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Abstract: Objective: To develop and validate an admission warning strategy that incorporates the
general emergency department indicators for predicting the hospital discharge outcome of patients
with traumatic brain injury (TBI) in China. Methods: This admission warning strategy was developed
in a primary cohort that consisted of 605 patients with TBI who were admitted within 6 h of injury.
The least absolute shrinkage and selection operator and multivariable logistic regression analysis
were used to develop the early warning strategy of selected indicators. Two sub-cohorts consisting of
180 and 107 patients with TBI were used for the external validation. Results: Indicators of the strategy
included three categories: baseline characteristics, imaging and laboratory indicators. This strategy
displayed good calibration and good discrimination. A high C-index was reached in the internal
validation. The multicenter external validation cohort still showed good discrimination C-indices.
Decision curve analysis (DCA) showed the actual needs of this strategy when the possibility threshold
was 0.01 for the primary cohort, and at thresholds of 0.02–0.83 and 0.01–0.88 for the two sub-cohorts,
respectively. In addition, this strategy exhibited a significant prognostic capacity compared to the
traditional single predictors, and this optimization was also observed in two external validation
cohorts. Conclusions: We developed and validated an admission warning strategy that can be quickly
deployed in the emergency department. This strategy can be used as an ideal tool for predicting
hospital discharge outcomes and providing objective evidence for early informed consent of the
hospital discharge outcome to the family members of TBI patients.

Keywords: warning strategy; admission; hospital discharge outcome; traumatic brain injury; emergency

1. Introduction

Affecting approximately 18% of the world population and with an annual incidence
of over 50 million, the absolute numbers of patients with traumatic brain injury (TBI) in
China have exceeded those of most other countries [1,2]. Recently, a greater number of
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resources and advanced facilities have become available for the diagnosis and treatment of
TBI. Consequently, the overall mortality rates of severe TBI patients in China have gradually
decreased and are similar to those reported in most Western countries [2]. However, with
an approximately 27% mortality and with over 50% having an unfavorable outcome of
severe TBI, TBI is still a major concern in China [2–4].

With improvements in TBI management in China (e.g., the issuing of a series of guide-
lines and consensus reports) [1], the treatment level of TBI in the majority of hospitals is
normalizing, and increasing numbers of senior neurologists have the ability to predict the
outcome of TBI. Moreover, fast prognosis prediction helps to guide long-term planning,
assess the effectiveness of clinical management, and reasonably regulate and assign medical
resources [5]. Thus, the early prognostic assessment of TBI is deeply embedded in routine
clinical practice [6]. Over the years, some predictors, such as patient demographics, imaging
findings, clinical presentation, and fluid biomarkers, have been proven to have predictive
value [7–10]. Currently, there is increasing interest in the discovery of novel biomarkers
and the development of advanced technical means for predicting outcomes following
TBI [11–14]. These indicators may accelerate the development of more accurate prediction
strategies that could be useful for determining patient outcomes [7,15,16]. However, con-
sidering their time-consuming and exhausting nature, the execution of sophisticated or
repetitive detection technologies is impractical in the emergency setting. The lack of precise
information and heterogeneity in study design and statistical analyses present additional
challenges [6].

In China, from the initial admission to hospitalization in a specialized department,
procedures for emergency triage are often required. During this period, neurologists are
often pressed to prognosticate patient outcomes, such as mortality or other unfavorable
outcomes during an emergency consultation. To our knowledge, the most widely used
traditional prognostic predictors at this stage are the injury details, clinical severity, and
GCS score [17–19]. Meanwhile, several computed tomographic (CT) severity grading
scales (e.g., Marshall CT score, etc.) were used to develop models for TBI outcome pre-
diction [20]. Unfortunately, the accuracy of these predictors or scales does not meet the
need of providing clinicians with an early warning so they can provide informed consent
for hospital discharge to a patient’s family. Gradually, clinicians have recognized that a
multidimensional approach can achieve clinically relevant accuracy for providing prog-
nostic information in TBI patients [21]. Landmark analyses in a recent study found that
injury severity characteristics and physiological monitoring may emerge as prognostic
predictors during the first day post-injury [22]. However, the authors failed to provide
effective information about the emergency department studied, which is necessary given
that neurologists are expected to give an early warning signal before hospitalization.

Therefore, an efficient solution to reintegrate examination indicators is not only nec-
essary but also urgent against this backdrop. A possible path is to employ a reasonable
algorithm and then design a multidimensional strategy [23]. The purpose of this study
was to develop and validate an admission warning strategy in the emergency department
by incorporating admission baseline characteristics and initial examination indicators to
predict the hospital discharge outcome of TBI patients.

2. Patients and Methods
2.1. Participants

This study enrolled patients with TBI who were transported to the emergency de-
partment by ambulance in three subcenters (Shanghai Tongren Hospital, Shanghai East
Hospital, and Xinhua Hospital). These subcenters were randomly divided into three inde-
pendent cohorts: one training and internal validation cohort, and two external validation
cohorts. The inclusion criteria for the three cohorts were: TBI patients with no previous
history of brain injury, admission within 6 h of injury, age ≥ 18 years. The exclusion criteria
were: death before the admission examination, pregnancy, or the coexistence of other fatal
diseases. This multicenter study was approved by the ethics committee of all participating
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institutions and the need to obtain informed consent was waived for the individual patients.
The research was carried out before the outbreak of COVID-19.

2.2. Data Collection and Patient Management

We collected routine examination indicators in the emergency departments of three
subcenters in China [6,7,15]. Each TBI patient’s baseline characteristics, including age, sex,
time from injury to admission, mechanism of injury, injury type, and admission GCS score,
as well as other characteristics, including the patient’s motor score, pupil condition, vital
signs, basic diseases, and complications were recorded, and non-contrast CT imaging and
laboratory indicators were obtained.

