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Abstract: Maintenance of iron homeostasis is critical to cellular health as both its excess and
insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes
and signaling mediators, must also be tightly regulated to hinder disease progression. Recent
research, using a myriad of model organisms, as well as data from clinical studies, has revealed links
between these two metabolic pathways, but the mechanisms behind these interactions and the role
these have in the progression of human diseases remains unclear. In this review, we summarize
literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol,
sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human
diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and
the available evidence regarding the potential mechanisms underlying how iron may promote disease
pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic
potential in treating patients with these debilitating conditions. We propose that iron-mediated
alterations in lipid metabolic pathways are involved in the progression of these diseases, but further
research is direly needed to elucidate the mechanisms involved.
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1. Introduction

Iron, one of the most essential elements in the human body and indispensable for life, exists in
complex forms, including (a) the iron storage complex in which iron is trapped (i.e., hemosiderin),
(b) heme containing proteins (i.e., hemoglobin), (c) heme-containing enzymes, (d) transferrin
(i.e., holo-transferrin), and (e) the ferritin complex (comprised of 4500 Fe(III) molecules in a complex
with ferritin heavy and light chains) [1]. This metal is essential for cellular processes, including
metabolic reactions, oxygen transport via hemoglobin, and DNA synthesis [2]. An average adult has
3–5 g of iron in their body [3], while only 1–2 mg of iron is normally absorbed in the intestinal tract,
which would then be available for body-wide circulation [4]. Free iron also exists intracellularly in the
labile iron pool (LIP) and leads to the production of reactive oxygen species (ROS) via the reaction of
hydrogen peroxide (H2O2) with Fe(II), a process known as the Fenton reaction [5,6]:

Fe(II) + H2O2+ H+ → Fe(III) + [•OH] +H2O. (1)

Since the body has no mechanism to eliminate excess iron (other than conditions like pregnancy,
menstruation, and blood-letting [3]), iron levels must be appropriately maintained to hinder the
potentially toxic effects if present in excess [7]. On the other hand, insufficient quantities of iron
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also leads to detrimental cellular processes [7]. Normal body serum iron levels range from 9–27 µM;
however, acute toxicity will be observed in excess of 45 µM. This can result in death if >160 µM,
which can be induced by taking iron supplements [3]. On the other hand, chronic iron overload will
arise in response to sublethal doses over extended periods of time (i.e., blood transfusions) leading to
development of diseases, including cancer [3]. Indeed, the carcinogenic effects of excessive iron have
been well established [8]. In this regard, it is interesting that medical conditions, such as hereditary
hemochromatosis and β-thalassemia, are associated with an increased risk of developing cancer [3].

Specific mechanisms, such as iron absorption, iron recycling, and iron mobilization, are in place
to regulate iron content at both a cellular and systemic level [1]; for comprehensive reviews, see [2,9].
Briefly, uptake of iron, either as transferrin-bound iron (TBI, holo-transferrin bound Fe(III)) or as
non-transferrin bound iron (NTBI, Fe(II)), is mediated, respectively, via the transferrin receptor (CD71)
and by solute carrier family 39 member 8 (SLC39A8/ZIP8) or solute carrier family 39 member 14
(SLC39A14/ZIP14) [10–12]. For uptake of NTBI in liver enterocytes, Fe(III) is oxidized to Fe(II) by
duodenal cytochrome b (DCYTB) before being imported into the cell by the divalent metal transporter
1 (DMT1) [13]. After TBI is endocytosed, Fe(III) is released from transferrin and then reduced to Fe(II)
by the ferrireductase STEAP3 (six-transmembrane epithelial antigen of prostate 3) [14] prior to its
release from the endosome via the DMT1 channel. Cytosolic iron may then (a) remain available for use
in the LIP, (b) be transported to mitochondria to generate iron-sulfur (Fe-S) clusters, or (c) be stored
within the ferritin complex (a process mediated by poly(RC) binding protein 1 (PCBP1)) [9,15]. Iron is
released from the ferritin complex via the action of nuclear receptor coactivator 4 (NCOA4), which is
involved in autophagy-mediated degradation of these iron complexes [16,17]. With regards to iron
export, ferroportin (FPN1), the only known iron exporter [12], is tightly regulated by hepcidin (HAMP),
a protein hormone that is secreted in a controlled manner from the hepatic tissue [12]. The exported
iron (in the Fe(II) form) is then oxidized via hephaestin (HEPH) to Fe(III) [18].

