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A functional readout of the gut microbiome is necessary to enable precise control of the gut microbiome’s functions, which support
human health and prevent or minimize a wide range of chronic diseases. Stool metatranscriptomic analysis offers a comprehensive
functional view of the gut microbiome, but despite its usefulness, it has rarely been used in clinical studies due to its complexity,
cost, and bioinformatic challenges. This method has also received criticism due to potential intrasample variability, rapid
changes, and RNA degradation. Here, we describe a robust and automated stool metatranscriptomic method, called Viomega,
which was specifically developed for population-scale studies. Viomega includes sample collection, ambient temperature sample
preservation, total RNA extraction, physical removal of ribosomal RNAs (rRNAs), preparation of directional Illumina libraries,
Illumina sequencing, taxonomic classification based on a database of >110,000 microbial genomes, and quantitative microbial
gene expression analysis using a database of ~100 million microbial genes. We applied this method to 10,000 human stool
samples and performed several small-scale studies to demonstrate sample stability and consistency. In summary, Viomega is an
inexpensive, high-throughput, automated, and accurate sample-to-result stool metatranscriptomic technology platform for
large-scale studies and a wide range of applications.

1. Introduction

The human gut contains a vast number of commensal
microorganisms performing a wide variety of metabolic
functions. Metabolites produced by these microorganisms
can have profound effects on human physiology, with
direct links to health and disease status [1–4]. Gut dysbiosis
likely contributes to the development and progression of
many diseases and disorders, such as cardiovascular disease,
hypertension, obesity, diabetes, and autoimmune diseases
[5–9]. There is also strong evidence that the gut microor-
ganisms directly interact with the nervous system, establish-
ing the gut-brain axis [10]. The gut-brain axis has been
shown to modulate the development of neurodegenerative
diseases such as Alzheimer’s disease, Autism Spectrum Dis-
order (ASD) and Parkinson’s disease [11–14].

The gut microbiome plays a critical role in physiological
homeostasis, resulting in increasing scientific investigation
into the extent of the gut microbiome’s role in human health
and disease. Humans have coevolved with the microbiome
and have become dependent on its biochemical output, such
as certain vitamins and short-chain fatty acids [15, 16]. The
gut microbiome can also produce harmful biochemicals
that have been implicated in various disease states [15].
To fully understand the relationships between the gut
microbiome and human health status, biochemical func-
tions of the microorganisms must be identified and quanti-
fied. Several next generation sequencing-based methods
have been used for analyzing the gut microbiome, each
with clear advantages and disadvantages. The simplest, least
expensive, and most common method is 16S rRNA gene
sequencing [17], which sequences a small portion of the
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highly conserved prokaryotic 16S ribosomal RNA gene [18].
This method can provide taxonomic resolution to the genus
level [19, 20], but it does not measure the biochemical func-
tions of the microorganisms [18] or distinguish living from
dead organisms. In addition, traditional 16S rRNA sequenc-
ing excludes some bacteria, most archaea, and all eukaryotic
organisms and viruses [21], resulting in a limited view of the
gut microbiome ecosystem.

Metagenomic (shotgun DNA) sequencing provides
strain-level resolution of all DNA-based microorganisms
[18] (it does not detect RNA viruses or RNA bacteriophages).
However, it can only identify the potential biochemical func-
tions of the microbiome and can neither identify nor quantify
the active biochemical pathways. This is a disadvantage for
studying dysbiosis-related disease states, such as inflamma-
tory bowel disease (IBD), which has been shown to have a
disparity between metagenomic potential pathways and
actual biochemical pathways expressed in disease and control
populations [22].

Metatranscriptomic analysis (metatranscriptomics, RNA
sequencing, and RNAseq) offers insights into the biochemi-
cal activities of the gut microbiome by quantifying expression
levels of active microbial genes, allowing for the assessment
of pathway activities, while also providing strain-level taxo-
nomic resolution for all metabolically active organisms and
viruses [23, 24]. To date, metatranscriptomic analyses of
stool samples have been limited due to the cost and complex-
ity of both laboratory and bioinformatic methods [25]. By
removing less informative rRNA, more valuable tran-
scriptome data can be generated with less sequencing depth
[24, 26], resulting in reduced per-sample sequencing costs.