All patients with TBI were treated according to the current institutional strategy based
on the Brain Trauma Foundation Guidelines, 4th edition [24] during hospitalization. All
patients were managed by a team of neurosurgeons with the title of senior professional
post and full-time practitioner. TBI comorbidities, such as extracranial injury, underlying
diseases, hypoxemia, hypotension, pneumonia, and electrolyte disturbance were treated
with individualized and precise strategies in all TBI patients.

2.3. Outcome Assessment

Each patient’s outcome was assessed on the date when the patient met discharge crite-
ria [24]. We used the Extended Glasgow Outcome Scale (GOSE) scale (where 1 = died and
8 = totally recovered), which increased the original five categories of the traditional GOS
to eight categories by dividing the latter three categories into upper and lower bands, as
follows: dead, vegetative state, lower/upper severe disability, lower/upper moderate dis-
ability, and lower/upper good recovery [17]. The TBI patient outcomes were dichotomized
into “favorable outcome”, defined as a GOSE score of 5–8 points, and “unfavorable out-
come”, defined as a GOSE score of 1–4 points.

2.4. Statistical Analysis (Developing and Validating Phase)

Statistical computing and graphics were performed with R software (https://www.r-
project.org, Shanghai Jiao Tong University, Shanghai China, v3.5.0; accessed on 1 December 2021)
and SPSS software (China, Chinese, v22.0) with p value less than 0.05 considered as statis-
tical significance. (1) In the developing phase, the least absolute shrinkage and selection
operator (LASSO) was used for data dimension reduction and the selection of optimal
predictive features from initial admission indicators [25]. Next, multivariable logistic regres-
sion analysis was used to develop an early warning strategy by incorporating the features
selected in the LASSO regression mode. The significant results are reported as two-sided
odds ratios (ORs) with 95% confidence intervals (CIs) and as p-values < 0.05. The continu-
ous variables are expressed as the means ± standard deviations (means ± SDs) or medians
and interquartile ranges (IQRs). All routine indicators available in the China emergency
department were collected during the strategy development phase [26]. (2) In the validation
phase, we plotted calibration curves to determine the difference between predicted value
and actual value, and measured Harrell’s C-index to evaluate the performance of our strat-
egy (developed in primary cohort). Bootstrapping validation (1000 bootstrap resamples)
was used for internal validation and to calculate the C-index [27]. Decision curve analysis
(DCA) was performed to determine the clinical usefulness of our strategy. In DCA, the
horizontal line indicates that all samples are negative with a net benefit of 0, and the slash
indicates that all samples are positive with a net benefit of 1 [28]. MedCalc software (New
York, NY, USA, v20.0.22) was used to perform receiver operating characteristic (ROC)
analysis and calculate the area under the ROC curve (AUC). The optimal thresholds for
the parameters used to predict patient outcomes were defined as the optimal cutoff points
on the ROC curve when the maximal Youden’s index was obtained. High accuracy was
defined as C-index or AUC > 0.9. Finally, pairwise comparison analysis was used for
evaluating the difference in performance between our strategy and traditional indicators.
The same process was carried out in the three cohorts.

https://www.r-project.org
https://www.r-project.org
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3. Results
3.1. Participants

The patients’ demographic and admission clinical characteristics, outcomes, and
routine examination indicators at admission are summarized in Table 1 (for more detail,
see Supplementary Materials). In total, 892 patients with TBI were assessed for eligibility
between January 2018 and May 2019, for whom no significant difference was observed
according to the clinical characteristics between the internal validation cohort (605 patients)
and the two external validation cohorts (180 and 107 patients).

Table 1. Patient demographics and admission clinical characteristics.

Variables Primary Cohort (n = 605) Sub Cohort One (n = 180) Sub Cohort Two (n = 107)