Increased circulating transferrin saturation leads to elevated NTBI, which is deposited primarily
into the heart, pancreas, liver, and brain [19–23]. Such iron deposits can be observed via transmission
electron microscopy (TEM) and are present prior to the development of iron overload symptoms [3].
Under these conditions, ROS accumulates—which can then mediate damage to proteins, lipids,
nucleic acids, and other cellular components [3,24,25]. In addition, elevated ROS can induce a
ferroptotic response, which is characterized by accumulation of lipid peroxides [15,26]. Activation
of ferroptosis promotes cell death in various pathological conditions, such as diffuse large B-cell
lymphoma, acute kidney failure, chromophobe kidney cancer, and periventricular leukomalacia [27].
As described later in Section 3, dysregulated iron levels have also been implicated in the development
of neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and Amyotrophic
lateral sclerosis [28], as well as in cancer [8].

In addition to systemic iron overload, localized increases in this metal can give rise to conditions,
such as endometriosis, a benign gynecological disorder characterized by the presence of endometriotic
cysts, which contain old blood components (including heme and its breakdown products) [29].
This source of redox active iron present within these cysts or that arising from follicular fluid, retrograde
menstrual effluent, and the process of ovulation have been proposed to contribute to ovarian cancer
risk [30–32]. Consumption of red meat as a source of dietary iron may also contribute to development
of other cancers, namely colorectal cancers [33].

Similar to iron, lipid levels must be regulated in an appropriate manner to ensure cellular
homeostasis. Lipids are a critical source of cellular energy and also have roles as signaling
metabolites [34]. When these are in excess, they are stored within lipid droplets to hinder the
detrimental effects of lipotoxicity [35]. On the other hand, when lipids are depleted, cellular
biosynthetic pathways are activated to generate these macromolecules [35]. Within the body, lipids are
primarily stored in adipose tissue, an organ that is also involved in endocrine signaling to regulate
energy balance and insulin resistance [36]. Deregulated lipid biosynthetic and catabolic pathways
may therefore interfere with crucial biological processes, ultimately producing deleterious effects and
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potentially causing serious medical issues. Herein, we present a review of the literature pertaining
to altered lipid metabolism in response to dysregulated iron pathways. We discuss associations
between iron and lipid alterations derived from model organisms (cell lines, Saccharomyces cerevisiae,
Caenorhabditis elegans, Mus musculus, and Drosophila melanogaster) and patient specimens. As shown
in Figure 1, key elements of cholesterol and lipid biosynthesis, iron metabolism, and ferroptosis are
summarized, particularly focusing on the interconnections between these pathways, as identified in
the studies presented in this review.
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Figure 1. Links between Lipid and Iron Metabolic Pathways. (Top) Pyruvate, a product of glycolysis,
is converted to acetyl-CoA in the mitochondria. Acetyl-CoA feeds into the Krebs (TCA) cycle, illustrated
in light blue, to generate citrate; the conversion of citrate to isocitrate is mediated by the enzyme
aconitase and requires binding to Fe-S clusters (as indicated by the brown circle). Citrate can also be
transported from the mitochondria to the cytosolic compartment where it is used to generate acetyl-CoA;
this molecule can then feed into either the cholesterol biosynthetic pathway (green) or the fatty acid
synthesis pathway (yellow). Elevated liver iron concentrations correlated with increased mRNA
expression of several genes involved in cholesterol biosynthesis (namely, HMGCR, PMVK, CYP51,
TM7SF2, NSDHL, EBP, and SC5D), as indicated with brown triangles (see Section 2.1). Exogenous fatty
acids can also be imported into the cell; together, fatty acids, triacylglycerides, and cholesterol esters
are essential components of lipid droplets. As detailed in Section 2.4, iron can promote both fatty acid
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import and lipid droplet formation. Synthesis of triacylglycerides, as well as phospholipids (and their
modification), are presented in pink, whereas the sphingolipid metabolic pathway is displayed in
dark blue. Iron can promote the production of ceramide (indicated with a brown triangle), and in
turn induces HAMP expression, which negatively regulates FPN1 (refer to Section 2.2). Furthermore,
our own unpublished work suggests iron treatment in human fallopian tube secretory epithelial
cells (FTSECs) increases mRNA expression of autotaxin (ATX), which is involved in generating
lysophosphatidic acid (see Section 2.5). (Bottom) TBI can be imported via endocytosis by binding to
CD71; Fe(III) is then converted to Fe(II) by STEAP3 prior to being transported from the endosomal
compartment to the cytosolic LIP by DMT1. Alternatively, NTBI can be imported into cells by DMT1
(following conversion of Fe(III) to Fe(II) by DCYTB), ZIP8, or ZIP14 [37]. From the LIP, iron may be (a)
transported to the mitochondria for use in Fe-S cluster generation, (b) loaded to ferritin by PCBP1, or
(c) used by the cell for other cellular processes. Iron can also be released from the ferritin complex via
NCOA4-mediated ferritinophagy. Increased iron levels in the cell can promote the formation of lipid
peroxides, a process critical for ferroptosis (shown in grey). Please see [2,38–45] for comprehensive
reviews of these pathways and the contributing enzymes.