An automated technology has been developed for meta-
transcriptomic analysis of human clinical samples, called
Viomega. In this study, Viomega was applied to 10,000
human stool samples to gain a better understanding of the
strain-level taxonomies and microbial functions. Several
small-scale studies were performed to quantify the metatran-
scriptomic stability in the lower colon and measure the intra-
sample variability of metatranscriptomic analyses.

2. Materials and Methods

2.1. Study Participants, Ethics, and Sample Collection and
Transportation. For this study, Viome used data from
10,000 participants. All study participants gave consent
to being in the study, and all study procedures were
approved by a federally accredited Institutional Review
Board (IRB). Participants were recruited from any age,
gender, and ethnic group.

Stool samples were collected using Viome’s Gut Intelli-
gence kit by each study participant at their own residences.
The kit included a sample collection tube with an integrated
scoop, a proprietary RNA preservative, and sterile glass
beads. A pea-sized stool sample was collected and placed
inside the tube and vigorously shaken to homogenize the
sample, exposing it to the RNA preservative. The sample
was then shipped at room temperature using a common cou-
rier to Viome labs for analysis. Shipping times ranged from

one to twelve days. Each participant completed a question-
naire with general lifestyle and health information.

2.2. Metatranscriptomic Analysis of Stool Samples. For the
metatranscriptomic analysis of 10,000 stool samples, a
proprietary sample-to-result automated platform called
Viomega was used. Stool samples were lysed using bead beat-
ing in a strong chemical denaturant and then placed on an
automated liquid handler, which performed all downstream
laboratory methods. Samples were processed in batches in a
96-well microplate; each batch consisted of ninety-four
human stool samples, a negative process control (NPC,
water), and a positive process control (PPC, custom synthetic
RNA). RNA was extracted using a proprietary method.
Briefly, silica-coated beads and a series of washes were used
to purify RNA after lysis and RNA was eluted in water.
DNA was degraded using RNase-free DNase.

The majority of prokaryotic ribosomal RNAs (rRNAs:
16S and 23S) were removed using a custom subtractive
hybridization method. Biotinylated DNA probes with
sequences complementary to rRNAs were added to total
RNA, the mixture was heated and cooled, and the probe-
rRNA complexes were removed using magnetic streptavidin
beads. The remaining RNAs were converted to directional
sequencing libraries with unique dual-barcoded adapters
and ultrapure reagents. Libraries were pooled and quality
controlled with dsDNA Qubit (Thermo Fisher Scientific)
and Fragment Analyzer (Advanced Analytical). Library pools
were sequenced on Illumina NextSeq or NovaSeq instru-
ments using 300 cycle kits.

Viomega’s bioinformatics module operates on Amazon
Web Services and includes quality control, taxonomic pro-
filing, and functional analysis. Quality control tools trim
and filter the raw reads and quantify the amounts of the
sample-to-sample cross-talk and background contamina-
tion by microbial taxa. Viomega generates read-based
taxonomy assignments using a multistep process. The
sequencing reads are aligned to a proprietary database of
precomputed genomic signatures at three taxonomic levels:
strain, species, and genus. The unique signatures are com-
puted from full-length genomes by removing short subse-
quences of a defined length, k (k-mers), shared among
more than one genome and keeping unique k-mers that
make up the signature [27]. The Viomega taxonomy data-
base was generated from a large RefSeq database containing
more than 110,000 microbial genomes. After the initial tax-
onomic assignments were generated, potential false posi-
tives were removed using the Auto-Blast algorithm that
uses an even larger database of organisms.

