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Abstract: Tauopathy is one of the major causes of neurodegenerative disorders and diseases such
as Alzheimer’s disease (AD). Hyperphosphorylation of tau proteins by various kinases leads to the
formation of PHF and NFT and eventually results in tauopathy and AD; similarly, neuroinflammation
also exaggerates and accelerates neuropathy and neurodegeneration. Natural products with anti-
tauopathy and anti-neuroinflammatory effects are highly recommended as safe and feasible ways
of preventing and /or treating neurodegenerative diseases, including AD. In the present study,
we isolated theasaponin E1 from ethanol extract of green tea seed and evaluated its therapeutic
inhibitory effects on tau hyper-phosphorylation and neuroinflammation in neuroblastoma (SHY-5Y)
and glioblastoma (HTB2) cells, respectively, to elucidate the mechanism of the inhibitory effects. The
expression of tau-generating and phosphorylation-promoting genes under the effects of theasaponin
E1 were determined and assessed by RT- PCR, ELISA, and western blotting. It was found that
theasaponin E1 reduced hyperphosphorylation of tau and Aβ concentrations significantly, and
dose-dependently, by suppressing the expression of GSK3 β, CDK5, CAMII, MAPK, EPOE4(E4),
and PICALM, and enhanced the expression of PP1, PP2A, and TREM2. According to the ELISA
and western blotting results, the levels of APP, Aβ, and p-tau were reduced by treatment with
theasaponin E1. Moreover, theasaponin E1 reduced inflammation by suppressing the Nf-kB pathway
and dose-dependently reducing the levels of inflammatory cytokines such as IL-1beta, IL-6, and
TNF-alpha etc.

Keywords: taupathy; neurofibrillary tangles; neuroinflammation; neurodegeneration; kinases;
SHY-5Y cells

1. Introduction

Alzheimer’s disease (AD) is the most frequent type of dementia, characterized by lose
of memory, cognition and ability of communication due to abnormal neurodegeneration [1].
About 24 million people are affected worldwide by AD, with 5 million new cases annually.
Age is one of the risk factors of AD and dementia, as incidences and prevalence of AD
are relatively higher between the ages of 60–90 [2–4]. Molecular study of AD revealed the
major causes are the deposition of amyloid-β (Aβ) plaques, tau neurofibrillary tangles

Molecules 2022, 27, 2079. https://doi.org/10.3390/molecules27072079 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27072079
https://doi.org/10.3390/molecules27072079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1096-1529
https://doi.org/10.3390/molecules27072079
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27072079?type=check_update&version=2


Molecules 2022, 27, 2079 2 of 15

(NFTs), and neuroinflammation, leading to lesions in the brain, synaptic loss and eventually
neurodegeneration [5–7]. Hence, inhibition of Aβ, Tau, and neuroinflammation are the
therapeutic targets for AD prevention or treatment. Tau is abundantly expressed in neurons
of the central nervous system and stabilizes microtubules, which are tracks for motor
proteins. Tau also modulates axonal transport of the microtubule [8–11]. During neuronal
development, Tau is upregulated to promote the generation of cell processes [12]. Hyper-
phosphorylated Tau detaches from the microtubules and forms fibrils in an insoluble form,
i.e., paired helical filaments (PHFs) that aggregate and form NFTs [13,14]. Phosphorylation
of Tau occurs via a variety of serine/threonine protein kinases, such as glycogen synthase
kinase-3β (GSK-3β), cyclin-dependent kinase 5 (Cdk5), extracellular signal-regulated ki-
nase 2 (ERK2), calcium/calmodulin-dependent protein kinase II (CaMKII), and microtubule
affinity-regulating kinase (MARK), etc. If Tau is pre-phosphorylated, GSK-3 accelerates the
rate of tau phosphorylation by several fold through priming kinases, such as non-proline-
directed kinases [15–17]. GSK-3β phosphorylates Tau at Ser400; this process is followed by
the sequential phosphorylation of Ser396. GSK-3β can also directly phosphorylate Tau at
Ser202; however, Thr231 phosphorylation is required for the pre-phosphorylation of Ser235.
Hence, Tau is initially phosphorylated by priming kinases, such as non-proline-directed
kinases (non-PDK). When GSK-3β activation is enhanced by Aβ, GSK-3β accelerates Tau-
Ser396 phosphorylation, which is responsible for PHTs and NHFs, thereby causing AD [18]
Aβ and Tau serve as an initiator and an executor of AD, respectively [19]. Current AD ther-
apeutic approaches focus on targeting Tau pathologies. A variety of Tau-targeting drugs
have been developed. Tau-targeted drugs that are currently under development as AD
therapies include (i) Hsp90 inhibitors, (ii) inhibitors of Aβ-induced Tau phosphorylation,
(iii) Tau aggregation inhibitors, (iv) O-GlcNAcase inhibitors, and (v) GSK-3β inhibitors.