2. Interactions between Iron and Lipids in Model Systems

2.1. Iron and Cholesterol

Cell membranes are comprised of not only protein, but also lipids and cholesterol, which
play important roles in cell signaling and maintenance of cell structure [46]. Similar to iron,
excess levels of cholesterol can also elicit a toxic effect by elevating oxidative stress responses [47].
Specifically, hepatic iron levels were correlated with increased cholesterol content, which was
associated with elevated mRNA levels of seven key enzymes involved in the cholesterol
biosynthetic pathway: 3-hydroxy-3-methylglutarate-CoA reductase (HMGCR), lanosterol-14α
demethylase (CYP51), ∆14-sterol reductase (TM7SF2), sterol-4α-carboxylate-3-dehydrogenase
(NSDHL), cholestenol-∆-isomerase (EBP), phosphomevalonate kinase (PMVK), and lathosterol oxidase
(SC5D) [47]. The authors of this work propose that these changes could contribute to the development
of fatty liver disease [47].

Cholesterol is also found in lipoprotein particles along with apolipoproteins, such as
apolipoprotein E (ApoE), a major brain Apo, which is critical for learning, memory, and brain repair [48].
In Alzheimer’s disease, current evidence implicates impaired levels of ApoE4 (which correlates with
neurodegeneration while also being able to bind to metals, such as iron) in the sequestration of iron to
amyloid-β deposits [48]. Although elevated levels of iron contribute to increased ApoE mRNA and
protein expression, the secretion of this apolipoprotein was reduced [49]. In addition to altered ApoE
levels, patients with Alzheimer’s disease have increased ferritin levels in their cerebrospinal fluid (CSF),
a marker of brain iron content [50–52]. Interestingly, patients with elevated ApoE4 (specifically, the ε4
variant) have >20% increase in CSF ferritin correlating with increased kinetics of cellular degeneration
in the hippocampus, as well as with cognitive decline [50–52].

The effects of ApoE extend beyond its role in neurodegenerative diseases. For example, ApoE
is proposed to protect against NASH (non-alcoholic steatohepatitis) as ApoE knockout mice were
characterized by hepatosteatosis [53]. A link to iron was identified in a recent SILAC proteomic study
in which adipocytes were treated with ferric ammonium citrate (FAC, a source of NTBI) resulting
in an 11-fold increase in ApoE (amongst two other markers), although ApoE secretion was reduced
by >55% [53]. Further studies are needed to elucidate the mechanism underlying increased ApoE
expression in spite of its reduced secretion.