The identity and relative activity of microbial genes and
enzymatic functions in the stool samples were assessed using
a proprietary algorithm. At a high level, this involves a mul-
titiered approach to align the sample reads to the integrated
gene catalog (IGC) [28] library of genes to first identify and
then quantify the genes in the sample. Informative genes
(i.e., non-rRNA) were quantified in units of transcripts per
million (TPM) to allow for cross-sample comparisons. Using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [29]
annotation mapping of IGC genes to KEGG orthologies
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(KOs), the enzymic functions and activity were quantified in
these samples as the aggregate TPM. The KEGG mapping
also allows for functional modules and pathway analysis.

2.3. Small-Scale Studies. For the validation of the sample lysis
in the Viomega pipeline, the following organisms were grown
in nutrient broth at 37°C and 450 rpm in a VWR incubating
minishaker: Bacillus subtilisMarburg strain (ATCC 6051-U),
Corynebacterium stationis strain NCTC 2399 (ATCC 6872),
Citrobacter freundii strain ATCC 13316, NCTC 9750 (ATCC
8090), and Serratia liquefaciens strain CDC 1284-57 ATCC
12926 (ATCC 27592). In addition, the following organisms
were grown in yeast mold broth at 37°C and 450 rpm in a
VWR incubating minishaker: Saccharomyces cerevisiae strain
S288C (ATCC 204508) and Candida dubliniensis strain CBS
7987 (ATCC MYA-646).

To illustrate the accuracy of taxonomic classification
at the species level of the Viomega technology, the 10
Strain Even Mix Whole Cell Material (ATCC® MSA-
2003™) product was utilized. As stated by the manufac-
turer, this product is comprised of an even mixture of
the following organisms: Bacillus cereus (ATCC 10987),
Bifidobacterium adolescentis (ATCC 15703), Clostridium bei-
jerinckii (ATCC 35702), Deinococcus radiodurans (ATCC
BAA‐816), Enterococcus faecalis (ATCC 47077), Escherichia
coli (ATCC 700926), Lactobacillus gasseri (ATCC 33323),
Rhodobacter sphaeroides (ATCC 17029), Staphylococcus
epidermidis (ATCC 12228), and Streptococcus mutans
(ATCC 700610).

3. Results and Discussion

3.1. Validation of Viomega Technology

3.1.1. Sample Lysis. Uneven sample lysis can introduce major
errors in any method since sample composition can vary
widely in terms of easy-to-lyse microorganisms (viruses and
Gram(-) bacteria) and difficult to very-difficult-to-lyse
Gram(+) bacteria and yeast. Viomega utilizes a combination
of chemical (denaturant) and physical (bead beating) sample
lyses, which has been shown to have the best efficiency. To test
this method, two strains of Gram(-) bacteria, two strains of
Gram(+) bacteria, and two strains of yeast were grown to an
optical density range of 0.4-0.8AU. Equal amounts of each
organism in triplicate then underwent chemical and physical
sample lyses, and total RNA was extracted from each sam-
ple. RNA yields obtained were consistent and show no bias
against Gram(+) bacteria or yeast (average yield: Gram − =
93 3 ng/μL, 83.6 ng/μL;Gram + = 131 9 ng/μL, 152.3 ng/μL;
yeast = 113 1 ng/μL, 100.8 ng/μL) (Figure 1). The process was
also reproducible, with a very small variability across technical
replicates (standard deviation range = 3 4‐11 0 ng/μL).

