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Summary

With pressing issues arising in recent years, the Uni-
ted Nations proposed 17 Sustainable Development
Goals (SDGs) as an agenda urging international
cooperations for sustainable development. In this
perspective, we examine the roles of systems meta-
bolic engineering (SysME) and its contribution to
improving the quality of life and protecting our envi-
ronment, presenting how this field of study offers
resolutions to the SDGs with relevant examples. We
conclude with offering our opinion on the current
state of SysME and the direction it should move for-
ward in the generations to come, explicitly focusing
on addressing the SDGs.

Systems metabolic engineering (SysME) is an enabling
technology for optimizing cellular performance to produce
better bioproducts to higher titres with higher productivi-
ties and yields. In particular, it has become essential in
developing industrial microbial strains for the sustainable
production of chemicals and materials. Combining syn-
thetic biology, systems biology, evolutionary engineering
together with traditional metabolic engineering, SysME
upgrades the performance of living organisms far beyond

their native capacity to produce industrially relevant com-
pounds (Lee and Kim, 2015). In establishing the term
biorefinery, metabolic engineering has set sail to con-
tribute to the production of useful compounds – from bulk
and specialty chemicals to polymers and materials –

using renewable non-food resources in hopes of ulti-
mately replacing the conventional petroleum-based
industry, and addressing climate change and fossil
resource depletion (Fig. 1). Rapid development of tools
and strategies including omics technologies, computa-
tional modeling/simulation, and genetic engineering tools
such as CRISPR/Cas and small regulatory RNAs has
made SysME more powerful in developing microbial
strains that will be used as cell factories for biorefineries.
With pressing global issues arising in the 21st century,
the United Nations (UN) announced 17 Sustainable
Development Goals (SDGs). Such international effort is
well aligned with recent movements from the World Eco-
nomic Forum (WEF) that has selected SysME as one of
the top 10 emerging technologies (https://www.scientifica
merican.com/article/systems-metabolic-engineering-
turns-microbes-into-factories/). The 17 SDGs formally
accepted in September 2015 by the UN General Assem-
bly is a set of measurable goals ranging from ending
world poverty and hunger to combating climate change
by 2030 (see Jang et al. in the same issue for more
detail). In this short perspective, we discuss the roles of
SysME in accomplishing the SDGs (words in bold below)
that can be largely categorized into those related to ‘qual-
ity of human life’ and ‘environment’.
In addressing no poverty (SDG 1) and zero hunger

(SDG 2), SysME has been contributing to producing food
and feed supplements (e.g., amino acids and nutraceuti-
cals) through industrial fermentation of engineered
microbes. History of fermentative amino acid production
clearly showcases the contribution. An amino acid pro-
ducer Corynebacterium glutamicum had been discovered,
and its fermentation process established in hopes to end
poverty and hunger in postwar Japan 60 years ago
(Kinoshita, 2005). Today, C. glutamicum is a dominant
microorganism engineered in industry for the production
of many amino acids and their derivatives for their use in
food and feedstock supplements (Becker and Wittmann,
2015). As traditional carbon substrates for such microbial
fermentation processes have been in conflict with the
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supply of human food source (e.g., starch and sugar),
methods to use non-food biomass as carbon substrates
are being developed through SysME (Bokinsky et al.,
2011).
Other than food problems, good health and well-

being (SDG 3) can be achieved by providing strategies
to treat diseases through SysME. A large portion of
important drugs originate from plants, which suffer from

their vulnerability to climate change and hence unstable
supply. Of the most prominent examples is the produc-
tion of artemisinin, an antimalarial drug, using an engi-
neered yeast (Paddon et al., 2013). Other notable
examples include the production of taxol (Ajikumar et al.,
2010) and opioids (Galanie et al., 2015). Actinomycetes
are an important resource for the production of sec-
ondary metabolites with various bioactivities including

Fig. 1. Example achievements of systems metabolic engineering (SysME) and their contributions to Sustainable Development Goals (SDGs).
Abbreviations are as follows: 2,3-BDO, 2,3-butanediol; IMP, inosine monophosphate; GMP, guanosine monophosphate; Arg, arginine; Trp, tryp-
tophan; Val, valine; Lys, lysine; Met, methionine; Glu, glutamic acid; Thr, threonine; PHB, poly(3-hydroxybutyric acid); PS, polystyrene; PLGA,
poly(lactate-co-glycolate); PLA, polylactic acid; PET, polyethylene terephthalate; FAMEs, fatty acid methyl esters; FAEEs, fatty acid ethyl esters.
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antibiotics, antifungal, anticancer and immunomodula-
tion. SysME has been increasingly employed to allow
more efficient design, control and optimization of these
secondary metabolites (Weber et al., 2015), as show-
cased for erythromycin (Pfeifer et al., 2001; Zhang et al.,
2010). These achievements have been made possible
through large gene cluster cloning (Yuan et al., 2016),
coordinated gene expression optimization (Na et al.,
2013) and genome editing techniques (Wang et al.,
2012) among many other SysME tools developed. Also,
SysME strategies can be employed to perform system-
wide analyses of human metabolism and gene regula-
tory networks for drug target identification (Hur et al.,
2017) and novel antimicrobial development through
understanding host–pathogen interactions (Kim et al.,
2010, 2011). Traditional oriental medicine can be mod-
ernized by systems biological analyses as multicompo-
nent multitarget approaches will become increasingly
important (Kim et al., 2015). Successful establishment of
precision medicine and microbiome-based health mainte-
nance will also heavily rely on systems biology and
SysME.
In addressing responsible consumption and pro-