2.2. Iron and Sphingolipids

Like cholesterol, sphingolipids (i.e., sphingomyelin, ceramide, and sphingosine amongst others)
are essential membrane and signaling components [54]. The initial link between iron and sphingolipid
regulation in eukaryotic systems was derived from S. cerevisiae in which iron-induced toxicity was
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correlated with increased synthesis of sphingolipids [55]. More recently, this finding has been extended
to D. melanogaster and M. musculus, as well as in mammalian cell lines [56,57] in which iron-induced
toxicity was mediated by a deficiency in frataxin, a key modulator of iron-sulfur cluster biogenesis,
also lacking in patients with Friedreich’s ataxia [58].

Intriguingly, iron uptake via CD71 is increased following cellular treatment with C2-ceramide,
a sphingolipid involved in lipid signaling in bovine aortic endothelial cells (BAECs), and could be
reversed with an iron chelator (deferoxamine (DFO)) or with an antibody targeting endocytosis of
CD71 [59]. C2-ceramide treatment in human hepatocellular carcinoma (HepG2) cells was found to
transcriptionally upregulate HAMP mRNA via the JAK/STAT3 signaling cascade [60]. In another
report, loss of sphingomyelin in murine lymphoma cells (WR19L) hindered clathrin-mediated
endocytosis of CD71 whereas overexpression of sphingomyelin synthase, as well as presentation
of exogenous sphingomyelin increased transferrin uptake [61]. Whether alterations in other elements
of iron signaling are induced in response to ceramide and other sphingolipids has yet to be determined.

2.3. Iron-Sulfur Cluster and Lipids

Iron-sulfur cluster containing proteins play key roles in the Krebs (TCA) cycle (i.e., aconitase) [62]
and the electron transport chain (i.e., complex I) [63], which contribute to ATP production. Iron-sulfur
clusters are also needed for regulation of enzymes involved in key cellular processes (i.e., DNA
polymerase, base excision repair) in addition to iron-sensing molecules (i.e., iron response proteins
IRPs) [62]. In human embryonic kidney cells (HEK293) overexpressing a dominant negative form
of ISCU (an iron-sulfur cluster assembly enzyme), a 10-fold increase in citrate levels (as a result of
a deficiency in aconitase activity) was noted; this citrate was redirected for its use in fatty acid
biosynthesis, which increased lipid droplet formation [64,65]. The mitochondrial phospholipid,
cardiolipin, is also involved in multiple processes for generating cellular energy by regulating
activities of protein complexes involved in the electron transport chain and mitochondrial membrane
dynamics [66]. Using the yeast model, researchers identified that deficiency in cardiolipin synthase
(crd∆) increased expression of the iron regulon (iron uptake genes for mitochondria) and biogenesis of
iron-sulfur clusters in the mitochondria and their export to the cytosol [67]. Additional investigations
into cardiolipin regulation needs to be addressed to have an improved understanding of iron-sulfur
cluster biogenesis.

2.4. Iron, Lipid Droplets, and Leptin

According to the World Health Organization (WHO), obesity (defined as a body-mass index (BMI)
≥ 30) has increased 3-fold over the past 40-decades throughout the world [68]. Additionally, patients
who are obese (characterized by a gain in adipose tissues (including visceral and subcutaneous) [69])
are at an increased risk of developing co-morbidities, including cancer [70]. Adipocytes, the major
component of these tissues, contain ~100 µm large-sized lipid droplets, composed of triacylglycerides
and cholesterol esters [71]. In C. elegans, iron supplementation significantly increased the abundance
and size of lipid droplets [72]. Specifically, iron treatment in this model organism increased the
expression of sgk-1 (an ortholog for mammalian glucocorticoid-induced kinase), which was found to
increase expression of acs20 (mammalian homolog, FATP1/4) involved in fatty acid import and thus
transport to lipid droplets while simultaneously promoting iron storage in ferritin [72].