3.1.2. Ambient Temperature Sample Transportation. A noted
shortcoming of metatranscriptomics is that it analyzes labile
RNA molecules. This is most apparent in the case of dead
organisms, as the existing RNA is rapidly degraded, while
no new transcripts are made. In living organisms, however,
RNA is continuously made and degraded. By exposing living
organisms to appropriate reagents, this dynamic equilibrium

of gene expression can be “frozen in time” at the time of sam-
ple collection and quantitatively analyzed later. To achieve
this, Viomega uses a chemical denaturant/RNA stabilizing
solution that ensures the preservation of RNA integrity dur-
ing sample transport at ambient temperatures. Fourteen ali-
quots were made from a single donor sample; four aliquots
were processed using Viomega immediately, while three
samples were stored at room temperature (RT) for four
weeks prior to processing. Seven aliquots were shipped
through a standard courier and held on-site at the laboratory
for a total time of four weeks prior to processing. All compar-
isons show very strong correlation with a Spearman correla-
tion value of 0.8 or greater (Figure 2) [30]. No difference was
found in taxonomic profiling or functional composition
between time to processing or shipping conditions prior to
processing (Figure 2).

3.1.3. Sample-to-Sample Cross-Talk (STSC). STSC (also
known as barcode switching, barcode hopping, or read mis-
assignment) can cause significant errors when sequencing
many samples on a single sequencing run. Standard library
preparation methods for sample barcoding have high error
rates, from 0.2 to 5%, especially on the newest generation of
Illumina platforms that use ExAmp technology [31, 32]. This
phenomenon can cause errors in the reported taxonomies,
e.g., abundant taxa in a sequencing run being assigned to
samples in which those taxa did not exist. Viomega mini-
mizes STSC by a combination of specially produced barcode
oligos, dual unique barcode sequences of 11 bps each, and
only reporting the taxa that did not exceed the rate of mea-
sured STSC on each batch of 96 samples. STSC was quanti-
fied by introducing a synthetic, nonnatural RNA sample
(PPC) in each microplate and measuring its quantity in each
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Figure 1: Average RNA yields (ng/μL) of model organisms after
sample lysis and RNA extraction (B. subtilis: 131 9 ± 4 0 ng/μL;
C. stationis: 152 3 ± 3 9 ng/μL; C. fruendii: 93 3 ± 14 4 ng/μL; S.
liquefaciens: 83 6 ± 3 4 ng/μL; S. cerevisiae: 113 1 ± 4 8 ng/μL; C.
dubliniensis: 100 8 ± 11 0 ng/μL; n = 3).
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of the other samples. The PPC sample was randomly posi-
tioned in each plate. STSC in Viomega mostly falls under 1
read per million reads (0.0001%) (Figure 3) on the NovaSeq
platform (S1 flow cell, 300 cycle kits), which is more than
1,000-fold lower than in data obtained using commercial
library preparation kits [31–33].

3.1.4. Background Contamination of Samples. Since any
metagenomic or metatranscriptomic analysis identifies all
taxa in a sample, nucleic acid contamination of the reagents
(especially purification kits and enzymes), instruments, and
poor laboratory practices can lead to the inclusion of con-
taminating taxa into scientific results [34–36]. To minimize
this, Viomega uses ultrapure reagents, good laboratory prac-
tices, and fully automated liquid handling systems. Every
plate of ninety-six samples contained a positive process con-
trol (PPC) sample, which is a synthetic RNA that was sub-
jected to the same process as the rest of the samples (from

kit manufacturing to bioinformatics). This sample was
sequenced and analyzed like all other samples on the plate,
allowing any microbial contamination to be detected. Over
the course of twenty consecutive batches (1,880 stool sam-
ples, 20 PPC samples), the level of background contamina-
tion observed in PPC samples was extraordinarily low, with
an average of 1.4 contaminating reads (std. dev. 2.6; n = 20)
out of 5-15 million sequencing reads and 0.3 contaminating
taxa (std. dev. 0.5; n = 20). Across twenty batches, the num-
ber of contaminating taxa was either zero or one, with a max-
imum of ten sequencing reads (out of an average of ~10
million) assigned to the taxon. These values were below the
threshold for reporting any microorganism from the Vio-
mega analysis and therefore do not cause any false positives
to the results.

