal brain lesions can induce changes of func-

tional connectivity well beyond the site of damage (Baldassarre

et al., 2016, Bayrak 2019, DeMarco 2020), findings that are supported

by computational models (e.g., Alstott 2009). In a similar vein, we pro-

pose that more focal structural and functional damage to specific

brain regions such as the thalamus or the basal ganglia, which are par-

ticularly sensitive to premature extrauterine exposure, can result in

the widespread imbalance (increase or decrease) of several neocortical

connections, due to the number of structural and functional links

between these structures and the neocortex. Future studies might

combine multivariate approaches with graph theory to better investi-

gate this issue, given the capability of graph theory metrics to summa-

rize global properties of brain networks (Cao et al., 2017; Scheinost

et al., 2016).

4.1.2 | Univariate versus multivariate analysis

Whereas univariate and multivariate analyses yielded spatially consis-

tent results, the multivariate analysis proved to be more sensitive to

the effect of prematurity. The advantage of multivariate analysis likely

reflects the ability to analyze a large data set all at once, capturing rel-

ative dependencies among variables. The limited number of PLS com-

ponents identified in our study indicated the ability of the multivariate

algorithm to capture shared effects among regions.

However, a drawback of multivariate approaches is that the iden-

tified patterns (i.e., the model weights) cannot be straightforwardly

interpreted as in the case of univariate analyses, making it difficult to

make inferences on the direction of the identified relationships

(Carvalho, Pereira, & Cardoso, 2019). Because of the limited interpret-

ability of the multivariate weights, we limited our investigation to the

spatial comparison with the univariate weights. Indeed, we found a

strong correlation between univariate and multivariate weights across

the different metrics, with the notable exception of regional volume.

This result suggests that, at least for volume, the high multivariate

regression performance exploits inter-regional effects (e.g., a signifi-

cant difference in the rate of volumetric growth between two

regions). Further studies should be aimed at shedding light on this

aspect.

4.1.3 | Main limitations and future perspectives

A limitation of the present study was the use of a short BOLD acquisi-

tion time, driven by the limited time available for conducting a rela-

tively nonclinical evaluation in a clinical environment. To maximize the

efficacy of the standard clinical assessment, newborns were also

mildly sedated using Midazolam, which might have altered brain activ-

ity and hemodynamics. Future studies should therefore replicate the

present findings using a longer acquisition time and alternative or no

sedation approaches. However, longer acquisition times are not
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expected to modify, but only to expand, our positive findings. More-

over, the newborns in our study were sedated with a Midazolam dos-

age proportional to their weight. Furthermore, the study did not

investigate average functional indices, which are influenced by seda-

tion, but focused on the cross-sectional differences among newborns

as a function of GA at birth. It is therefore unlikely that the observed

differences between newborns with varying GA at birth merely reflect

a confounding effect of sedation, since this possibility would require

that the effect of Midazolam per unit-weight, when administered at

the same PMA, changes as a function of GA at birth, an effect that

has not been described in the literature. Even in the presence of resid-

ual subject-specific effects, the disadvantage of small alteration in

brain hemodynamics should be over-compensated by the large reduc-

tion in motion artifacts. Another limitation of the present retrospec-

tive study was the reduced number of clinical information available

for all the infants. Although we explicitly removed from the study

infants with evident alterations at standard radiological assessment,

and we found no relationship between the main clinical variable that

was available for all the newborns, the APGAR score soon after birth

(Finster, Wood, & Raja, 2005), and the extent of prematurity, we can-

not definitively rule out the presence of subtle clinical confounders.

Research about the effect of prematurity on brain development

has the ultimate goal of identifying infants at higher risk of a negative

outcome (Rogers et al., 2018). In this respect, the lack of a

neurocognitive evaluation represents a limitation of the present study.

We note, however, that the identification of early biomarkers of an

adverse neurodevelopmental outcome is not straightforward. For

example, limiting the neurocognitive assessment to the first 1 or

2 years of life, the typical range of the majority of the studies, might

not be effective in detecting cognitive deficits that can manifest later

in life, that is, at school age and beyond (Mento & Nosarti, 2015). The

design of long-term studies is, therefore, a priority for future investi-

gations. Indeed, data-driven multivariate models could in theory be

used beyond inference of GA at birth for predicting the long-term

neurodevelopmental outcome based on functional and structural

brain data and to inform personalized therapy strategies based on

those inferences. One can imagine a virtuous cycle in which clinical

outcomes are used to continuously improve the predictive ability of

such a neuroimaging framework once it enters clinical practice.