Studies suggest that the accumulation of Aβ in the brain due to the imbalance of
production and clearance is the major cause and driving force of AD. The pathogenic
events in AD are multifactorial; identification of the genes involved in pathogenesis of AD
have been determined via use of several animal models. Several molecular pathways and
genes are involved in the progression and causation of AD. Mutation or impairment of the
various kinases, APP, PSEN1, PSEN2, and APOEε4 lead to AD [20].

Microglia cells clustered around amyloid plaques in the brain play a crucial role in
clearance of Aβ [21,22]. Microglia cells express TREM2 within the CNS, which func-
tions in binding and clearing Aβ and plays important roles in phagocytosis of amy-
loid plaques, apoptotic neurons, and neuronal damages [23–30]. Moreover, TREM2 has
been demonstrated to be essential in early development, survival, and regulation of mi-
croglia metabolism, synaptic pruning, proliferation, and cytokine release [31–35]. Soluble
TREM2(sTREM2), produced by protyulytic cleavage of TREM2 by ADAM10 and ADAM17,
acts as an immunomodulatory biomarker for neurodegeneration, and its concentrations
correlate with the phosphorylated tau level of CSF [26,36–40].

Inflammation also contributes to exacerbation and progression of AD. Several proin-
flamatory cytokines, e.g., IL-1 and TNF alpha, were reported to be elevated in AD brain.
Accordingly, elevations in IL-1 levels are closely associated with AD pathogenesis and
neuroinflammation in the AD brain. Inflammation involved in the pathology and cytokine
production by microglia cells contributes to amyloid plaque formation [41]. Reactive
microglia surrounding amyloid plaques with increased expression of IL-1 is the initial indi-
cation of the IL-1 association with AD pathogenesis [42,43]. Various studies have revealed
that neuroinflammation plays a fundamental role in the progression of the neuropathologi-
cal changes associated with AD. Several studies highlighted the elevated level of TNF-a,
IL-1b, and IL-6, and TGF-b in AD patients [44]. The NF-kB pathway is the primary regulator
of inflammatory responses, responds to proinflammatory stimuli, such as TNF-a or IL-1,
and plays a central role in the development of neuroinflammation [45,46]. The current AD
treatments cannot alleviate the progression of AD but only slow the worsening of dementia
symptoms. Medications to treat the disease, delay its onset, and prevent its development
are essentially required.
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2. Results

Theasaponin E1 was isolated from the saponin-rich fraction of purified green tea seed
extract using resin column chromatography followed by preparative HPLC. Subsequently,
theasaponin E1 was analyzed with LC/TOF-MS and NMR for identification, structure
elucidation, and quantification of the compounds present (Figure 1).
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Figure 1. LC-MS-TOF analysis of the green tea seed extracted saponin. (a). LC-MS chromatogram of
various saponins extracted from green tea seeds via HPLC (b) and the purified fraction containing
the pure, isolated theasaponin E1 (c) The base peak intensity mass spectrum of green tea seed
extracted saponins.