3.1.5. Depletion of Ribosomal RNAs. The vast majority of
RNAmolecules in any biological sample are ribosomal RNAs
(rRNA). Approximately 96% of all reads from stool samples
align to microbial rRNAs (Table S1), leaving only ~4% of
sequencing data aligning to microbial messenger RNAs.
Since rRNA sequences are not very informative
(housekeeping functions, poor taxonomic resolution), and a
key goal of Viomega is to deeply probe the functional
landscape of the gut microbiome (i.e., quantify the
messenger RNAs), a subtractive hybridization method for
rRNA depletion has been implemented in the Viomega
process. This fully automated method reduces rRNA to
60 4 ± 14 9% (n = 90), thus providing an average
enrichment of microbial messenger RNAs of ~10-fold by
increasing sequencing data aligning to microbial messenger
RNAs to ~40%.

3.2. Viomega: Accuracy of Taxonomic Classification. Given
the large amounts of metatranscriptomic data obtained from
each sample (over one giga-base pairs) and a very large
database (more than 110,000 genomes), it is extremely chal-
lenging to have a high-throughput, fully automated, cost-
effective, cloud-based, and highly accurate bioinformatic
pipeline. Viomega is a fully automated cloud application
whose efficiency comes from using a precomputed database
of microbial signatures. This approach reduces the amount
of searchable sequence space by roughly two orders of mag-
nitude and largely eliminates false positive results. Viomega
technology was used to analyze a commercially available
mock community (10 Strain Even Mix Whole Cell Material,
ATCC® MSA-2003™). For identification at the species level,
Viomega shows 100% accuracy consistent with the mock
community, with no false positive or false negative calls
(Figure 4). The whole cell relative abundance of these micro-
organisms was reported by the supplier as identical. How-
ever, the relative RNA amounts (measured as relative
activity by Viomega) may not be the same due to potential
differences in how each monoculture was grown, processed,
and stored prior to the preparation of the mock community.
It is also possible that Deinococcus radiodurans contains
more RNA per cell than other bacteria, due to its diploid
genome. The somewhat higher relative abundance cannot
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Figure 3: Sample-to-sample cross-talk (reads per million) for 178
stool samples sequenced on the Illumina NovaSeq platform using
Viomega dual unique barcode sequences. Sample-to-sample cross-
talk determined by measuring the occurrence of nonnatural PPC
reads in each stool sample. Range = 0‐1 34 reads permillion;
median = 0 33 reads permillion.
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be explained with facile lysis (it is a Gram-positive organism)
or low GC content (67%).

3.3. Findings from the Viomega Taxonomic Classification.
Using the Viomega taxonomy classification pipeline, a total
of 2,723 microbial strains, 1,946 microbial species, and 528
microbial genera have been identified in 10,000 human stool
samples. The identified microorganisms include bacteria,
archaea, viruses, bacteriophages, and eukaryotes (Table 1).

3.4. Viomega: Quantification of Microbial Biochemical
Functions. Using Viomega’s functional analysis tools, the
expression of >100,000 microbial open reading frames
(ORFs), which were grouped into 6,879 KEGG functions,
was identified and quantified from 10,000 human stool sam-
ples. The top ten KEGG functions are shown in Table 2.

3.5. Intrasample Variability of Metatranscriptomic Analyses.
Because large-scale studies would preferably analyze a single
stool sample (instead of an average of multiples), it was
important to understand the variability of microbial taxon-
omy and functions across individual stool samples. To
understand this variability, three volunteers (P11, P12,

and P13) collected samples from three parts of their stool
samples: (1) from one end, (2) from the opposite end, and
(3) from the middle. Each biological sample was split into
three technical replicates (a, b, and c). All samples were ana-
lyzed using Viomega, followed by unsupervised clustering
analysis (Kendall’s correlation). All biological and technical
replicates from the same stool sample (in-group) clustered
by participant with very high similarity, and were different
from the outgroup samples, especially at the strain-level tax-
onomy (Figure 5). This ministudy shows high uniformity of
the metatranscriptomic data across stool samples. While
there have been claims of large intrasample variability [37],
these were likely based on biased methods, and not real dif-
ferences in microbial taxonomy [38]. For large-scale studies,
it is cost prohibitive to collect and analyze multiple samples
per collection time; Viomega metatranscriptomic analysis
provides reproducible results across stool samples.

