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Abstract: Freeform bioprinting, realized by extruding ink-containing cells into supporting materials
to provide physical support during printing, has fostered significant advances toward the fabrica-
tion of cell-laden soft hydrogel constructs with desired spatial control. For further advancement
of freeform bioprinting, we aimed to propose a method in which the ink embedded in supporting
materials gelate through a cytocompatible and rapid cascade reaction between oxidase and peroxi-
dase. To demonstrate the feasibility of the proposed method, we extruded ink containing choline,
horseradish peroxidase (HRP), and a hyaluronic acid derivative, cross-linkable by HRP-catalyzed
reaction, into a supporting material containing choline oxidase and successfully obtained three-
dimensional hyaluronic acid-based hydrogel constructs with good shape fidelity to blueprints.
Cytocompatibility of the bioprinting method was confirmed by the comparable growth of mouse
fibroblast cells, released from the printed hydrogels through degradation on cell culture dishes, with
those not exposed to the printing process, and considering more than 85% viability of the enclosed
cells during 10 days of culture. Owing to the presence of derivatives of the various biocompatible
polymers that are cross-linkable through HRP-mediated cross-linking, our results demonstrate that
the novel 3D bioprinting method has great potential in tissue engineering applications.

Keywords: bioprinting; freeform printing; horseradish peroxidase; choline oxidase; glucose oxidase;
hyaluronic acid

1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing or rapid pro-
totyping, has been driving innovations in various fields, such as manufacturing, education,
and medicine. Bioprinting is a subcategory of 3D printing and is defined as the technology
for the fabrication of biological tissues and organs. It allows the fabrication of cell-laden
constructs with spatially complex structures that are otherwise difficult to fabricate using
conventional biofabrication techniques [1,2]. In bioprinting, the ink that forms cell-laden
hydrogels in the manufacturing process has gained much popularity [3]. A hydrogel is
composed of a network of cross-linked hydrophilic polymer chains in an aqueous solution.
Various solutions of polymers, such as alginate [4–6], hyaluronic acid [7,8], gelatin [6,9,10],
chitosan [11,12], silk fibroin [13,14], and collagen [15], including their derivatives, have
been used as the ink.

An advantage of the use of ink in hydrogel constructs is the possibility of controlling
the microenvironment surrounding the cells [3]. While the required properties may be
different for each type of cell, favorable cellular functions, such as proliferation, differ-
entiation, migration, and organization, can be enhanced by tuning the biochemical and
mechanical cues of hydrogels [3,16–19]. Additionally, the biodegradation rate and tissue
response in vivo can also be controlled by tuning the degree of cross-linking and polymer
composition [3].

Biomolecules 2021, 11, 1908. https://doi.org/10.3390/biom11121908 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom11121908
https://doi.org/10.3390/biom11121908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11121908
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11121908?type=check_update&version=1


Biomolecules 2021, 11, 1908 2 of 12

A notable feature of the ink used in the fabrication of cell-laden hydrogels is that the
resulting constructs are softer and deform more easily by their weight when formed in
the air than the non-hydrogel constructs used in industrial 3D printing. Deformation can
occur even during the manufacturing process and can be an obstacle to the fabrication
of large constructs with good shape fidelity to blueprints. A possible way to reduce
the chances of deformation is to use ink that forms harder hydrogels by increasing the
cross-linking density and polymer content [18]. However, the effect of increased hydrogel
stiffness on cellular behavior would need further consideration [3,19–21]; cell spreading
and proliferation may be restricted due to increased matrix stiffness [19].

Freeform bioprinting, in which cell-suspending ink is extruded into a support bath
composed of supporting materials, has attracted much attention as a promising technique
for fabricating cell-laden soft hydrogel constructs [22,23]. The supporting materials func-
tion to provide physical support during the 3D printing process, and the gelation of the
embedded ink progresses in the support bath. Therefore, freeform bioprinting enables the
preparation of soft constructs with good shape fidelity compared to conventional printing
in the air [22,24]. To date, various gelation techniques have been applied for the gelation
of ink in freeform bioprinting, namely ionic gelation of alginate [22], pH change-induced
gelation of collagen [22], photo-cross-linking of methacrylated polymers [25], and enzy-
matic gelation of fibrinogen by thrombin [22]. We believe that the development of a novel
freeform bioprinting process involving cytocompatible gelation, in which various inks may
be applicable, would further enhance the usefulness of the method.