2.1. MTT Assay

The toxicity of saponin to SH-5YSY neuroblastoma and HTB-14 glioma cells was
determined using an MTT assay. Furthermore, the safe levels of saponin were determined
based on the percentage of viable cells. Cells that were not treated with saponins were
used as the control and displayed 100% viability. Treatment with 20 µg/mL pure saponin
was nontoxic, and greater than 90% cell viability was observed (Figure 2). Increasing the
concentration beyond this level led to decreased cell viability and increased toxic effects.
The toxicity of saponins to mouse blastoma cells was determined using an MTT assay, and
the safe levels of saponins were determined based on the percentage of viable cells. Cells
that were not treated with saponins were used as the negative control and displayed 100%
viability (Figure 2).

2.2. Effects of Saponins on the Activities of Various Kinases and Phosphatases

The levels of GSK-3β, CDK5, JNK, MAPK, ERK1/MARK, CaMKIIα, PP1, PP2A, and
PP2B were determined to derive the inhibitory or activating effects of saponins on Tau
phosphorylation. SHY-5Y cells were treated with various nontoxic concentrations of the
isolated saponins and the cell lysate was prepared for ELISA. Saponins were found to
significantly reduce p-tau by decreasing the activities of the enzymes GSK-3β, CDK5, JNK,
MAPK, ERK1/MARK, and CaMKIIα in a dose-dependent manner, with different significant
levels. PP1 and PP2A ELISA revealed dose-dependent enhancement of the levels of these
proteins compared to their levels in the control (Figure 3).



Molecules 2022, 27, 2079 4 of 15

Molecules 2022, 27, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Determination of non-toxic concentration level of theasaponin E1 to SHY-5Y neuroblas-
toma and glial cells (a) and (b), respectively) via MTT assay. Cells were cultured in their respective 
media in a 96-well microtiter plate. After attachment and treatment with saponin, cell viability was 
determined for each dose by reading the absorbance of the wells after addition of the MTT reagent 
and calculation of the results. Cells without treatment were employed as the control. Data are shown 
as mean ± standard error of means (SEM) (n = 3). 

2.2. Effects of Saponins on the Activities of Various Kinases and Phosphatases 
The levels of GSK-3β, CDK5, JNK, MAPK, ERK1/MARK, CaMKIIα, PP1, PP2A, and 

PP2B were determined to derive the inhibitory or activating effects of saponins on Tau 
phosphorylation. SHY-5Y cells were treated with various nontoxic concentrations of the 
isolated saponins and the cell lysate was prepared for ELISA. Saponins were found to 
significantly reduce p-tau by decreasing the activities of the enzymes GSK-3β, CDK5, JNK, 
MAPK, ERK1/MARK, and CaMKIIα in a dose-dependent manner, with different signifi-
cant levels. PP1 and PP2A ELISA revealed dose-dependent enhancement of the levels of 
these proteins compared to their levels in the control (Figure 3). 

Figure 2. Determination of non-toxic concentration level of theasaponin E1 to SHY-5Y neuroblastoma
and glial cells (a,b), respectively via MTT assay. Cells were cultured in their respective media in
a 96-well microtiter plate. After attachment and treatment with saponin, cell viability was deter-
mined for each dose by reading the absorbance of the wells after addition of the MTT reagent and
calculation of the results. Cells without treatment were employed as the control. Data are shown as
mean ± standard error of means (SEM) (n = 3).
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Figure 3. In vitro activities of various kinases and phosphatases involved in tau phosphorylation and
dephosphorylation under the effects of theasaponin E1, quantified by ELISA. Percent activity for each
enzyme was measured. (a) Changes in GSK3beta activity before and after treatment with saponins.
(b) Changes of CDK5 activity by theasaponin E1. (c) Effect of theasaponin E1 on CAMII activity.
(d) Effect of theasaponin E1 on JNK activity. (e) Effects of theasaponin E1 on ERK activities. (f) Effects
of theasaponin E1 on PP1 activities. (g) Effects of theasaponin E1 on PP2B activities. Data are the
values of mean ± SEM and were analyzed using one-way ANOVA (n = 3) (* p < 0.05; ** p < 0.01).
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2.3. Gene Expression of Various Kinases and Phosphatases

RT-PCR was used to measure the expression of genes involved in Aβ and p-tau
production and their processing to plaque formation NFTs. RNA from cells in the treated
and control groups was extracted and reverse transcribed to cDNA. The resulting cDNA
was then amplified by RT-qPCR using gene-specific primers (Table 1).