3.6. Short-Term (Minutes) Stability of Stool
Metatranscriptomes. To identify any changes in the mea-
sured microbial taxonomy and functions in the first few
minutes after a stool sample was produced, three participants
(P12, P13, and P14) were asked to collect samples from the

Bifidobacterium adolescentis
Lactobacillus gasseri
Clostridium beijerinckii
Bacillus cereus
Enterococcus faecalis 

Streptococcus mutans

Deinococcus radiodurans
Staphylococcus epidermidis

Rhodobacter sphaeroides
Escherichia coli

Figure 4: Accuracy and relative abundance of Viomega analysis on a commercial mock community. Species contents of the mock community
as listed by the supplier are shown (left); supplier lists relative abundance of whole cells as equal among all species. Viomega achieves 100%
accuracy at species level identification.
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same stool (a) immediately, (b) three minutes later, and
(c) ten minutes later. Unsupervised clustering analysis
(Kendall’s correlation) was performed on the nine samples,
and all samples clustered with high similarity based on the
sample, and not the time of collection (Figure 6).

3.7. Long-Term (Weeks) Stability of Stool
Metatranscriptomes. Because gene expression can change
rapidly due to environmental changes, a ministudy was
performed to look for metatranscriptome changes in stool
microbiome over time. Seven volunteers were asked to main-
tain their normal diet and lifestyle for two weeks. During this
period, three stool samples were collected from each
participant: time zero, one week later, and two weeks later.
The twenty-one samples were analyzed with Viomega, and
unsupervised clustering analysis (Kendall’s correlation) was
performed based on taxonomy and KEGG functions
(Figure 7). For both taxonomy (Figure 7(a)) and KEGG
functions (Figure 7(b)), the samples clustered by the par-
ticipant, confirming that both gut microbiome composi-
tion and biochemical functions were stable over the

course of the study while maintaining a consistent diet.
These data clearly demonstrate the utility of Viomega
technology, as the microbial metatranscriptome was main-
tained with a consistent diet over a period of weeks.

4. Conclusions

In this report, Viomega, a sample-to-result, automated, and
robust stool metatranscriptomic analysis technology is
described. Viomega includes at-home sample collection, sta-
bility at ambient temperatures during transport (for up to
twenty-eight days), complete sample lysis, RNA extraction,
physical removal of noninformative (ribosomal) RNAs,
sequencing library preparation, Illumina sequencing, and a
quantitative bioinformatic analysis platform that includes
taxonomic classification and functional analysis. Almost all
laboratory steps are performed in a 96-well format using
automated liquid handlers. All bioinformatic analyses are
automatically performed on cloud servers. Viomega includes
several critically important quality control steps, both per
sample (number of base pairs generated for microbial mes-
senger RNAs (% rRNA) and sample-to-sample cross-talk)
and per batch of ninety-six samples (background contamina-
tion, process control samples, RNA yields, etc.).

Using a commercial mock community, Viomega shows
100% accuracy (no false positives or negatives) at the species
level. Since the ground truth for the RNA content of each
member of the mock community cannot be obtained from
the manufacturer, it is unclear whether the small differences
in the relative abundance of the ten microorganisms pro-
vided are an artifact of the sample or the method of produc-
ing the mock community.

Viomega was applied to 10,000 human stool samples and
identified several thousand taxa at the strain, species, and
genus ranks. More than 100,000 open reading frames (ORFs)
were identified, quantified, and grouped into thousands of
KEGG functions. The large bioinformatic data outputs of
Viomega are being used to learn how gut microbiome taxon-
omy and functions are affected by the diet, develop improved
models of how to precisely control the gut microbiome using

Table 1: The top ten strains, species, and genera identified in 10,000 human stool samples, based on their prevalence. See supplementary
materials for all taxa identified in 10,000 human stool samples (Table S2 for strain, Table S3 for species, Table S4 for genera).

