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The relationship between genotype and phenotype remains an outstanding question
for organism-level traits because these traits are generally complex. The challenge
arises from complex traits being determined by a combination of multiple genes
(or loci), which leads to an explosion of possible genotype–phenotype mappings.
The primary techniques to resolve these mappings are genome/transcriptome-wide
association studies, which are limited by their lack of causal inference and statistical
power. Here, we develop an approach that combines transcriptional data endowed with
causal information and a generative machine learning model designed to strengthen
statistical power. Our implementation of the approach—dubbed transcriptome-wide
conditional variational autoencoder (TWAVE)—includes a variational autoencoder
trained on human transcriptional data, which is incorporated into an optimization
framework. Given a trait phenotype, TWAVE generates expression profiles, which
we dimensionally reduce by identifying independently varying generalized pathways
(eigengenes). We then conduct constrained optimization to find causal gene sets that
are the gene perturbations whose measured transcriptomic responses best explain
trait phenotype differences. By considering several complex traits, we show that
the approach identifies causal genes that cannot be detected by the primary existing
techniques. Moreover, the approach identifies complex diseases caused by distinct sets
of genes, meaning that the disease is polygenic and exhibits distinct subtypes driven
by different genotype–phenotype mappings. We suggest that the approach will enable
the design of tailored experiments to identify multigenic targets to address complex
diseases.

gene regulatory networks | biological networks | nonlinear dynamics | complex systems |
generative deep learning

Complex traits are polygenic, orchestrated by networks of interacting genes that work
together to produce phenotypic variation (1–3). An outstanding question in the study of
such traits is the identification of the specific combinations of gene variants that give rise to
the different phenotypic expressions (4–10). Association studies have been performed to
search for genetic loci significant to a complex trait phenotype by conducting hypothesis
tests on individual genetic loci, from which independent mutations/genes are statistically
associated with the phenotype in question (11–15). We innovate on these techniques
by developing a framework to jointly predict sets of genes while accounting for collective
behavior not captured by statistical tests on individual genes.

Association studies, such as genome/transcriptome-wide association studies (GWAS/
TWAS), have been broadly adopted in over 5,700 studies and 3,300 traits as of 2021 (12).
A common critique of these studies is that they have low statistical power due to the
combinatorial explosion in the number of gene sets that must be tested (11, 13, 16).
Post-GWAS/TWAS analyses such as fine-mapping attempt to address this limitation by
considering the correlation structure of the genetic data (17–21). However, they rely
on an initial association study to select what variants to fine-map, potentially leaving
behind genes that would be significant collectively but have low independent effect size.
In the framework presented here, we develop and apply an approach that considers all
genes simultaneously, regardless of their individual effect size. The framework combines
generative machine learning, dimensionality reduction, and constrained optimization
(Fig. 1).

A key aspect of our approach is the use of increasingly available trait-labeled
transcriptomic data from bulk and single-cell RNA-Seq experiments, which contends
with the biological networks that influence complex traits (22, 23). To better extract
patterns from our transcriptional data, we develop the transcriptome-wide conditional
variational autoencoder (TWAVE), a generative deep learning model that generates
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Fig. 1. Schematic of the proposed approach. Synthetic transcriptomic pro-
files are generated from a machine learning model that learns from RNA-Seq
data on complex traits. The generated data are projected onto eigengenes,
which are linear combinations of genes that vary independently, retain impor-
tant gene correlations, and differentiate between complex trait phenotypes.
From here, gene perturbations whose transcriptional responses bridge the
gap between trait phenotypes are found by constrained optimization.

denoised transcriptional profiles for the relevant phenotypes. To
understand how regulatory changes affect expression levels, we
also incorporate complementary data on transcriptional response
to gene perturbations (knockdowns and overexpressions) (24).
These transcriptional data are dimensionally reduced while
maintaining causal information, which we achieve using the
concept of eigengenes, to facilitate the optimization over gene
perturbations (25). Together, these data sources allow us to
explore how the regulatory network drives phenotypic changes
without prior knowledge of network structure.