This study aimed to report a freeform bioprinting process involving gelation mediated
by the enzymatic cascade reaction of choline oxidase (COD) and horseradish peroxidase
(HRP) (Figure 1). COD catalyzes the conversion of choline and oxygen into betaine glycine
and hydrogen peroxide. HRP further catalyzes the formation of covalent bonds between
phenolic hydroxyl (Ph) groups through oxidation in presence of H2O2. HRP-mediated
gelation has been extensively studied as a promising method for fabricating cell-laden
hydrogels for biomedical applications [26]. Various derivatives of polymers, including
gelatin [27], chitosan [28], and hyaluronic acid [29] have been applied to gelation, and
hydrogel property-dependent cellular behavior has been reported [30–33]. The most
common way to supply H2O2 for HRP-mediated gelation is to add an aqueous H2O2
solution to the mix containing HRP and polymer(s) possessing Ph groups (polymer-Ph) [26].
Owing to the dose- and time-dependent cytotoxicity of H2O2 [34–37], the amount of
H2O2 supplied to obtain cell-laden hydrogels should be carefully determined, as reported
previously [30–33]. Intuitively, as a bioprinting system that combines freeform bioprinting
with HRP-mediated gelation, it would seem feasible to extrude an ink containing HRP or
H2O2 and polymer-Ph into a support bath containing H2O2 or HRP, respectively. However,
the cytotoxic effect of H2O2 on cells increases with increasing printing time in these systems
and would possibly pose a critical challenge while printing larger tissues and organs for
practical applications. This is due to the longer exposure time of cells to H2O2 in the
support bath during printing or in the ink before extrusion.

The bioprinting process proposed here involves the extrusion of a bioink composed of
polymer-Ph, cells, HRP, and choline into a support bath containing COD. The potential
adverse effects of H2O2 exposure on cells can be suppressed by controlling the content
of choline in the ink, instead of using ink containing COD and a support bath containing
choline. Choline is an essential nutrient that regulates body function and human health.
Glucose oxidase (GOD) and HRP are enzyme pairs used to obtain hydrogels from aqueous
polymer-Ph solutions for biomedical applications [38–41]. We believe that the use of COD,
instead of GOD, would decrease the risk of cell damage due to H2O2 produced by enzymes
remaining in the printed constructs when the printed cell-laden constructs are incubated
in a medium. The choline content in conventional media, such as Dulbecco’s modified
Eagle medium (DMEM), minimum essential medium, and RPMI 1640, is less than 1/100
of glucose.
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Figure 1. (a) Schematic drawing of choline oxidase (COD) and horseradish peroxidase (HRP)-
mediated freeform 3D printing in a support bath containing xanthan gum (XG) and COD by embed-
ding ink containing polymer possessing phenolic hydroxyl groups (Polymer-Ph), choline chloride,
and HRP. (b) Chemical reaction scheme of cross-linking of phenolic hydroxyl groups through HRP-
catalysis, consuming H2O2 generated through COD-catalyzed oxidation of choline.

The objective of the current study was to demonstrate the remarkable potential of
the freeform bioprinting process, involving the COD/HRP-mediated gelation of ink. A
solution containing a derivative of hyaluronic acid possessing Ph groups (HA-Ph) and
mouse fibroblasts was used as a model ink to investigate the feasibility of the printing
method. Xanthan gum (XG) was used as supporting material in the support bath for
embedding the ink. The usefulness of XG was recently reported by Patrício et al., who
fabricated ionically cross-linked cell-laden Ca-alginate hydrogel constructs by extruding
a cell-suspending sodium alginate solution in an XG support bath containing calcium
ions [42]. Establishing a method that enhances the freeform bioprinting process will foster
advances toward the fabrication of cell-laden soft hydrogel constructs in the desired shape.