Age (years) (mean ± sd) 60.1 ± 18.0 60.6 ± 17.0 59.3 ± 15.8
Sex (n, %)
Male 401 (66.3%) 117 (65.0%) 61 (57.0%)
Female 204 (33.7%) 63 (35.0%) 46 (43.0%)
Mechanism of head injury (n, %)
Traffic incident 242 (40.0%) 64 (25.6%)
Fall 318 (52.6%) 96 (53.3%) 39 (36.4%)
Other cause 45 (7.4%) 20 (11.1%) 57 (53.3%)
Time from injury to admission (h) (median, iqr) 6 (3–12) 6 (3–12) 6 (3–12)
Pupillary reactivity at admission (n, %)
Normal 536 (88.6%) 157 (87.2%) 92 (86.0%)
Unilateral abnormality 21 (3.5%) 10 (5.6%) 5 (4.7%)
Bilateral abnormality 48 (7.9%) 13 (7.2%) 10 (9.3%)
Gcs score at admission
14–15 406 (67.1%) 121 (67.2%) 75 (70.1%)
9–13 104 (17.2%) 27 (15.0%) 15 (14.0%)
≤8 95 (15.7%) 32 (17.8%) 17 (15.9%)
Hypotension at admission (<90 mmhg) (n, %)
Yes 61 (10.1%) 21 (11.7%) 9 (8.4%)
No 544 (89.9%) 159 (88.3%) 98 (91.6%)
Combined extracranial injuries (number) (mean ± sd) 1.3 ± 1.6 1.4 ± 1.6 1.2 ± 1.5
Combined underlying diseases (number) (mean ± sd) 0.9 ± 1.1 1.0 ± 1.2 0.9 ± 1.0
Neurosurgical procedure (n, %)
Yes 145 (24.0%) 52 (28.9%) 20 (18.7%)
No 460 (76.0%) 128 (71.1%) 87 (81.3%)
GOSE at discharge (n, %)
Favorable outcome for 5–8 494 (81.7%) 146 (81.1%) 88 (82.2%)
Unfavorable outcome for 1–4 111 (18.3%) 34 (18.9%) 19 (17.8%)
Mortality 74 (12.23%) 13 (7.2%) 10 (9.3%)
Death within one month (n, %)
Yes 74 (12.2%) 7 (3.9%) 7 (6.5%)
No 531 (87.8%) 173 (96.1%) 100 (93.5%)
CT characteristics at admission
midline shift (n, %)
Yes 91 (15.0%) 28 (15.6%) 13 (12.1%)
No 514 (85.0%) 152 (84.4%) 94 (87.9%)
Intracranial lesion (n, %)
traumatic subarachnoid hemorrhage 353 (58.3%) 109 (60.1%) 55 (51.4%)
epidural hematoma 104 (17.2%) 25 (13.9%) 10 (9.3%)
subdural hematoma 333 (55.0%) 98 (54.4%) 57 (53.3%)
intraparenchymal lesion 304 (50.2%) 93 (51.7%) 55 (51.4%)
Lesion size ≥ 25 mL (n, %)
yes 81 (13.4%) 19 (10.6%) 12 (11.2%)
no 524 (86.6%) 161 (89.4%) 95 (88.8%)
Basal cistern (n, %)
normal 462 (76.4%) 141 (78.3%) 84 (78.5%)
compression 86 (14.2%) 23 (12.8%) 13 (12.1%)
occlusion 57 (9.4%) 16 (8.9%) 10 (9.3%)
Marshall classification on admission CT (n, %)
I–II 397 (65.6%) 115 (63.9%) 74 (69.2%)
III–IV 48 (7.9%) 18 (10.0%) 11 (10.3%)
V–VI 175 (28.9%) 47 (26.1%) 22 (20.6%)
Laboratory examination at admission
hemoglobin level (G/L) (mean ± sd) 131.7 ± 20.2 133.0 ± 20.0 129.7 ± 20.4
blood glucose level (MMOL/L) (mean ± sd) 7.9 ± 3.2 7.9 ± 3.6 7.9 ± 3.3
white blood cell count (×109/L) (mean ± sd) 11.9 ± 5.3 12.5 ± 5.5 11.8 ± 5.3
monocyte count (×109/L) (mean ± sd) 0.6 ± 0.6 0.6 ± 0.4 0.57 ± 0.43
monocyte ratio (×100%) (mean ± sd) 5.1 ± 2.3 4.9 ± 2.5 5.2 ± 3.2
neutrophil count (×109/L) (mean ± sd) 10.0 ± 5.2 10.5 ± 5.4 10.2 ± 6.0
lymphocyte count (×109/L) (mean ± sd) 1.4 ± 1.2 1.3 ± 1.0 1.4 ± 1.8
lactate level (MMOL/L) (mean ± sd) 2.2 ± 1.5 2.2 ± 1.3 2.1 ± 1.3
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3.2. Feature Selection and Admission Warning Strategy Development

Focusing on the selected admission indicators, a total of eighteen emergency indicators
with non-zero coefficients were selected in the LASSO logistic regression analysis. After
the application of the LASSO logistic algorithm, 10 out of the 18 indicators were eventually
used to develop the strategy (Figure 1). They were the baseline characteristics (age, GCS
score, pupillary reactivity and hypotension), imaging indicators (midline shift, intracerebral
hematoma, traumatic subarachnoid hematoma, and basal cistern), and laboratory indicators
(glucose level and monocyte count).
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Figure 1. Indicators included in the model were selected using the least absolute shrinkage and
selection operator (LASSO) binary logistic regression model. Figure legends: (A) LASSO coefficient
profiles, displaying eighteen texture features. A coefficient profile plot was produced against the log
(lambda) sequence. (B) Optimal parameter (lambda) selection in the LASSO model used fivefold
cross-validation and minimum criteria. The partial likelihood deviance (binomial deviance) curve
was plotted versus log (lambda). Dotted vertical lines were drawn at the optimal values by using the
minimum criteria and the 1 standard error (SE) of the minimum criteria (the 1-SE criteria).

Subsequently, multivariable logistic regression analysis was used to evaluate the
LASSO selected features (Table 2). When p < 0.05, LASSO selected indicators can be used
as the predictors of unfavorable outcomes.

Next, a nomogram model was formulated based on the ability of these predictors. As
shown in Figure 2, this warning strategy can be posted in the general emergency department.
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Table 2. Multivariable logistic regression analysis of the ability of the selected indicators.

Intercept and Variable
Prediction Ability

β Odds Ratio (95% CI) p-Value

Age 1.563 4.772 (2.019–11.281) <0.001
GCS score of 3–8 points — — 0.013
GCS score of 9–12 points −0.711 0.491 (0.148–1.672) 0.245
GCS score of 13–15 points −1.754 0.173 (0.052-0.580) 0.004
Normal pupil — — 0.001
Unilateral pupil reaction 2.398 11.004 (1.089–111.151) 0.042
No pupil reaction 2.685 14.663 (3.131–68.660) 0.001
Hypotension (≤90 mmHg) 1.445 4.240 (1.250–14.380) 0.020
Midline shift (≥5 mm) 1.607 4.986 (1.693–14.688) 0.004
Intracerebral hematoma 0.497 1.645 (0.677–3.995) 0.272
Subarachnoid Hematoma 1.352 3.864 (1.053–14.186) 0.042
Basal cistern—Normal — — 0.063
Basal cistern—Compression 1.227 3.411 (1.205–9.655) 0.021
Basal cistern—Occlusion 1.216 3.373 (0.755–15.062) 0.111
Glucose level (>8.1 mmol/L) 0.448 1.565 (0.674–3.636) 0.298
Monocyte count (>0.59 × 109/L) 1.381 3.977 (1.640–9.643) 0.002
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Figure 2. Description of admission warning strategy. Figure legends. An admission warning strategy
incorporated the admission baseline characteristics and routine examination indicators, and the
nomogram was developed in the primary cohort with the use of the independent predictors (TBI:
traumatic brain injury; CT: computed tomography; GCS: Glasgow Coma Scale; BP: blood pressure;
MD: midline shift; ICH: intracerebral hemorrhage; SAH: subarachnoid hematoma; MONO: monocyte
count; GLU: glucose).
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4. Clinical Use and Validation
4.1. Internal Validation