Top 10 genera Top 10 species Top 10 strains
Genus Prevalence (%) Species Prevalence (%) Strains Prevalence (%)

Clostridium 99.7 Bacteroides vulgatus 97.1 Eggerthella lenta 1_1_60AFAA 97.1

Bacteroides 99.6 Acinetobacter baumannii 96.8 (Eubacterium) hallii DSM 3353 93.9

Blautia 97.6 Faecalibacterium prausnitzii 96.4 Veillonella dispar ATCC 17748 92.3

Acinetobacter 97.5 Bacteroides uniformis 95.4 Anaerotruncus colihominis DSM 17241 91.4

Eubacterium 97.2 Eggerthella lenta 91.8 Clostridium phoceensis strain GD3 90.8

Parabacteroides 96.9 (Eubacterium) hallii 91.5 Blautia obeum ATCC 29174 89.7

Lactococcus 96.9
Anaerotruncus
colihominis

91.4
(Eubacterium) eligens strain

2789STDY5834875
88.9

Faecalibacterium 96.4 Clostridium phoceensis 90.8 Faecalibacterium cf. prausnitzii KLE1255 88.3

Roseburia 95.7 Veillonella dispar 89.0 Faecalibacterium prausnitzii A2-165 86.0

Alistipes 95.1 Fusicatenibacter saccharivorans 87.3 Roseburia hominis A2-183 83.4

Table 2: The top ten KEGG functions identified in 10,000 human
stool samples. See supplementary material for the top 100 KEGG
functions (Table S5).

KO ID Name Prevalence in 10,000 samples (%)

K00936 pdtaS 100.00

K01190 lacZ 99.99

K03046 rpoC 99.99

K02355 fusA, GFM, EFG 99.99

K00540 fqr 99.99

K03695 clpB 99.99

K03296 TC.HAE1 99.99

K01362 OVCH 99.98

K02358 tuf, TUFM 99.98

K06950 K06950 99.98
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diet, and learn how the gut microbiome correlates with
human health and disease. These analyses will be described
in upcoming publications. While Viomega was specifically
designed for stool sample analysis, modifications may be
made for alternative pipelines for other types of human clin-
ical applications in the future.

Viomega was used to perform several small-scale studies
to demonstrate the robustness of stool metatranscriptomic
analysis when the methods introduce minimal biases. These
studies show that it is possible to collect a single stool sample
as representative of the entire colonic microbiome. The stud-
ies also establish that the gut metatranscriptome exhibits
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stability for several weeks without a diet change both compo-
sitionally and functionally. It should be noted that all partic-
ipants involved in the above ministudies were self-reported
healthy individuals. In each study, clustering by taxonomy
showed much lower outgroup similarity than clustering by
function. While taxonomy has been shown to vary from per-
son to person among healthy individuals [39], the observed
clustering patterns (Figures 5, 6, and 7) suggest similar func-
tionality between healthy individuals; although different
organisms are present, they are performing similar biochem-
ical functions.

Viomega is a robust technology that offers a rapid and
comprehensive taxonomic and functional readout of the gut
microbiome. In addition, the cost to process a human stool
sample through the Viomega pipeline ($199 for the Viome
Gut Intelligence™ Test at the time of submission) is inexpen-
sive compared to similar services ($15,000 for up to five
samples through The Human Microbiome Project—“What
are they actually doing” service) [40] largely due to
batched processing, removal of rRNAs, and the unique
Viomega taxonomy database. This technology will increase
the overall understanding of the interplay among diet, gut
microbiome, and human health, and is enabling gut
microbiome-based personalized nutrition as an emerging
field. These advances may fuel mitigation and treatment
for a variety of human health conditions, such as cardio-
vascular disease, obesity, autoimmune disease, ASD, and
Parkinson’s disease.
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