Table 1. Primer sequences used for qRT-PCR analysis of various genes.

Primers Forward Reverse

GSK-3β 5′-GGAACTCCAACAAGGGAGCA-3′ 5′-TTCGGGGTCGGAAGACCTTA-3′

CDK5 5′-CGCCGCGATGCAGAAATACGAGAA-3′ 5′-TGGCCCCAAAGAGGACATC-3′

JNK1 5’-AACTCTTTGACGCTGCTTGC-3’ 5’-TGAAGCACTGTGCCTTTACC-3’

MAPK 5′-CCAACTCCTGCCTCCGCTCTA-3′ 5′-CCGCCAAAATAACCGATGTGATAC-3′

ERK1/MARK 5’-CGCTTCCGCCATGAGAATGTC-3′ 5’-CAGGTCAGTCTCCATCAGGTCCTG-3’

CaMKIIα 5′-AGGAGGAAACTGAAGGGAG-3′ 5′-CAGGGTCGCACATCTTCGTG-3′

PP2A 5′-GAGGGTACTACTCTGTGGAGAC-3′ 5′-CCGGCTTTCGTGATTTCCT-3′

PP-1 5′-TCCATGGAGCAGATTAGACG-3′ 5′-GCTTTGGCAGAATTGCGG-3′

APP 5′-TCAGTTTCCTCGGCAGCG-3′ 5′-GCACCAGTTCTGGATGGTCA-3′

PESN1 5′-GCACCGTTGTCCTACTTCCA-3′ 5′-CCATGCAGAGAGTCACAGGG-3′

PESN2 5′-GCGGCAGAGCAGGCATTT-3′ 5′-AGGTGAAGAGGAACAGCAGC-3′

EPOE4(E4) 5′-GGATGGGGAGATAAGAGAAGAC-3′ 5′-CGCAGGTAATCCCAAAAGCG-3′

IDE 5′-CAAGCAGGAAGCGTTTGCG-3′ 5′-CAACCTGGTAGTTCCCACACA-3′

TREM2 5′- TTCCCACCCACTTCCATCCTT-3′ 5′-AGCAGTGTTCAGGCAGAGTAG-3′

IL-1B 5′- AACAGGCTGCTCTGGGATTC-3′ 5′-TTTGGTCCCTCCCAGGAAGA-3′

PICALM 5′-GCAGCTGCCTGTTCCTCTTA-3′ 5′-GCAGCTGCCTGTTCCTCTTA-3′

β-actin 5′-CCTCGCCTTTGCCGATCC-3′ 5′-GGATCTTCATGAGGTAGTGAGTC-3′

The results revealed significant effects of saponin treatment on the inhibition of several
kinases and activation of phosphatases. The expression of the major kinases involved tau
phosphorylation (i.e., CDK5 and GSK 3beta), which results in the suppression of tau in
a dose-dependent manner. Saponin treatment also affected the expression of ERK and
CAMII; however, the levels were found to be comparatively lower than those of CDk5 and
GSK3. Moreover, the effect of saponins on the expression of JNK was the lowest. Saponin
treatment also enhanced the activation and expression of PP1; however, the enhanced
expression level was relatively low for PP2A and PP2-B. The relative expression levels of
GSK-3β, CDK5, JNK, MAPK, ERK1/MARK, CaMKIIα, PP1, and PP2A were calculated
and compared with those of the β-actin control (Figure 4).