The C-index of our strategy was 0.982 (95% CI: 0.973–0.990) and 0.975 (95% CI:
0.966–0.983) according to the bootstrapping analysis, suggesting that the strategy had
good discriminative ability. The calibration plots of the strategy showed that the agreement
between predicted and observed unfavorable outcomes at hospital discharge of patients
after TBI was optimal (Figure 3A). The DCA showed that the strategy had significant
net benefits for all the threshold probabilities for admission indicators, and the potential
clinical benefits of the prediction model were demonstrated (Figure 3B). The AUC of the
warning model predicting an unfavorable outcome at the hospital discharge was 0.981 (95%
CI: 0.967–0.991), indicating improved survival prediction compared with the traditional
predictive model (Figure 3C). The multivariate logistic regression analysis showed that the
following variables were predictors of unfavorable outcomes (p < 0.05). The performance
of these independent predictors was: age (AUC = 0.633; 95% CI: 0.593–0.671), GCS score
(AUC = 0.922; 95% CI: 0.898–0.942), Marshall CT score (AUC = 0.854; 95% CI: 0.824–0.881),
glucose (AUC = 0.786; 95% CI: 0.751–0.818), and monocyte count (AUC = 0.688; 95% CI:
0.649–0.724) (Figure 3D–H). Finally, the pairwise comparison of the ROC curves farther
indicated that there was a statistically significant relationship (p < 0.05) between the strategy
and the age, GCS score, Marshall CT score, glucose, and monocyte count.

4.2. External Validation

Multicenter patients with TBI (180 patients in sub-cohort one and 107 patients in
sub-cohort two) were used for external validation. The calibration curves for our strategy
showed that the external use of predicting unfavorable outcomes at hospital discharge
of patients after TBI is always appropriate (Figure 4A,B). The C-index of the strategy
was 0.926 (95% CI: 0.872–0.979) in sub-cohort one and 0.959 (95% CI: 0.923–0.994) in sub-
cohort two. DCA showed that the strategy was clinically useful when the possibility
threshold was 0.02–0.83 for sub-cohort one and 0.01–0.88 for sub-cohort two. The pre-
dictive capacity of the warning model was shown as ROC curves for the prediction of
TBI outcome, and the AUCs of the two sub-cohorts were 0.926 (95% CI: 0.877–0.959) and
0.959 (95% CI: 0.902~0.988) (Figure 4E,F), respectively. In addition, this strategy exhib-
ited a better prognostic performance than the independent predictor: age (AUC = 0.514;
95% CI: 0.439~0.589), GCS score (AUC = 0.877; 95% CI: 0.820–0.921), Marshall CT score
(AUC = 0.760; 95% CI: 0.691–0.820), glucose (AUC = 0.729; 95% CI:0.658–0.793), and mono-
cyte count (AUC = 0.611; 95% CI:0.535–0.682) for sub-cohort one and age (AUC = 0.536;
95% CI: 0.437–0.633), GCS score (AUC = 0.894; 95% CI: 0.820–0.945), Marshall CT score
(AUC = 0.750; 95% CI: 0.657–0.829), glucose (AUC = 0.732; 95% CI: 0.638–0.813), and mono-
cyte count (AUC = 0.616; 95% CI: 0.517–0.708) for sub-cohort two (Figure 4E,F). The pairwise
comparison of the ROC curves further indicates that there was statistically significant rela-
tionship (p < 0.05) between the strategy and the age, GCS score, Marshall CT score, glucose,
and monocyte count in the two sub-cohorts.
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Figure 3. Internal validation of the warning strategy. Figure legends. (A) Calibration curves of the
nomogram for predicting unfavorable outcomes for patients after TBI. Data on predicted unfavorable
outcomes are plotted on the x- and y- axes. The diagonal dotted line indicates the ideal nomogram, in
which actual and predicted probabilities are identical. The solid line represents the actual nomogram,
and the higher the fitting degree with the dotted line was, the better the calibration effect would
be. (B) Decision curves of the strategy predicting an unfavorable outcome at the threshed of 0.01.
The x-axis represents the threshold probability, and the net benefit of the y-axis measurement was
calculated by adding the true positive minus the false positive. (C) ROC of the warning strategy
for predicting unfavorable outcomes. (D–H) ROC of the independent predictors for predicting
unfavorable outcomes.
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Figure 4. External validation of the warning strategy. Figure legends. Calibration curves for external
validation in sub-cohort one (A) and sub-cohort two (B). Decision curves of the strategy predicting
an unfavorable outcome in sub-cohort one (C) and sub-cohort two (D). ROC curves for the prediction
of strategy in sub-cohort one (E) and sub-cohort two (F). ROC curve for the prediction of traditional
predictors in sub-cohort one (G) and sub-cohort two (H).

5. Discussion

Although several basic multiple trauma scores, such as the revised trauma score
(RTS), injury severity score (ISS), exponential injury severity score (EISS), and traumatic
injury mortality prediction (TRIMP), have been widely accepted, they are so influenced
by the anatomical index and the accuracy of specific anatomical injury site (brain injury)
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is limited [29]. Gradually, there have been many prognostic models incorporating the
different parameters to predict TBI patients’ outcomes, producing a predictive value range
from acceptable to good [7,15,16]. Taking a traditional TBI-based model as an example,
incremental increases in predictive value were achieved, with AUCs ranging from 0.74 for
the core model (basic characteristics) to 0.77 with the CT indicators added and 0.79 with the
laboratory indicators added for the TBI patient outcomes. As the treatment of TBI tends to
be standardized at each tertiary hospital in China [1,2,24], it is increasingly important to
show the importance of using initial indicators in TBI prediction. Thus, our hypothesis was
that a multidimensional modeling strategy utilizing patients’ initial admission indicators
would improve outcome prediction compared with a traditional independent predictor.