Leptin is an adipokine that is produced by adipocytes to regulate hunger [73]. In HuH7, a human
hepatoma cell line, leptin treatment resulted in increased HAMP mRNA, which was regulated by
the JAK2/STAT3 signaling cascade [74]. Additionally, using mice deficient in leptin (ob/ob), leptin
treatment increased both plasma HAMP levels and liver HAMP mRNA, which were associated with
an increase in liver iron levels [75]. Interestingly, in mice lacking mediators important for iron efflux
(hephaestin and ceruloplasmin), leptin levels were reduced [76]. Furthermore, C57BL/6 mice, fed
a high-fat diet, showed increased leptin levels and increased liver HAMP mRNA associated with
increased liver iron [77]. Whether leptin alters other elements of iron signaling has yet to be determined.
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2.5. Iron, LPP1, and Other Enzymes Involved in Lysophospholipid Metabolism

Recent work has identified that overexpression of LIPIN1, an enzyme involved in the conversion
of phosphatidic acid (PA) to diacylglycerol (DAG), can reduce iron levels in human hepatic cancer
cells (BEL7402) [78]; this phenomenon appeared to be mediated by FPN1, which was increased upon
LIPIN1 expression [78]. On the other hand, from our own work (unpublished results, Rockfield and
Nanjundan), we have identified that addition of exogenous NTBI iron (presented as FAC) to transformed
gynecological cell lines induced autotaxin (ATX) mRNA. ATX, an adipokine, catalyzes the conversion
from lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) and is noted to be altered in
multiple cancer types, including non-small cell lung cancer, glioblastoma multiforme, melanoma,
thyroid cancer, follicular lymphoma, ovarian cancer, hepatocellular carcinoma, breast cancer, and
colon cancer [79,80]. To our knowledge, the only other reported link between ATX/LPA and iron is in
the H9c2 cardiomyoblast cells; ATX overexpression protected these cells from ferroptotic cell death
(an iron-dependent cellular response) by reducing the levels of intracellular ROS [81]. Further work
must be performed to improve our understanding of these initial findings.

2.6. Iron and Fatty Acid Metabolism

Cancer cells are described to be “addicted” to iron [8]; indeed, their increased proliferative capacity
is negatively regulated upon cellular treatment with iron chelators [82]. Links between iron and lipid
pathways in cancer are only beginning to come to the forefront. Recent work using a systems biological
approach (using existing microarray datasets followed by data mining approaches) implicates
associations between the iron pathway and fatty acid synthesis and regulation in high-grade serous
epithelial ovarian carcinomas [83]. Specifically, peroxisome proliferator-activated receptor gamma
(PPARG), sterol regulatory element binding transcription factor 1 (SREBF1), ATP citrate lyase (ACLY),
fatty acid synthase (FAS), acyl-CoA synthetase long-chain (ACSLx)), fatty acid desaturation (fatty acid
desaturase 2 (FADS2), stearoyl-CoA desaturase (SCD), elongation of very long chain fatty acid elongase
2 (ELOVL2), elongation of very long chain fatty elongase 5 (ELOVL5)), and glycerolipid metabolic
pathways (1-acylglycerol-3-phosphate O-acyltransferase (AGPATx), DGAT1, LIPIN1, LIPIN2, glycerol
kinase (GK), glycerol-3-phosphate-acyltransferase (GPAM)) were perturbed along with iron-related
genes (iron-ion binding, as well as intracellular iron regulation) [83]. The functional outcomes of these
initial associations must be further investigated.