2.4. Effects of Theasaponin E1 on the Expression of Genes Involved in AD Pathology

RT-PCR was used to measure the expression of genes involved in the Aβ pathway.
RNA from treated and control cells was extracted and reverse transcribed into cDNA. The
resulting cDNA was amplified by RT-qPCR using gene-specific primers (Table 1).

The results revealed significant effects of saponin treatment on the inhibition of several
AD-promoting genes and activation of AD-alleviating genes. The expression levels of the
major genes involved in tau and Aβ generation and AD pathogenesis (i.e., APP, PESN1,
PESN1, EPOE4, and PICALM) were significantly suppressed in a dose-dependent manner.
Saponin treatment also enhanced the activation and expression of TREM2 and IDE in a
dose-dependent manner and affected the expression of inflammatory genes and cytokines
involved in AD worsening (i.e., NF-kB and IL-1B). The relative expression levels of all
genes were normalized to those of the control (β-actin) and calculated (Figure 5).
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Figure 4. mRNA expression levels of various kinases and phosphatases involved in tau phosphory-
lation and dephosphorylation, determined by RT-PCR. (A). PCR products of mRNA expression of
various genes of the kinases and phosphatases presented in gel band form after gel electrophoresis.
(B). Relative mRNA expression levels of genes of various kinases and phosphatases after treatment
with theasaponin E1. (a) Relative mRNA expression levels of GSK3 beta. (b) Relative mRNA expres-
sion levels of CDK5. (c) Relative mRNA expression levels of JNK. (d) Relative mRNA expression
levels of ERK. (e) Relative mRNA expression levels of CAMII. (f) Relative mRNA expression levels
of PP1. (g) Relative mRNA expression levels of PP2A. mRNA expression levels of genes of various
kinases and phosphatases that were visualized as PCR products on agarose gel. Data are the mean
values ± SEM and were analyzed using one-way ANOVA (n = 3). Data are statistically significant at
p < 0.05 (* p < 0.05; ** p < 0.01 to the control group).

2.5. Effects of Saponins on Proinflammatory Cytokines

The effects of saponins on the inhibition or suppression of AD pathogenesis were
determined by quantifying the levels of inflammatory cytokines (IL-1B, IL-6, and TNF
alpha) in glial cells using specific ELISA kits. Saponin was found to dose-dependently
decrease the levels of the inflammatory cytokines, IL-1B and TNF alpha, compared to their
levels in the untreated control (Figure 6).

2.6. Determination of Aβ and P-Tau Levels Using ELISA

After determining the effects of saponins on the genes involved in AD alleviation
and AD pathogenesis, the Aβ and p-tau levels in cells after treatment with saponins
were measured using specific ELISA kits. The levels of p-tau and Aβ were significantly
and dose-dependently reduced in treated cells compared to those in the nontreated cells
(Figure 7). These findings demonstrate the effects of saponins on the inhibition of p-tau-
and Aβ-accumulating and promoting genes and the enhanced expression levels of the AD
elevating genes.

2.7. Quantification of P-Tau in SH-SY5Y Cells Using Western Blotting

To determine whether the phosphorylation of tau decreases after the suppression and
activation of AD-related genes and inflammatory pathways and cytokines, we verified the
concentration of phosphorylated tau in neuroblastoma cells after treatment with saponins,
using western blotting. The phosphorylation of tau, a key and crucial element of NFT and
AD pathogenesis, was dose-dependently decreased by saponin treatment (Figure 8).
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3. Discussion

AD is a neurodegenerative disease, the principal cause of which is the abnormal
deposition of Aβ and hyperphosphorylated tau, leading to the formation of senile plaques
and NFTs in the brain [6].