2. Materials and Methods
2.1. Materials

Choline chloride, glucose, N-hydroxysuccinimide (NHS), COD from Alcaligenes sp.
(17 U mg−1), hyaluronidase from bovine testes, and HRP (200 U mg−1) were purchased
from Fujifilm Wako Pure Chemical (Osaka, Japan). Water-soluble carbodiimide hydrochlo-
ride (WSC) and GOD from Aspergillus niger (360 U mg−1) were purchased from Peptide
Institute (Osaka, Japan) and SERVA Electrophoresis GmbH (Heidelberg, Germany), respec-
tively. Xanthan gum (1.45–2.0 Pa s at 1% in water, 20 ◦C), sodium hyaluronic acid (molecular
weight of circa 1000 kDa), and tyramine hydrochloride were obtained from Tokyo Chemical
Industry (Tokyo, Japan), Kewpie (Tokyo, Japan), and Chem-Impex International (Wood
Dale, IL, USA), respectively. HA-Ph was synthesized by conjugating hyaluronic acid and
tyramine using WSC and NHS based on a previously reported method [39]. The content of
Ph groups in HA-Ph was 5–7 × 10−5 mol-Ph/g. Fibroblast derived from a mouse embryo,
10T1/2 cells, were obtained from the Riken (Ibaraki, Japan). The cells were cultured in
DMEM containing 10% (v/v) fetal bovine serum (FBS) at 37 ◦C in humidified air containing
5% CO2.

2.2. Effect of COD and GOD in Cell Medium

Cells were seeded in a 12-well cell culture dish at a density of 2.1 × 103 cells/cm2.
After overnight culture, the medium was replaced with a medium containing COD at
0.1–2.5 U/mL. At 24 h after the COD addition, the medium was replaced with a fresh one
not containing COD, and the cells were cultured for an additional 48 h. The growth profile
of the cells was determined using an incubation monitoring system (CM20; Olympus,
Tokyo, Japan). As controls, growth profiles of cells in media with GOD and without COD
and GOD were determined.
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2.3. Gelation Time

The time necessary for gelation of the HA-Ph solution was measured in a phosphate-
buffered saline (PBS, pH 7.4) containing 1.25% (w/v) HA-Ph, based on a previously reported
method [43,44]. Briefly, a solution containing HA-Ph, COD, and HRP (262.5 µL) was poured
into the wells of a 48-well plate and stirred using a magnetic bar. Then, PBS containing
choline chloride (37.5 µL) was added to the wells. The gelation was signaled when magnetic
stirring was hindered and the surface of the solution swelled. The concentrations of COD,
HRP, and choline chloride were varied in the range of 0.05–3.0 U/mL, 0.1–10 U/mL, and
0.1–50 mM, respectively.

2.4. Preparation of Support Bath

COD was dissolved in phosphate-buffered saline (PBS). XG 1.0% (w/v) was then
slowly added to the solution with vigorous stirring at 25 ◦C. The resultant slurry was
poured into a plastic container of 40-mm diameter and 40-mm height and in a cell culture
dish of 60-mm diameter. These containers were used as support baths for the printing
of cell-free and cell-laden constructs, respectively. The COD content in the support baths
for printing cell-free constructs was 0, 0.1, or 0.5 U/mL, and that for printing cell-laden
constructs were 0.5 U/mL.

2.5. Bioprinting

Three-dimensional hydrogel constructs were printed using an extrusion-based 3D
printing system developed by modifying a commercial 3D printer (Anycubic i3 Mega;
Anycubic, Guangdong, China). Ink containing HA-Ph, HRP, and choline chloride at
1.25% (w/v), 0.1 or 5 U/mL, and 5 mM, respectively, with a viscoelastic property shown in
Figure S1, was used for printing cell-free constructs. The content of HRP in the ink used in
studies with cells was 5 U/mL. For studies using cells, 10T1/2 cells were suspended in the
ink at 5.0 × 105 cells/mL. The ink was extruded from a 27-gauge stainless steel needle at
34 mm/s with 0.3 mm height of each layer, into the support bath. The support bath was
fixed on a platform and moved at 17 mm/s at 25 ◦C.