duction (SDG 12), SysME offers sustainable production
of various chemicals and materials from renewable non-
food biomass (Lee et al., 2012; Lee and Kim, 2015). For
instance, the scope of bacterial cellulose (BC) applica-
tions has been expanded from simple food industry to
cosmetics, and biomedical and electronics industries,
thanks to remarkable physical properties of BC (see
Jang et al. in the same issue on BC). In addition, micro-
bial natural polyesters polyhydroxyalkanoates (PHAs),
and even non-natural polymers including polylactic acid
(PLA) and poly(lactate-co-glycolate) (PLGA) can be pro-
duced by one-step fermentation of engineered bacteria
developed with SysME (Jung et al., 2010; Park et al.,
2012; Yang et al., 2013; Choi et al., 2016). These
biodegradable polyesters can be used just like other
polyesters, can be recycled, and once disposed, are
biodegraded, which presents perfect carbon cycle for the
environment. Other than producing biodegradable plas-
tics, degradation of previously conceived ‘non-degrad-
able’ plastics might become possible, when needed,
through SysME. With interesting discoveries of novel
enzymes or strains that degrade polyethylene terephtha-
late (PET) (Yoshida et al., 2016) and polystyrene (Yang
et al., 2015), the possibility of employing engineered
microorganisms developed through SysME for degrading
and/or recycling of plastic wastes might be realized.
Demand for freshwater is expected to increase due to

ever-increasing population and decreasing freshwater
availability caused by climate change. As water scarcity
is expected to jeopardize life and environment, our
immediate action is needed to accomplish clean water

and sanitation (SDG 6). Bio-based production of chemi-
cals and materials relies on the use of freshwater for the
cultivation of microorganisms. To reduce the depen-
dence of fermentation on freshwater, microorganisms
that can grow well using seawater can be employed. As
these halophilic microorganisms generally do not pro-
duce chemicals and materials of our interest with high
enough efficiency, SysME will play an increasingly
important role in upgrading their performance (Fu et al.,
2014; Tan et al., 2014). Wastewater treatment can be
enhanced by employing consortium of engineered
microorganisms developed with SysME for more efficient
regeneration of freshwater. When using such engineered
microbial consortium in open field, SysME will also play
important role in securing biocontainment to avoid the
release of engineered microorganisms into nature (see
below).
Currently, 80% of all energy comes from fossil fuels

with only 14% from hydropower, biomass and other
renewable resources (U.S. Energy Information Adminis-
tration, 2017). SysME has contributed to the pursuit of
affordable and clean energy (SDG 7) and climate
action (SDG 13) in several different ways. SysME has
been successfully employed for the development of
microorganisms for the production of gasoline (Choi and
Lee, 2013), biodiesel (Steen et al., 2010) and jet fuel
(Renninger and McPhee, 2008) from renewable
resources. The portfolio of chemicals and materials pro-
duced by microorganisms engineered through SysME is
expanding at an unparalleled pace (Lee et al., 2012).
One-carbon (C1) compounds such as methane or CO2

abundant on earth have begun to be considered as
potential alternative substrates through their conversion
to formic acid (Bar-Even, 2016), the simplest organic
compound that can provide microbes with both carbon
and reducing power for the production of various value-
added chemicals (Bar-Even, 2016; Yishai et al., 2016).
A bottleneck to using formic acid has been an assimila-
tion step, but this has been addressed recently by devel-
oping a computationally designed enzyme that can now
readily utilize formic acid (Siegel et al., 2015; Tai and
Zhang, 2015). In a broader perspective, carbon-fixing
organisms such as algae and cyanobacteria have also
been exploited through metabolic engineering to produce
hydrogen (Beer et al., 2009), biofuels (Ducat et al.,
2011; Lan and Liao, 2011) and polymers (Ducat et al.,
2011).
SysME will also contribute to the preservation of life

on water (SDG 14) and life on land (SDG 15), when
engineered microorganisms are actively used in bio-
based economy. SysME can be employed to develop
biocontainment system to avoid uncontrolled proliferation
of the engineered organisms that can possibly perturb
the natural ecosystem. Early biocontainment systems
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developed used auxotrophs in which only cells that have
been supplied with exogenous metabolites (Steidler
et al., 2003; Wright et al., 2013) or non-natural amino
acids (Mandell et al., 2015; Rovner et al., 2015) could
grow. Of notable engineering feats in biocontainment
systems are microbial kill switches with synthetic regula-
tory circuits developed recently (Chan et al., 2016).
Accomplishing the UN’s SDGs will obviously require

an integrated effort of science, technology, policy, public
support, funding and regulation. SysME will not be the
most important technology to address the SDGs, but will
definitely contribute to achieving many of UN’s SDGs as
showcased above. With further advances in SysME, the
list of successful examples will increase ranging from
new drugs and better nutrition to sustainable chemicals
and environmental protection. In the era of the fourth
industrial revolution, SysME is expected to further evolve
through the use of big data and artificial intelligence for
designing high-performance microorganisms and for
developing safer and more robust therapeutics.
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