Hence, we collected TBI patient admission indicators when the indicators met the
following conditions: (1) they can be quickly obtained, (2) they are essential for diagnosis,
and (3) they are available in the majority of emergency departments in China. There-
fore, the data of 605 patients in emergency departments were suitable for developing a
warning strategy, and age, GCS score, blood pressure, pupillary reactivity, midline shift,
intraparenchymal lesion, traumatic subarachnoid hemorrhage, basilar cistern, blood glu-
cose levels, and monocyte count were adopted to obtain unified dimensions by shrinking
the regression coefficients with the LASSO method. We chose the predictors based on
the weight of their univariable association with TBI outcomes and combined those se-
lected features into our admission warning strategy. We found that the elderly population
suffered dramatically worse long-term outcomes than the younger population despite
less-severe initial head injuries. The selected factor for increased unfavorable outcome risk
in our study was age > 67 years and hypotension, defined as a systolic blood pressure
(SBP) < 90 mmHg. These results are in line with previous single-center studies that we
reviewed [30,31]. Additionally, other admission baseline characteristics, such as GCS score
and pupillary reactivity, are traditionally considered unfavorable indicators. In terms of
supplementary imaging indicators, we found that intracerebral hemorrhage (ICH), trau-
matic subarachnoid hematoma (tSAH) and basal cistern (obliteration or compressed) were
incremental indicators that improved outcome prediction accuracy [32–35]. In addition,
adding invasive laboratory indicators, such as blood glucose and circulating monocyte
count, will substantially improve the accuracy [36–38].

Traditionally, the best contributor to the prediction of unfavorable TBI-related out-
comes was the GCS score at admission [22]. Previous researchers found that the GCS
score post-baseline was an important predictor of TBI outcomes with an AUC of 0.960,
and changes in GCS scores on days 7 and 14 postinjury were the most influential [39].
When this notion was applied to our strategy, the best GCS score had an AUC of 0.922,
indicating good precision. However, a better AUC of 0.981 was obtained when combining
the LASSO-selected multidimensional parameters into our admission warning strategy,
which means that our strategy is better than the traditional prediction method. Moreover,
compared with traditional prognostic factors, this warning strategy displayed significantly
better discrimination than single-dimensional predictors, such as age, serum glucose level,
and circulating monocyte count. In addition, this performance is unbiased because external
validation also showed similar optimization. Considering that sedation and treatment-
related conditions may affect the patient’s level of consciousness, changes in the GCS score
during admission were not included in the study. Therefore, this study provides an ideal
approach to the development of a multidimensional prediction strategy.

To the best of our knowledge, the traditional Marshall CT model was shown to con-
tribute to outcome prediction in patients with TBI in previous studies [7,40]. In our study,
we tested the validity of the Marshall CT model, and our strategy displayed significantly
better discrimination than the Marshall CT model (p < 0.05). This means that the multidi-
mensional strategy is more optimized than the traditional model. These results were in line
with previous studies, where a more efficient three-dimensional scoring prediction model
was proposed to predict the outcome of TBI patients with a high AUC value [41].
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Although studies have shown that dynamic monitoring imaging parameters can
significantly improve the prognostic value, it was convenient to integrate laboratory exami-
nation information into an independent strategy for most general emergency department in
China. In this way, using emergency indicators alone has no added value and can be fully
avoided, regardless of the influence of sample size [22]. Moreover, the heterogeneity of
statistical methods, strategic differences in addressing missing data, and differences in the
first derivatives of indicators account for the biased and unrealistic findings. Additionally,
inconsistencies in modeling approaches and the lack of external multicenter validation have
become common topics [6,22,42]. To address these problems, we selected the most general
indicators according to the medical record system. No additional behaviors other than a
routine examination were required, and two separate cohorts of patients were used for the
external validation. The performance of our strategy was ideal and provided improved
accuracy for the development of prediction models. In particular, this strategy fills a gap in
the investigation of initial emergency examinations.

6. Limitations and Future Implications

The methods used in this study were aimed at developing and validating an admission
warning strategy for predicting TBI patient outcomes. Nevertheless, some limitations of
this study should be noted. First, only short-term outcomes (from emergency to hospital
discharge) were included, and we failed to perform additional validation with regard
to later follow-up outcomes. Second, the endpoint of our strategy was closer than that
of traditional models, such as “CRASH” or “IMPACT”, and its superiority over these
competing prediction models remains unclear. However, it can be simply promoted in
China’s emergency department through process posters (while “CRASH” or “IMPACT”
models require proprietary website settings). Thirdly, only a small number of medical
institutions were included in the development of this strategy. The parameters in this model
should be adjusted according to the different characteristics of different centers in the future.
Moreover, this strategy does not include the pediatric TBI group, and there might be some
performance degradation in our strategy after age adjustment. Finally, longer follow-up is
still necessary because some important predictors may emerge in the process.

7. Conclusions

To our knowledge, this is an innovative proposal of initial admission indicators of
TBI patients based on a relatively large sample size for strategy development and two
independent samples for external evaluation in China. It would be worth exploring the
screening and optimization of the emergency indicator system. This strategy can be used to
provide objective evidence for clinical strategy development and the provision of accurate
informed consent for hospital discharge to patients’ family members.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11040974/s1. Table S1: Patient’ original information.

Author Contributions: R.Z. and Z.Z. (Zhongwei Zhuang) contributed to the conception and design
of the work and drafted this manuscript; C.Z., Y.Z. and Z.Z. (Zhijie Zhao) provided help with the
manuscript revisions; S.P., K.L. and X.Y. performed the statistical analyses and prepared the clinical
data; Y.M., Y.W., K.C. and Q.H. supervised the multicenter study. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported in part by the China Postdoctoral Science Foundation (No.
2017M611585), the Biomedical and Engineering cross youth fund of Shanghai Jiao Tong Univer-
sity (No. YG2021QN43), and the National Natural Science Foundation of China (Nos. 81871458
and 82102307).