2.7. Ferroptosis and Lipids

Lipid peroxides are a form of ROS, which serve as signaling molecules that can alter the
properties of cell membranes, lipid interactions, and protein functions. In addition, these ROS
promote cellular apoptosis, including iron-dependent ferroptotic cell death [84]. In ferroptosis, recent
research has identified alterations in lipid metabolic pathways in addition to the well-established lipid
peroxidation [85]. Using retrovirus-generated insertional mutagenesis in KBM7 (haploid chronic
myeloid leukemia cells), 9 genes were identified as increased upon ferroptosis induction with
multiple small molecule ferroptosis inducers, including ACSL4 (acyl-coA synthetase long-chain
family member 4, which produces the arachadonic acid metabolite 5-HETE (5-hydroxyeicosatetraenoic
acid)) and LPCAT3 (lysophosphatidylcholine acyl-transferase 3) [86]. Similarly, in a genome wide
CRISPR-mediated genetic screen and microarray screen involving ferroptosis resistant cells, ACSL4
was also identified as a regulator of this pathway [87]. Furthermore, ACSL4 mRNA and protein
were reduced in ferroptosis-resistant (LnCaP and K562) cells relative to sensitive (HL60 and HepG2)
cancer cells [85]. Likewise, in breast cancer cell lines, ACSL4 expression corresponded with ferroptosis
sensitivity [87]. When ACSL4 is reduced (via shRNA-mediated knockdown) in HL60 and HepG2
cells, ferroptosis is inhibited; in contrast, when it is overexpressed in LnCaP and K562 cells, ACSL4
promotes ferroptosis [85].
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In a ferroptosis mouse model for which glutathione peroxidase 4 (GPX4) is deficient, inhibition
of ACSL4 was found to improve tissue health [87]. Furthermore, a novel ferroptosis-inducing
compound (CIL56) was identified to be dependent on the activity of acetyl-coA carboxylase 1
(ACC1, the rate-limiting enzyme involved in fatty acid biosynthesis) [86]. Upon knockout of ACC1
via CRISPR-Cas9, a 5-fold increased resistance to ferroptosis was noted in response to CIL56 [86].
In another study, researchers identified LSH (lymphoid specific helicase, a DNA methylase modified,
which is part of the SNF2 chromatin remodeling ATPase family) as hindering ferroptosis through its
interaction with WD repeat domain 76 (WDR76, via direct promoter binding activity). This in turn
corresponded with increased expression of fatty acid desaturases (i.e., FADS2 and FADS5) and was
dependent on both iron and lipid peroxidation [88]. In HepG2 and Hep3B liver cancer cells, knocking
out the expression of iron sulfur domain 1 (CISD1, localized to the outer mitochondrial membrane) also
was found to promote lipid peroxidation and ferroptosis [89]. The clinical utility of such ferroptosis
inhibitors could be tested in future work.

3. Iron and Lipids: Neurodegenerative Diseases

3.1. Brain Iron Localization

Neurodegenerative diseases (i.e., Alzheimer’s, Parkinson’s, and Huntington’s, among others)
are considered age-related diseases, in part due to accumulation of iron, and its physiological
consequences [90]. Notably, this metal causes inflammation of the brain and thus, its degeneration [90].
Iron response proteins (IRP1 and IRP2) increase amyloid precursor protein (APP) expression, which is
the precursor to amyloid-β in Alzheimer’s disease, as well as the expression of α-synuclein, which is
a critical component of the Lewy bodies in Parkinson’s disease [90]. The mTOR pathway can
regulate expression of CD71, which is responsible for cellular iron uptake [90]; indeed, it has been
recently proposed that inhibition of mTOR could reduce iron accumulation and thus, lessen the
neurodegenerative effects induced by this metal [90]. Specific brain regions that accumulate iron
include the hippocampus [91], the globus pallidus, red nucleus, substantia nigra, dentate nucleus,
and caudate-putamen [92], whereas increased iron content in the basal ganglia is a unique feature of a
rare brain disease called neurodegeneration with brain iron accumulation (NBIA) [93].

3.2. Iron-Mediated Lipid Peroxidation and Ferroptosis

As mentioned earlier, iron participates in the Fenton reaction to generate ROS, which damage
lipids via peroxidation [6], a phenomenon observed in neurodegenerative diseases [94]. Indeed,
increased redox active iron in certain regions of the brain contributes to the development of neurological
diseases, which is associated with programmed cell death [95]. The exact mechanism contributing to
this cell death process has been unclear until recently. It is now recognized that iron-dependent cell
death pathway, namely ferroptosis, may be involved in the development of such neurodegenerative
diseases [95,96].