In the studies using cells, cell-suspending ink was extruded in the support bath
to obtain disc-shaped cell-laden hydrogel constructs (8-mm diameter, 0.3-mm height).
After 5 min of standing, the resultant constructs were washed with PBS to remove XG
and incubated in the medium at 37 ◦C. After 1 d of incubation, the cell-laden hydrogel
constructs were soaked in a medium containing 2 mg/mL hyaluronidase in a 6-well
cell culture dish for degradation. Growth profiles of cells released from the degraded
hydrogel constructs were determined by measuring the area occupied by adherent cells
using commercial software (CKX-CCSW, Olympus, Tokyo, Japan). Cells not exposed to the
printing process were used as controls. In addition to the studies on cells released from the
degraded hydrogel constructs, changes in morphology and viability of cells enclosed in the
printed hydrogel constructs for 10 days were observed using a fluorescence microscope
(BZ-9000, Keyence, Osaka, Japan) by staining with calcein-AM (Dojindo, Kumamoto, Japan)
and propidium iodide (PI) (Dojindo, Kumamoto, Japan).

3. Results and Discussion
3.1. Effect of COD and GOD in Cell Medium

GOD was the first candidate to provide H2O2 for HRP-mediated cross-linking since the
usefulness of GOD/HRP-mediated reactions for the fabrication of hydrogels in biomedical
applications had been previously reported in both in vitro and in vivo conditions [38–41].
In the bioprinting of cell-laden constructs using inks containing enzymes, complete removal
of the enzymes from the resultant constructs, without excessive time-consuming rinsing,
was difficult. Therefore, the potential adverse effects of the remaining enzymes needed
to be considered. We first examined the effects of GOD and COD in the cell medium by
continuously culturing the cells in a medium containing GOD or COD for 24 h and in a
normal medium for an additional 48 h.
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As shown in Figure 2a,d, the cells cultured in the medium containing GOD did not
grow during the two sequential periods, regardless of the GOD content. In contrast, the
cells cultured in a medium containing COD grew similar to those cultured in a medium
free of the enzyme during the first 24 h. Furthermore, there was no noticeable growth
inhibition and no significant difference in morphology in the subsequent 48 h of incubation
(Figure 2b,c,e).
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Figure 2. Growth profiles of murine fibroblast 10T1/2 cells: (a) Glucose oxidase (GOD) or (b) choline
oxidase (COD) was included in the medium during the first 24 h at concentrations shown in each
panel. Control: cultured in a medium free of GOD and COD. Morphology of 10T1/2 cells at 40 h:
(c) control, (d) with 2.5 U/mL GOD as shown in panel (a), and (e) with 2.5 U/mL COD as shown in
panel (b). Bars in panels (a,b): standard deviation (n = 3), and in panels (c–e): 200 µm.

Growth inhibition in the presence of GOD could be explained by the H2O2 generated
by GOD from 5.6 mM glucose contained in DMEM; the choline content in DMEM was
0.03 mM. Theoretically, the same amounts of H2O2, as glucose and choline in the medium,
are generated by catalytic oxidation mediated by GOD and COD, respectively. Due to the
antioxidant activity of albumin in FBS [45], the exact amount of H2O2 that affected cells
was unclear. However, the current result seemed consistent with that reported by Park for
human fibroblasts [37], where the growth rate of cells exposed to >0.1 mM H2O2 for 24 h
was approximately 20%, while that of cells exposed to <0.05 mM H2O2 for 24 h was almost
the same as that of non-exposed cells. Based on these results, we decided to use COD as a
source of H2O2 for HRP-mediated cross-linking in the studies presented below.