5 | CONCLUSION

The present study demonstrated that prematurity is associated with a

complex pattern of bidirectional alterations of MRI-derived BOLD

functional connectivity and regional brain volume, and, to a lesser

extent, with modification of fALFF. The analysis of the spatial distribu-

tion of the effects indicated that structural alterations, which tend to

localize to subcortical structures, can have a widespread effect on

functional connectivity between cortical structures. The higher sensi-

tivity of multivariate approaches in identifying the complex effects of

GA at birth on multiple MRI metrics suggests their use in future

studies for the prediction of neurodevelopmental outcome based on

the observed neuroimaging alterations.

ACKNOWLEDGMENTS

This work was partially conducted under the framework of the

Departments of Excellence 2018–2022 initiative of the Italian Minis-

try of Education, University and Research for the Department of Neu-

roscience, Imaging and Clinical Sciences (DNISC) of the University of

Chieti-Pescara, Italy.

CONFLICT OF INTERESTS

The authors declare no competing financial and non-financial

interests.

DATA AVAILABILITY STATEMENT

The data of the present study are publicly available, in Matlab format,

at: https://figshare.com/articles/dataset/Shared_Data_rsFC_Prema

ture_UdA_7z/14178956

ORCID

Antonio M. Chiarelli https://orcid.org/0000-0002-5347-8417

REFERENCES

Abdi, H., & Williams, L. J. (2013). Partial least squares methods: Partial

least squares correlation and partial least square regression. In B.

Reisfeld & A. N. Mayeno (Eds.), Computational toxicology: Volume II

(pp. 549–579). Totowa, NJ: Humana Press. Methods in Molecular Biol-

ogy. https://doi.org/10.1007/978-1-62703-059-5_23

Allen, M. C. (2008). Neurodevelopmental outcomes of preterm infants.

Current Opinion in Neurology, 21, 123–128.
Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., Sporns, O. (2009).

Modeling the Impact of Lesions in the Human Brain. PLoS Computational

Biology, 5(6), e1000408. http://dx.doi.org/10.1371/journal.pcbi.1000408.

Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., &

Friston, K. (1998). Identifying global anatomical differences:

Deformation-based morphometry. Human Brain Mapping, 6, 348–357.
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C.

(2011). A reproducible evaluation of ANTs similarity metric perfor-

mance in brain image registration. NeuroImage, 54, 2033–2044.
Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M.,

Detre, J., & Gee, J. C. (2010). The optimal template effect in hippocam-

pus studies of diseased populations. NeuroImage, 49, 2457–2466.
Baldassarre, A., Ramsey, L., Hacker, C. L., Callejas, A., Astafiev, S. V.,

Metcalf, N. V., … others. (2014). Large-scale changes in network inter-

actions as a physiological signature of spatial neglect. Brain, 137,

3267–3283.
Baldassarre, A., Ramsey, L. E., Siegel, J. S., Shulman, G. L., & Corbetta, M.

(2016). Brain connectivity and neurological disorders after stroke. Cur-

rent Opinion in Neurology, 29, 706–713.
Ball, G., Aljabar, P., Arichi, T., Tusor, N., Cox, D., Merchant, N., …

Counsell, S. J. (2016). Machine-learning to characterise neonatal func-

tional connectivity in the preterm brain. NeuroImage, 124, 267–275.
Ball, G., Aljabar, P., Nongena, P., Kennea, N., Gonzalez-Cinca, N.,

Falconer, S., … Edwards, A. D. (2017). Multimodal image analysis of

clinical influences on preterm brain development. Annals of Neurology,

82, 233–246.
Ball, G., Boardman, J. P., Aljabar, P., Pandit, A., Arichi, T., Merchant, N., …

Counsell, S. J. (2013). The influence of preterm birth on the developing

thalamocortical connectome. Cortex, 49, 1711–1721.

CHIARELLI ET AL. 3605

https://orcid.org/0000-0002-5347-8417
https://orcid.org/0000-0002-5347-8417
https://doi.org/10.1007/978-1-62703-059-5_23
http://dx.doi.org/10.1371/journal.pcbi.1000408


Ball, G., Boardman, J. P., Rueckert, D., Aljabar, P., Arichi, T., Merchant, N.,

… Counsell, S. J. (2012). The effect of preterm birth on thalamic and

cortical development. Cerebral Cortex, 22, 1016–1024.
Ball, G., Pazderova, L., Chew, A., Tusor, N., Merchant, N., Arichi, T., …

Counsell, S. J. (2015). Thalamocortical connectivity predicts cognition

in children born preterm. Cerebral Cortex, 25, 4310–4318.
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