Lipoxygenases (iron-dependent enzymes) can also promote oxidation of polyunsaturated fatty
acids and are localized to the hippocampal region of the brain [97]. One oxidative stress stimulator,
namely tert-butylhydroperoxide (t-BHP), promotes cell death via ferroptosis in PC12 cells (a model
cell line for neurobiology) by reducing GPX4 protein and glutathione (GSH) levels leading to increased
lipid peroxidation [98]. Mitochondrial alterations, including (a) reduced mitochondrial membrane
potential, (b) reduced ATP levels, and (c) increased ROS in the mitochondria, were also noted [98].
They further identified that these effects could be reversed upon treatment with ferrostatin or iron
chelation with DFO [98]. Neurons in the forebrain (cerebral cortex and hippocampus) are susceptible
to ferroptosis [99]. Interestingly, an inducible tissue-specific GPX4 knockout mouse (specifically
in forebrain neurons) resulted in massive deficits in cognitive and memory functions concurrently
with increased lipid peroxidation, increased MAPK pathway activation, and increased oxidative
damage [99]. Furthermore, maintaining these mice on a vitamin E (an antioxidant) deficient diet
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accelerated the neurodegenerative processes in these mice, whereas treatment with a ferroptosis
inhibitor (liproxstatin-1) ameliorated brain functions [99]. In a model of Huntington’s disease using
brain slices, ferrostatin-1 was also found to reduce cell death [100]. The clinical application of these
ferroptotic inhibitors could be tested in the future.

3.3. Iron and the Sphingolipid Pathway

In addition to iron-induced lipid peroxidation, iron can also promote sphingomyelin breakdown
via activation of sphingomyelinases, generating the product ceramide (which is involved in mediating
the regulated cell death response) [101] that then contributes to neuronal apoptosis, a feature of
neurodegenerative diseases. In support, increased levels of sphingomyelin coinciding with reduced
ceramide content is associated with neuronal protection and may thus be a targetable pathway
(using iron chelators) for treatment [102]. In D. melanogaster and M. musculus, targeting of frataxin
(via mutations or knockout strategies) led to iron-induced toxicity, which was mediated through the
sphingolipid/PDK1/MEF2 signaling cascade [56,57]; this was detrimental to the health of these model
organisms and recapitulated the neurodegenerative disease, Friedreich’s ataxia [56,57]. Links between
iron and the sphingolipid metabolic cascade have been identified in other neurodegenerative diseases,
including NBIA; in this disease, sphingolipids were enriched in the compartment with the highest iron
levels (i.e., basal ganglia), identified via gene network analyses [93]. The functional contribution of
this observation needs to be investigated further in NBIA and in other neurodegenerative diseases.

4. Treatments and Concluding Perspectives

Targeting iron and its downstream effectors (i.e., alterations in lipid peroxidation and/or lipid
metabolism) would be of high benefit to patients afflicted by detrimental effects of iron accumulation.
Methods of iron reduction thus far utilized include iron chelators and the process of bloodletting.

In the case of neurodegenerative diseases, iron treatment with DFO reduced symptoms of
Alzheimer’s disease in an amyloid precursor protein (APP) overexpressing transgenic mouse
model; specifically, amyloid-β deposits were reduced coinciding with improved cognitive
functions [103]. However, in patient studies for a variety of neurological disorders (such as
pantothenae kinase-associated neurodegeneration (PKAN), aceruloplasminemia, NBIA, Friedreich’s
ataxia, superficial siderosis, Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis), only low
to moderate improvement of clinical symptoms was noted in a small proportion of conducted studies,
with most observing no improvement [104]. Similarly in cancer, the use of iron chelators, such as DFO,
has shown some efficacy in both animal models and clinical studies [105]; for additional iron chelators
used in cancer studies, please see citation [105] for more details.

To the best of our knowledge, improvements in health following iron reduction via the process
of phlebotomy have been assessed in six independent studies. Patients afflicted with nonalcoholic
fatty liver disease (NAFLD) that underwent bloodletting had reduced blood ferritin levels [106].
Administration of phlebotomy in metabolic syndrome (METS) patients reduced blood pressure
and heightened insulin sensitivity [107]. Similarly, phlebotomy administration in type II diabetics,
characterized by high blood ferritin, had a marked reduction in not only ferritin (at 4-month follow-up),
but also in insulin resistance [108]. With respect to cancer patients, there has been a variation in cancer
incidence following such bloodletting procedures. In one study, phlebotomy reduced risk of cancer
development in 36% of patients [109] while another reported only 4% [110]. Yet another showed a
lack of association between iron reduction and overall risk of cancer [111]. Further investigations into
implementation of iron reduction therapies can be pursued in future studies.

Although ferroptosis inhibitors have been utilized in in vivo animal studies, as well as in vitro
studies, novel inhibitors could be designed that could be utilized to treat patients with neurological
diseases described herein.
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