3.2. Gelation Time

In freeform bioprinting, ink is cured once it is extruded into the support bath from an
extruder needle. Rapid gelation of the ink helps to stabilize the printed structure, prevent-
ing unwanted deformations and diffusion during the printing process [24]. Therefore, the
effects of factors on gelation time should be determined. We studied the effects of COD,
HRP, and choline content on the time required for gelation.

As shown in Figure 3, gelation time decreased with increasing COD content from
0.05 U/mL (110 s) to 0.5 U/mL (9 s) at 5 U/mL HRP and 5 mM choline (Figure 3a). A
further increase in COD content to 1 and 3 U/mL did not decrease the gelation time
additionally. The increase in HRP from 0.1 to 5 U/mL and choline from 0.01 to 5 mM also
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decreased gelation time (Figure 3b,c); however, further doubling to 10 U/mL and 10 mM,
respectively, did not decrease the values additionally (p = 0.63 and 0.79, respectively).
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Figure 3. Effects of (a) choline oxidase (COD), (b) horseradish peroxidase (HRP), and (c) choline
concentrations on gelation time of 1.25% (w/w) HA-Ph solution. The HRP content in the studies
shown in panels (a,c) was 5 U/mL, the COD content in the studies shown in panels (b,c) was
0.5 U/mL, and the choline content in the studies shown in panels (a,b) was 5 mM. Bars: standard
deviation (n = 4).

The trends indicating a decrease in gelation time with increasing COD, HRP, and
choline contents, observed at certain content ranges, are consistent with those reported for
the solution of alginate derivatives possessing Ph groups [46]. The trends can be explained
by the general theory of enzyme kinetics with no inhibition. The absence of a decrease in
gelation time when the COD, HRP, and choline contents were beyond 0.5, 5, and 5 mM,
respectively, could be explained by the time required for the diffusion of choline that was
added to initiate the reaction.

3.3. 3D Printing

The possibility of printing 3D hydrogel constructs using the method described here
was investigated by printing cylindrical hyaluronic acid hydrogel constructs with a 15-mm
diameter, 1.5-mm wall thickness, and 10-mm height (Figure 4a) under several conditions.
As shown in Figure S2a–d, the ink, with 1.25% (w/v) HA-Ph, 5 U/mL HRP, and 5 mM
choline, embedded in a support bath without COD, did not maintain its shape when the
supporting material was diluted with PBS. In contrast, a cylindrical hydrogel construct
was retained after washing with PBS when the same ink was embedded in a support bath
containing 0.5 U/mL COD (Figure 4b–e). The shape of the resultant cylindrical construct
was almost identical to that of the blueprint. The resultant hydrogel construct maintained
its shape in PBS for more than 1 week (Figure 4f). Interestingly, the hydrogel construct had
a layered structure consisting of individual hydrogel threads (within the white solid box in
Figure 4f). Cylindrical constructs were obtained even under conditions where either the
COD content in the support bath (Figure S2e–h) or the HRP content (Figure S2k–n) in ink
was reduced to 0.1 U/mL. However, the layered structure was found only in the construct
obtained using the support bath with 0.1 U/mL COD (Figure S2e,j,p). The construct
obtained using the ink with 0.1 U/mL HRP was weak and deformed during soaking in PBS
(Figure S2o). We also fabricated a conical hyaluronic acid hydrogel construct with 20-mm
diameter, 2-mm wall thickness, and 10-mm height (Figure 4g); as shown in Figure 4h–l,
hence a hydrogel construct with good shape fidelity to the blueprint, stable for at least
9 days in PBS, and with the visible layered structure of individual hydrogel threads was
obtained. Freeform printing enabled the fabrication of a conical construct with the apex
facing downward. Without using supporting materials, soft hydrogel constructs cannot be
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fabricated in the air using conventional extrusion 3D printing. The different appearance of
the conical constructs before (Figure 4h,i) and after washing with PBS (Figure 4j,k) is due
to the removal of the supporting material, which caused the cylindrical constructs to tilt.
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hydrogel constructs obtained by extruding an ink containing 1.25% (w/v) HA-Ph, 5 U/mL HRP, and 5 mM choline chloride
in PBS into a support bath containing 1.0% (w/v) XG and 0.5 U/mL COD in PBS. The constructs (b,c,h,i) just after printing
in supported bath, (d,e,j,k) after washing with PBS for removing XG, and after (f) 8 and (l) 9 days of soaking in PBS. The
image with a solid white border in panel (f) is a magnified view of the part with a dashed border in the same panel. Bars:
5 mm.