Institutional Review Board Statement: This multicenter study was approved by the ethics com-
mittees of Tongren Hospital, School of Medicine, Shanghai Jiaotong University (No. 2020-047-01),
Shanghai East Hospital, Tongji University School of Medicine (No. EC. D(BG). 016. 02.1), and Xinhua

https://www.mdpi.com/article/10.3390/jcm11040974/s1
https://www.mdpi.com/article/10.3390/jcm11040974/s1


J. Clin. Med. 2022, 11, 974 12 of 13

Hospital, Shanghai Jiao Tong University School of Medicine (No. XHEC-D-2020-195). As this is a
retrospective study, informed consent was not required.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and/or analyzed during the current study
are not publicly available due to the inclusion of personal information but are available from the
corresponding author upon reasonable request.

Acknowledgments: We thanks for the official department in Shanghai Tongren Hospital, Shanghai
East Hospital, and Xinhua Hospital for providing original data of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, J.Y.; Gao, G.Y.; Feng, J.F.; Mao, Q.; Chen, L.G.; Yang, X.F.; Liu, J.F.; Wang, Y.H.; Qiu, B.H.; Huang, X.J. Traumatic brain injury

in China. Lancet Neurol. 2019, 18, 286–295. [CrossRef]
2. Gao, G.; Wu, X.; Feng, J.; Hui, J.; Mao, Q.; Lecky, F.; Lingsma, H.; Maas, A.I.R.; Jiang, J. China CENTER-TBI Registry Participants.

Clinical characteristics and outcomes in patients with traumatic brain injury in China: A prospective, multicentre, longitudinal,
observational study. Lancet Neurol. 2020, 19, 670–677. [CrossRef]

3. Puffer, R.C.; Yue, J.K.; Mesley, M.; Billigen, J.B.; Sharpless, J.; Fetzick, A.L.; Puccio, A.; Diaz-Arrastia, R.; Okonkwo, D.O. Long-term
outcome in traumatic brain injury patients with midline shift: A secondary analysis of the Phase 3 COBRIT clinical trial. J.
Neurosurg. 2018, 131, 596–603. [CrossRef] [PubMed]

4. Chinese Head Trauma Study, C. Chinese Head Trauma Data Bank: Effect of Gender on the Outcome of Patients With Acute
Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1164–1167. [CrossRef]

5. Van der Naalt, J.; Timmerman, M.E.; de Koning, M.E.; van der Horn, H.J.; Scheenen, M.E.; Jacobs, B.; Hageman, G.; Yilmaz, T.;
Roks, G.; Spikman, J.M. Early predictors of outcome after mild traumatic brain injury (UPFRONT): An observational cohort study.
Lancet Neurol. 2017, 16, 532–540. [CrossRef]

6. Retel Helmrich, I.R.A.; Lingsma, H.F.; Turgeon, A.F.; Yamal, J.M.; Steyerberg, E.W. Prognostic Research in Traumatic Brain Injury:
Markers, Modeling, and Methodological Principles. J. Neurotrauma 2020, 38, 2502–2513. [CrossRef]

7. Steyerberg, E.W.; Mushkudiani, N.; Perel, P.; Butcher, I.; Lu, J.; McHugh, G.S.; Murray, G.D.; Marmarou, A.; Roberts, I.;
Habbema, J.D.; et al. Predicting outcome after traumatic brain injury: Development and international validation of prognostic
scores based on admission characteristics. PLoS Med. 2008, 5, e165. [CrossRef]

8. Zetterberg, H.; Blennow, K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat. Rev. Neurol. 2016, 12,
563–574. [CrossRef]

9. Van de Zande, N.; Manivannan, S.; Sharouf, F.; Shastin, D.; Abdulla, M.; Chumas, P.D.; Zaben, M. Demographics, presentation,
and clinical outcomes after traumatic bifrontal contusions: A systematic review. Neurosurg. Rev. 2020, 43, 977–986. [CrossRef]

10. Stenberg, M.; Koskinen, L.D.; Jonasson, P.; Levi, R.; Stalnacke, B.M. Computed tomography and clinical outcome in patients with
severe traumatic brain injury. Brain Inj. 2017, 31, 351–358. [CrossRef]

11. Kurtz, P.; Rocha, E.E.M. Nutrition Therapy, Glucose Control, and Brain Metabolism in Traumatic Brain Injury: A Multimodal
Monitoring Approach. Front. Neurosci. 2020, 14, 190. [CrossRef] [PubMed]

12. Toffolo, K.; Osei, J.; Kelly, W.; Poulsen, A.; Donahue, K.; Wang, J.; Hunter, M.; Bard, J.; Wang, J.; Poulsen, D. Circulating microRNAs
as biomarkers in traumatic brain injury. Neuropharmacology 2019, 145, 199–208. [CrossRef] [PubMed]

13. Smith, L.G.F.; Milliron, E.; Ho, M.L.; Hu, H.H.; Rusin, J.; Leonard, J.; Sribnick, E.A. Advanced neuroimaging in traumatic brain
injury: An overview. Neurosurg. Focus 2019, 47, E17. [CrossRef] [PubMed]

14. Yue, J.K.; Yuh, E.L.; Korley, F.K.; Winkler, E.A.; Sun, X.; Puffer, R.C.; Deng, H.; Choy, W.; Chandra, A.; Taylor, S.R.; et al.
Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in
the TRACK-TBI cohort: A prospective multicentre study. Lancet Neurol. 2019, 18, 953–961. [CrossRef]