Hyperphosphorylation of tau may be caused at different locations by various kinases.
Under normal conditions, equilibrium exists between tau kinases and tau phosphatases
activity. This phenomenon is important for lowering the affinity of tau for microtubules and
increasing the resistance of tau to calcium-activated neutral proteases and its degradation
by the ubiquitin-proteosome pathway [47]. Fibrillization and aggregation of tau due to tau
hyperphosphorylation eventually produce NFT [48–52]. The major tau kinases include GSK-
3β, CDK5, PKA, MAPK, CaMK II, and MARK [52–57]. Among the phosphatases, protein
phosphatase 2 (PP2A) has been most commonly implicated in the dephosphorylation of
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abnormal tau [58]. Notably, changes in the expression and/or activation of tau kinases
and tau phasphatases have been well documented in AD and related disorders [59–62].
Studies in transgenic mouse models of AD suggest that multiple, overlapping processes
might contribute to abnormal hyperphosphorylation of tau, including Aβ, impaired brain
glucose metabolism, and inflammation [63–65].

Green tea plant (Camellia sinensis) is enriched with several bioactive compounds, in-
cluding saponins, and possess crucial medicinal effects. In the current study, we extracted
and isolated pure theasaponin E1 from green tea seeds and evaluated its effects on the
reduction or inhibition of Aβ, the major cause of neurodegeneration in AD. Theasaponin
E1 was found to significantly reduce tau phosphorylation by suppressing and reducing the
expression of genes and the activities of various kinases involved in hyperphosphorylation
of tau proteins, which leads to the formation and aggregation of NFTs associated with Aβ
production and AD pathogenesis. We used SHY-5Y neuroblastoma cells to investigate the
inhibitory effects of theasaponin E1 on tau phosphorylation by inhibiting or suppressing
the expression levels or activities of various kinases involved in this process. Theasaponin
E1 dose-dependently reduced the expression of genes and the in vitro activities of vari-
ous kinases to varying extents (i.e., GS3β, CDK5, JNK, CAMII, and ERK). In addition, the
mRNA expression and in vitro enzymatic activities of the phosphatases PP1 and PP2A were
increased dose-dependently. Expression level of various genes that are directly involved
in AD causation and pathology were investigated under the influence of theasaponin E1.
The results showed that theasaponin E1 dose-dependently suppressed the expression level
of genes in SHY-5Y neuroblastoma. The RT-qPCR results showed that PES1, PES2, IDE,
EPOE4, and PCALM were significantly downregulated. Furthermore, the expression levels
of IDE and TREM 2 were dose-dependently enhanced by theasaponin E1. We evaluated the
therapeutic potential of theasaponin E1 upon the suppression and inhibition of inflamma-
tory cytokines, such as IL-1beta, IL10, and TNF alpha, and inflammation-promoting NF-kB
pathway in glial cells. After treatment with theasaponin E1, the inflammation level was
decreased in glial neuro cells due to the inhibitory effects of theasaponin E1 on the secretion
and quantities of the proinflammatory cytokines, IL-1beta, IL10, and TNF alpha. We also
evaluated the effects of theasaponin E1 on the inflammation-promoting Nf-kB pathway.
Theasaponin E1 dose-dependently reduced the expression levels of IL-1B and NF-kB.

Natural products that can attenuate Aβ, hyperphosphorylation of tau and neuroin-
flammation are vital products for the prevention or treatment of AD. The green tea bioactive
natural products have medicinal and pharmacological effects, including anticancer, an-
tidiabetic, anti-obesity, antiangiogenic, and antimicrobial activities [66–69]. It has also
been found to be effective in functioning of the human brain, healing of liver injury, and
enhancing immunity [70,71]. In our previous study, we reported that theasaponin E1 re-
duced Aβ by inhibition of the amyloidogenic processing of APP and activation of ADAM10
and NCT [72] In the present study, we demonstrated that the green tea seed isolate, th-
easaponin E1, has a great potential for ameliorating neurotoxic Aβ by reducing p-tau
and neuroinflammation.