The results demonstrated that 3D hydrogel constructs can be printed via a freeform
bioprinting process involving COD/HRP-mediated ink gelation. The importance of setting
the COD content in the support bath and HRP content in the ink was also demonstrated.
The condition-dependent appearance of the layered structure of individual hydrogel
threads and the ease of deformation, indicating the softness of the construct, can be
explained by the correlation with the time duration for gelation of the embedded ink. It
has been reported that the viscoelastic properties of inks govern the printability and shape
fidelity of bioinks in bioprinting [47,48]. Since the viscoelastic properties of the inks used
in this study were similar, regardless of the contents of HRP and choline (Figure S1), it
is not necessary to consider the effect of the viscoelastic properties. Slow gelation of ink
causes the adjacent ink threads to fuse since the extruded ink diffuses into the surrounding
slurry until gelation. Gelation of diffused ink, which lowers the density of the cross-
linked polymer, induces the formation of a soft hydrogel. As shown in Figure 3, the
gelation time detected for 1.25% (w/v) HA-Ph + 5 mM choline chloride solution containing
0.1 U/mL HRP + 0.5 U/mL COD (105 s) was more than ten times and twice as long than
those detected for the solutions containing 5 U/mL HRP + 0.5 U/mL COD (9 s) and
5 U/mL + 0.1 U/mL COD (42 s), respectively. Although measurement of gelation time of
the extruded ink in a support bath was difficult, Figure 3 could help us to qualitatively
understand the magnitude of the relationship of the extruded ink with the condition-
dependent gelation time. Gelation of ink containing 1.25% (w/v) HA-Ph, 5 mM choline
chloride, and 5 U/mL HRP extruded in a support bath containing 0.5 U/mL COD should
be faster than that extruded in the support bath containing 0.1 U/mL COD, and can result
in a hydrogel with a higher density of cross-linked HA-Ph. In the following experiments,
ink containing 1.25% (w/v) HA-Ph, 5 mM choline chloride, 5 U/mL HRP, and a support
bath containing 0.5 U/mL COD were used.

We also studied the effect of the 3D printing process, involving extrusion from a
microneedle and COD/HRP-mediated ink gelation in a support bath, on cells. The cells
released from the printed HA-Ph hydrogels, through degradation by soaking in a medium
containing hyaluronidase, were round in shape and floated in the medium after 20 min
of treatment (Figure 5a). After 100 min of treatment, we found the cells attached to the
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cell culture dish (Figure 5b). The cells looked elongated, similar to those not exposed
to the printing process (Figures 2c and 5c). Cells released from the degraded constructs
showed the same growth profile as those that were not exposed to the printing process
(Figure 5d). Additionally, the fact that cells were released from the printed HA-Ph hydrogel
constructs by treatment with hyaluronidase, indicated that the HA-Ph hydrogels obtained
through the printing method were biodegradable, similar to those obtained through direct
H2O2-addition [29] and GOD/HRP-mediated gelation [39] processes.
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Figure 5. Mouse fibroblast 10T1/2 cells released on a cell culture dish from degraded cell-laden
HA-Ph hydrogel by soaking in a medium containing hyaluronidase. Cell morphologies at (a) 20 min,
(b) 100 min, and (c) 1 day after treatment for degradation. Growth profiles of the released cells (3D
printed) and of those not exposed to 3D printing (control) are expressed in terms of cell area on the
cell culture dish. Bars in panels (a–c): 200 µm and panel (d): standard deviation (n = 3).