15. Collaborators, M.C.T.; Perel, P.; Arango, M.; Clayton, T.; Edwards, P.; Komolafe, E.; Poccock, S.; Roberts, I.; Shakur, H.;
Steyerberg, E.; et al. Predicting outcome after traumatic brain injury: Practical prognostic models based on large cohort of
international patients. BMJ 2008, 336, 425–429. [CrossRef]

16. Dijkland, S.A.; Foks, K.A.; Polinder, S.; Dippel, D.W.J.; Maas, A.I.R.; Lingsma, H.F.; Steyerberg, E.W. Prognosis in Moderate and
Severe Traumatic Brain Injury: A Systematic Review of Contemporary Models and Validation Studies. J. Neurotrauma 2020, 37,
1–13. [CrossRef]

17. Wilson, J.T.; Pettigrew, L.E.; Teasdale, G.M. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow
Outcome Scale: Guidelines for their use. J. Neurotrauma 1998, 15, 573–585. [CrossRef]

18. Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [CrossRef]
19. Lingsma, H.F.; Roozenbeek, B.; Steyerberg, E.W.; Murray, G.D.; Maas, A.I. Early prognosis in traumatic brain injury: From

prophecies to predictions. Lancet Neurol. 2010, 9, 543–554. [CrossRef]

http://doi.org/10.1016/S1474-4422(18)30469-1
http://doi.org/10.1016/S1474-4422(20)30182-4
http://doi.org/10.3171/2018.2.JNS173138
http://www.ncbi.nlm.nih.gov/pubmed/30074459
http://doi.org/10.1089/neu.2011.2134
http://doi.org/10.1016/S1474-4422(17)30117-5
http://doi.org/10.1089/neu.2019.6708
http://doi.org/10.1371/journal.pmed.0050165
http://doi.org/10.1038/nrneurol.2016.127
http://doi.org/10.1007/s10143-019-01098-0
http://doi.org/10.1080/02699052.2016.1261303
http://doi.org/10.3389/fnins.2020.00190
http://www.ncbi.nlm.nih.gov/pubmed/32265626
http://doi.org/10.1016/j.neuropharm.2018.08.028
http://www.ncbi.nlm.nih.gov/pubmed/30195586
http://doi.org/10.3171/2019.9.FOCUS19652
http://www.ncbi.nlm.nih.gov/pubmed/32364704
http://doi.org/10.1016/S1474-4422(19)30282-0
http://doi.org/10.1136/bmj.39461.643438.25
http://doi.org/10.1089/neu.2019.6401
http://doi.org/10.1089/neu.1998.15.573
http://doi.org/10.1016/S0140-6736(75)92830-5
http://doi.org/10.1016/S1474-4422(10)70065-X


J. Clin. Med. 2022, 11, 974 13 of 13

20. Creeden, S.; Ding, V.Y.; Parker, J.J.; Jiang, B.; Li, Y.; Lanzman, B.; Trinh, A.; Khalaf, A.; Wolman, D.; Halpern, C.H.; et al.
Interobserver Agreement for the Computed Tomography Severity Grading Scales for Acute Traumatic Brain Injury. J. Neurotrauma
2020, 37, 1445–1451. [CrossRef]

21. Au, A.K.; Clark, R.S.B. Paediatric traumatic brain injury: Prognostic insights and outlooks. Curr. Opin. Neurol. 2017, 30, 565–572.
[CrossRef] [PubMed]

22. Rubin, M.L.; Yamal, J.M.; Chan, W.; Robertson, C.S. Prognosis of Six-Month Glasgow Outcome Scale in Severe Traumatic Brain
Injury Using Hospital Admission Characteristics, Injury Severity Characteristics, and Physiological Monitoring during the First
Day Post-Injury. J. Neurotrauma 2019, 36, 2417–2422. [CrossRef] [PubMed]

23. Zhou, Y.; He, Y.; Yang, H.; Yu, H.; Wang, T.; Chen, Z.; Yao, R.; Liang, Z. Development and validation a nomogram for predicting
the risk of severe COVID-19: A multi-center study in Sichuan, China. PLoS ONE 2020, 15, e0233328. [CrossRef] [PubMed]

24. Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.;
et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [CrossRef]

25. Sauerbrei, W.; Royston, P.; Binder, H. Selection of important variables and determination of functional form for continuous
predictors in multivariable model building. Stat. Med. 2007, 26, 5512–5528. [CrossRef]

26. Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015,
16, e173–e180. [CrossRef]

27. Pencina, M.J.; D’Agostino, R.B. Overall C as a measure of discrimination in survival analysis: Model specific population value
and confidence interval estimation. Stat. Med. 2004, 23, 2109–2123. [CrossRef]

28. Vickers, A.J.; Cronin, A.M.; Elkin, E.B.; Gonen, M. Extensions to decision curve analysis, a novel method for evaluating diagnostic
tests, prediction models and molecular markers. BMC Med. Inform. Decis. Mak. 2008, 8, 53. [CrossRef]

29. Wang, M.; Zhang, G.; Cong, D.; Zeng, Y.; Fan, W.; Shen, Y. A traumatic injury mortality prediction (TRIMP) based on a
comprehensive assessment of abbreviated injury scale 2005 predot codes. Sci. Rep. 2021, 11, 21757. [CrossRef]

30. Erlebach, R.; Pagnamenta, A.; Klinzing, S.; Stretti, F.; Cottini, S.; Schupbach, R.; Steiger, P.; Brandi, G. Age-related outcome of
patients after traumatic brain injury: A single-center observation. Minerva Anestesiol. 2017, 83, 1169–1177. [CrossRef]

31. Shibahashi, K.; Sugiyama, K.; Okura, Y.; Tomio, J.; Hoda, H.; Hamabe, Y. Defining Hypotension in Patients with Severe Traumatic
Brain Injury. World Neurosurg. 2018, 120, e667–e674. [CrossRef] [PubMed]