4. Materials and Methods
4.1. Process of Theasaponin E1 from Isolation and Purification

Defatted green tea seed (with n-hexane) powder was extracted by continuous refluxing
at 60 ◦C for 6 h in 70% ethanol. The green tea ethanolic crude extract was obtained after
filtration and concentration of the above material using jet filter and rotary evaporator.
The extract was processed for saponin extraction by first extraction with a butanol and
water mixture and then extracting by using nonpolar macroporous resin (D101). A 20 g
extract dissolved in 100 mL distilled water was eluted by the resin column first with 0.4 N
NaOH and, after neutralization of the column and solution with HCl eluted with 100%
ethanol, resulted in a saponin-rich extract. This saponin-rich extract was then purified by
preparative high-performance liquid chromatography (HPLC). Elution with a C18 column
was done first with 10% MeOH, followed by elution with 60% MeOH, and finally with 100%.
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MeOH was used to obtain the saponin mixture. Pure saponin (Theasaponin E1) was then
isolated from this fraction using a preparative high-performance liquid chromatography
(HPLC) system with the following conditions.

HPLC (Shimadzu Co., Kyoto, Japan) equipped with a photodiode array (PDA) detector.
The extract was separated on a Luna C-18(2) reverse phase column (250 mm × 21.2 mm,
15 µm; Phenomenex, Inc., Torrance, CA, USA) at 35 ◦C. Solvent A was methanol and
solvent B was distilled water containing 0.1% formic acid. The nonlinear gradient system
used was A/B (74:26) to A/B (74.8:25.2) at 33.5 min. to A/B (100:0) for 2 min., followed
by holding A/B (100:0) for 10 min. and then A/B (74:26) for 12 min. Components were
detected at 210 nm. A flow rate of 7 mL/min. was used.

LC-MS and NMR were used for identification and characterization of the crude and
purified isolated saponin.

4.2. MTT Assay

SH-SY5Y (ATCC® CRL-2266™) human neuroblastoma cells and U-87 MG glioblas-
toma (ATCC® HTB-14™) cells were used in the present study. The SH-SY5Y cell type is a
good model to investigate neurodegeneration due to pathologies including taupathy and
amyloidosis, whereas HTB glioblastoma is a good model for neuroinflammation. Cells
were purchased from ATCC and cultured in the media specified by ATCC (EMEM), sup-
plemented with 10% FBS. Safe nontoxic concentration level of saponin to SHY-5Y and
U-87 MG cells was determined using an MTT assay. In a 96-well plate, cells were cultured
as 1 ×104 cells/well and incubated at 37 ◦C for 24 h in a humidified 5% CO2 incubator.
Various concentrations of theasaponin E1 were used for treating the cells in the respective
wells of the 96-well plates, and after treatment incubation was continued for 24 h. Wells
containing non-treated cells were used as control. After that, 0.5% MTT solution was
added to both the treated and non-treated cells and incubated further for 4 h. The MTT-
containing media was aspirated from each well and DMSO was added, which resulted in
the appearance of a purple color. Absorbance of each well at 540 nm was measured using a
microplate reader. Percentage cell viability was calculated and saponin concentrations with
more than 90% cell viability were selected for further use in the study. Each experiment
was performed in duplicate.

4.3. qRT-PCR Analysis

To determine the effects of saponins on the activation or inhibition of AD-related genes
and various kinases and phosphatases involved in tau phosphorylation or dephosphoryla-
tion (GSK-3β, CDK5, JNK, MAPK, ERK1/MARK, CaMKIIα, PP1, and PP2A), we treated the
neuroblastoma cell lines with saponins and evaluated their effects on the expression levels
of genes using RT-PCR. Similarly, the effects of saponins on the inhibition of the inflam-
matory and AD pathogeneses increasing gene Nf-kB and cytokine IL-1B were determined
using glial cells, U-87 MG. The expression of the genes was measured and normalized
to that of the control (actin). In addition, the expression of each gene following saponin
treatment was presented in the form of gel bands. EMEM cells culture media with 10% FBS
were used for culturing SH-SY5Y cells in 6-well plates. Cells after attachment were then
treated with different concentrations of pure saponins and incubated for 24 h. The control
and theasaonin E1-treated cells were then processed for RNA isolation using the specified
kit (Sigma Aldrich), followed by DNase treatment. A NanoDrop 2000 spectrophotometer
was used for quantification of the extracted total RNA. A total of 500 ng of the isolated
RNA was then reverse transcribed to cDNA by the Revert Aid Premium First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). cDNA was then amplified by qRT-PCR using
gene-specific primers. The relative expression of each gene was normalized and calculated
using β-actin as the control gene. The amplified PCR products were then subjected to gel
electrophoresis to visualize the DNA bands. The RT-PCR experiments were repeated at
least twice.
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4.4. Quantification of the In Vitro Activities of Kinases and Phosphatases