Finally, we investigated the behavior of cells in printed hydrogel constructs. As shown
in Figure 6a–d, the enclosed cells showed a round shape during 10 days of culture, with
no obvious growth. The viability of the cells immediately after printing was 98% (Day 0;
Figure 6e), and after 10 days of culture was 94%. The results shown in Figure 5a–c and
the viability immediately after printing, indicated that the exposure of mouse fibroblast
10T1/2 cells to COD/HRP-mediated ink gelation and embedding of the ink in the support
bath did not have adverse effects leading to immediate cell death. Furthermore, comparable
growth of the cells released from the degraded constructs with those not exposed to the
printing process (Figure 5d), in addition to the more than 85% viability of the enclosed cells
during 10 days of culture (Figure 6e), indicated that the bioprinting method described here
does not show adverse effects resulting in delayed cell death. The overall results confirmed
that the bioprinting method was cytocompatible.

Regarding the round shape and non-obvious growth of cells in the printed HA-Ph
hydrogel constructs (Figure 6a–d), the results were not specific to the method described
here. A similar result was reported for the 10T1/2 cells enclosed in HA-Ph hydrogel
constructs fabricated through HRP-mediated gelation in air containing H2O2 [8]. The
non-cell adhesive nature of hyaluronic acid-based hydrogels is well known [49,50]; the
properties required for cell-enclosing hydrogels, especially cell adhesiveness, are different
for each cell type and application. Although it is beyond the scope of this study, the
use of gelatin derivatives possessing Ph groups [27,51], instead of HA-Ph or with HA-
Ph [52], could be a possible approach for inducing both elongation and growth of enclosed
adherent cells. The mechanical properties of the hydrogel surrounding the cells also
need to be set appropriately, as it has been reported to affect cell functions, morphology,
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and growth [19,53]. An attractive feature of COD/HRP-mediated gelation and freeform
bioprinting is the abundance of polymer-Ph groups derived from a variety of polymers [26]
which can be potentially applied to this method. Silk fibroin contains approximately
5% tyrosine residues possessing Ph groups [54] and is also a candidate material for the
ink. Further investigation of the use of these materials will be conducted in the future to
examine their specific applications.
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Figure 6. (a–d) Fluorescence microphotographs of mouse fibroblast 10T1/2 cells enclosed in bio-
printed HA-Ph hydrogel discs: (a) immediately after printing, at (b) 1 day, (c) 6 days, and (d) 10 days
after printing. Live and dead cells showed green fluorescence, attributed to Calcein-AM, and red
fluorescence, attributed to PI, respectively. (e) Viabilities of the enclosed cells. Bars in panels (a–d):
200 µm, and in panel (e): standard deviation (n = 3).

4. Conclusions

We proposed a new 3D bioprinting method, based on the gelation of bioink mediated
by COD, HRP, and freeform printing. In this method, choline, HRP, and polymer-Ph were
included in the ink. COD was placed in the support bath. We demonstrated that the risk
of damaging cells due to the unwanted generation of H2O2 by the oxidase remaining in
the printed hydrogel constructs can be reduced by using COD, but not GOD. We also
demonstrated that the method enabled printing of HA-Ph hydrogel constructs with a
geometry impossible to fabricate otherwise by conventional 3D printing extrusion of soft
hydrogel constructs in air. Additionally, we confirmed cytocompatibility of the bioprinting
method based on the results indicating comparable growth of mouse fibroblast cells,
released from the printed hydrogels through treatment with hyaluronidase on cell culture
dishes, with those not exposed to the printing process, and more than 85% viability of
the enclosed cells during 10 days of culture. These results demonstrated that the method
proposed in the present study could serve as a promising technique. Thus, the novel 3D
bioprinting method developed herein has marked potential for use in tissue engineering.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11121908/s1, Figure S1. Effect of the contents of HRP and choline on the shear rate-

https://www.mdpi.com/article/10.3390/biom11121908/s1
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viscosity properties of inks. Figure S2: Effect of the contents of COD in support bath and HRP in ink
on the printing of cylindrical-shaped hydrogel constructs.
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