32. Yao, S.; Song, J.; Li, S.; Cao, C.; Fang, L.; Wang, C.; Xu, G. Helsinki Computed Tomography Scoring System Can Independently
Predict Long-Term Outcome in Traumatic Brain Injury. World Neurosurg. 2017, 101, 528–533. [CrossRef] [PubMed]

33. Raj, R.; Siironen, J.; Skrifvars, M.B.; Hernesniemi, J.; Kivisaari, R. Predicting outcome in traumatic brain injury: Development
of a novel computerized tomography classification system (Helsinki computerized tomography score). Neurosurgery 2014, 75,
632–646. [CrossRef] [PubMed]

34. Mata-Mbemba, D.; Mugikura, S.; Nakagawa, A.; Murata, T.; Ishii, K.; Li, L.; Takase, K.; Kushimoto, S.; Takahashi, S. Early CT
findings to predict early death in patients with traumatic brain injury: Marshall and Rotterdam CT scoring systems compared in
the major academic tertiary care hospital in northeastern Japan. Acad. Radiol. 2014, 21, 605–611. [CrossRef]

35. Talari, H.R.; Hamidian, Y.; Moussavi, N.; Fakharian, E.; Abedzadeh-Kalahroudi, M.; Akbari, H.; Taher, E.B. The Prognostic Value
of Rotterdam Computed Tomography Score in Predicting Early Outcomes Among Children with Traumatic Brain Injury. World
Neurosurg. 2019, 125, e139–e145. [CrossRef] [PubMed]

36. Rovlias, A.; Kotsou, S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery
2000, 46, 335–342. [CrossRef] [PubMed]

37. Cochran, A.; Scaife, E.R.; Hansen, K.W.; Downey, E.C. Hyperglycemia and outcomes from pediatric traumatic brain injury. J.
Trauma 2003, 55, 1035–1038. [CrossRef]

38. Li, Z.; Wu, X.; Wu, X.; Yu, J.; Yuan, Q.; Du, Z.; Hu, J. Admission circulating monocytes level is an independent predictor of
outcome in traumatic brain injury. Brain Inj. 2018, 32, 515–522. [CrossRef]

39. Lu, H.Y.; Li, T.C.; Tu, Y.K.; Tsai, J.C.; Lai, H.S.; Kuo, L.T. Predicting long-term outcome after traumatic brain injury using repeated
measurements of Glasgow Coma Scale and data mining methods. J. Med. Syst. 2015, 39, 14. [CrossRef]

40. Thelin, E.P.; Nelson, D.W.; Vehvilainen, J.; Nystrom, H.; Kivisaari, R.; Siironen, J.; Svensson, M.; Skrifvars, M.B.; Bellander, B.M.;
Raj, R. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: An observational,
multicenter study. PLoS Med. 2017, 14, e1002368. [CrossRef]

41. Kahraman, S.; Hu, P.; Stein, D.M.; Stansbury, L.G.; Dutton, R.P.; Xiao, Y.; Hess, J.R.; Scalea, T.M. Dynamic three-dimensional
scoring of cerebral perfusion pressure and intracranial pressure provides a brain trauma index that predicts outcome in patients
with severe traumatic brain injury. J. Trauma 2011, 70, 547–553. [CrossRef] [PubMed]

42. Kim, H.; Kim, Y.T.; Song, E.S.; Yoon, B.C.; Choi, Y.H.; Kim, K.; Kim, D.J. Changes in the gray and white matter of patients with
ischemic-edematous insults after traumatic brain injury. J. Neurosurg. 2018, 131, 1243–1253. [CrossRef] [PubMed]

http://doi.org/10.1089/neu.2019.6871
http://doi.org/10.1097/WCO.0000000000000504
http://www.ncbi.nlm.nih.gov/pubmed/28938340
http://doi.org/10.1089/neu.2018.6217
http://www.ncbi.nlm.nih.gov/pubmed/30860434
http://doi.org/10.1371/journal.pone.0233328
http://www.ncbi.nlm.nih.gov/pubmed/32421703
http://doi.org/10.1227/NEU.0000000000001432
http://doi.org/10.1002/sim.3148
http://doi.org/10.1016/S1470-2045(14)71116-7
http://doi.org/10.1002/sim.1802
http://doi.org/10.1186/1472-6947-8-53
http://doi.org/10.1038/s41598-021-98558-9
http://doi.org/10.23736/S0375-9393.17.11837-7
http://doi.org/10.1016/j.wneu.2018.08.142
http://www.ncbi.nlm.nih.gov/pubmed/30189306
http://doi.org/10.1016/j.wneu.2017.02.072
http://www.ncbi.nlm.nih.gov/pubmed/28249827
http://doi.org/10.1227/NEU.0000000000000533
http://www.ncbi.nlm.nih.gov/pubmed/25181434
http://doi.org/10.1016/j.acra.2014.01.017
http://doi.org/10.1016/j.wneu.2018.12.221
http://www.ncbi.nlm.nih.gov/pubmed/30677579
http://doi.org/10.1097/00006123-200002000-00015
http://www.ncbi.nlm.nih.gov/pubmed/10690722
http://doi.org/10.1097/01.TA.0000031175.96507.48
http://doi.org/10.1080/02699052.2018.1429023
http://doi.org/10.1007/s10916-014-0187-x
http://doi.org/10.1371/journal.pmed.1002368
http://doi.org/10.1097/TA.0b013e31820c768a
http://www.ncbi.nlm.nih.gov/pubmed/21610341
http://doi.org/10.3171/2018.5.JNS172711
http://www.ncbi.nlm.nih.gov/pubmed/30485242

	Introduction 
	Patients and Methods 
	Participants 
	Data Collection and Patient Management 
	Outcome Assessment 
	Statistical Analysis (Developing and Validating Phase) 

	Results 
	Participants 
	Feature Selection and Admission Warning Strategy Development 

	Clinical Use and Validation 
	Internal Validation 
	External Validation 

	Discussion 
	Limitations and Future Implications 
	Conclusions 
	References