The effects of saponins on various Tau phosphorylating kinases (GSK-3β, CDK5, JNK,
MAPK, ERK1/MARK, CaMKIIα) and dephosphorylating phosphatases (PP1 and PP2A)
were measured with ELISA using the specific ELISA Kits (abcam) for each kinase and
phosphatase, following the manufacturer’s instructions. SHY-5Y cells were subjected to
treatment with saponins after growing in 6-well plates and incubated for 24 h. After incu-
bation, the cell’s lysate was prepared for each concentration and control wells of cells and
processed in 96-well microplates for further experiments following the kit’s instruction for
each enzymatic assay. Absorbance was recorded at 450 nm with an ELISA microplate reader.
Data analysis and comparison were done according to the manufacturer’s instructions.

4.5. Effects of Saponins on Proinflammatory Cytokines and Related Pathways in Glial Cells

The effects of saponins on the inhibition or suppression of AD pathogenesis, increasing
inflammatory and cytokines, i.e., IL-1B and TNF alpha, were analyzed and quantified
in glial cells using specific kits(abcam). U-87 MG cells were cultured in 6-well plates
as treated and control groups. Cells in treated groups were treated with various safe
concentrations of saponins. Cells were harvested and lysate was prepared and processed
in 96-well microplates for further experiments. Absorbance was recorded at 450 nm with
an ELISA microplate reader. Data analysis and comparison were done according to the
manufacturer’s instructions.

4.6. Determination of the Levels of Aβ and Phosphorylated Tau (P-Tau) Using ELISA

The effects of saponins on the expression levels of AD-related genes, p-tau and
Aβ(1–42), were measured using specific ELISA kits (Amyloid beta 42 Human ELISA Kit
Invitrogen and Tau (Total) Human ELISA Kit) following the manufacturer’s instructions.
SHY-5Y cells were cultured under the stated conditions in presence and absence (control) of
various nontoxic concentrations of saponins. After treatment and incubation with saponins,
lysate was prepared and processed in 96-well microplates for the experiments following
the kit’s instructions. Absorbance was measured at 450 nm using an ELISA microplate
reader. Data were analyzed and compared according to the manufacturer’s instructions.

4.7. Quantification of Phosphorylated Tau (P-Tau) in SH-SY5Y Cells Using Western Blotting

To determine whether saponin treatment, after suppression of the AD-promoting
genes, affects the phosphorylation of tau, we extracted proteins from SH-SY5Y neuroblas-
toma cells after treatment with different safe doses of saponins and carried out western blot
analysis. Specific p-tau primary antibodies were used for capturing and quantifying p-tau.

4.8. Quantification of Proinflammatory Cytokines in Glial Cells

The concentrations of TNF-α, IL-1 beta, and IL-6 in glial cells were measured using
specified ELISA kits. Cells were cultured in 6-well plates, as described above, in their
respective media and, after attachment, treated with various concentrations of theasaponin
E1. Concentrations of inflammatory cytokines in the cell were measured by processing the
cell’s lysate of the treated and control wells following the kit’s instructions.

5. Conclusions

In the present study, we revealed that theasaponin E1 could be a therapeutic natural
product for the treatment and prevention of AD. Theasaponin E1 was found to reduce NFT
by decreasing p-tau levels and Aβ formation via the suppression of kinase protein expres-
sion and activity, and AD pathology-promoting genes and cytokines. Further studies and
clinical trials are, however, required to incorporate theasaponin E1 in health supplements
and pharmaceutical formulations.
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