We focus on the human disease traits in Table 1. Throughout,
we take care to distinguish between traits (e.g., eye color) and their
phenotype variants (e.g., blue, brown, green), and we consider
traits that have a baseline and variant phenotype. Moreover, we
interpret the states associated with each variant as defined by
distinct attractors of the gene regulatory network (26–28). The
problem of identifying the genes that cause a trait phenotype
can thus be mapped to an optimization over combinations of
transcriptional perturbations that steer transcriptomic states from
baseline to variant attractors and vice-versa. The resulting frame-
work reveals groups of gene perturbations that most influence
phenotypic variation, pinpointing the molecular underpinnings
that determine complex traits.

Results

Generating Complex Trait Transcriptomes. Identifying sets of
differentially expressed genes is complicated by the fact that
transcriptional measurements include a large number of genes
and a comparatively small number of samples. It is precisely this
feature that makes it challenging to distinguish real biological
differences from random variance when using statistical tests that
treat genes as independent variables. Our method recognizes that
genes operate in concert rather than independently to orchestrate
cell function, which transforms the problem into learning an
effective representation of these relationships from data. Fig. 2
presents TWAVE, which solves this problem by looking at the
data as a whole, using a neural network encoder to embed high-
dimensional gene expression profiles onto a low-dimensional

latent space (Z ), where data points can be classified and new
representative points can be generated. Points in the latent space,
including newly generated ones, are decoded back up to the full
gene expression space as in Fig. 2A. The model (consisting of
the encoder, decoder, and latent space classifier) is trained with a
combination of three loss terms. The first term accounts for how
accurately the autoencoder can reconstruct the original data. The
second term is the Kullback–Leibler (KL) divergence loss, which
regularizes Z so that each dimension contributes roughly equally
to the overall variance in the latent space. The third term is a
classification loss to mold the structure of the latent space so
that different phenotypes of the trait (baseline and variant for
example) can be distinguished by their transcriptional states, as
detailed in Materials and Methods.

Fig. 2B shows that transcriptional measurement associated
with the baseline and variant populations (blue and red clusters)
segregate to coordinates along the first principal component,
which is a natural outcome of the latent space learned by
TWAVE. Here, we use the representative case of inflammatory
bowel disease to illustrate the construction of TWAVE, but
we observe similar performance among the other traits we
considered in Table 1. The figure also shows that a linear
interpolation between the two clusters in Z -space lies along
the first principal component, which accounts for the largest
fraction of variation in the data. Fig. 2C demonstrates a close
agreement between the original gene expression distributions
and the reconstructions from TWAVE. To test whether our
autoencoder retains associations between genes and the complex
trait of interest, we compare the differentially expressed genes
identified by t tests on both the original and reconstructed
expression profiles using the area under the receiver operating
characteristic curve (AUROC). Fig. 2D shows this curve, which
is constructed by 1) arranging both sets of genes from smallest to
largest in terms of their p-values, 2) varying the threshold at which
genes are statistically significant, and 3) counting the fraction of
significant genes in the original data that are selected by TWAVE
(true positive rate) as a function of the fraction of genes selected by
TWAVE that are not significant in the original data (false positive
rate). For all traits, we find that the AUROC approaches 1,
indicating that the sets of differentially expressed genes identified
by TWAVE and within the original data are nearly identical.
Full technical details concerning the construction of TWAVE
are provided in Materials and Methods.

For each of the complex trait datasets described in Table 1, we
use TWAVE to estimate the distributions of the transcriptional
data in the latent space arising from the baseline and variant
phenotypes, while retaining the fundamental features that distin-
guish the two populations. We then draw points from these
distributions in the latent space, decoding them as depicted
in Fig. 2A. By choosing an equal number of each phenotype
(baseline and variant), estimates of the distributions from the
data are equally precise for each of these trait phenotypes.
It is instructive to compare against the method of “extreme
pseudosampling,” in which the latent space of a variational
autoencoder (VAE) is sampled randomly (29, 30). Our method
is different from extreme pseudosampling in two crucial ways.
First, TWAVE employs a conditional VAE (i.e., it includes a
latent space explicitly trained to classify between baseline and
variant). Second, TWAVE draws from a probability distribution
in the latent space associated with the trait phenotype label instead
of drawing randomly from any state in the latent space. Overall,
TWAVE allows us to make the most from limited transcriptional
data, drawing new representative samples in a way that would be
unfeasible without generative modeling.
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Table 1. Gene Expression Omnibus and DepMap datasets
Complex trait Tissue Seq. type(s) Nbaseline Nvariant GEO series

Allergic asthma Peripheral blood mononuclear cells Bulk 277 166 GSE96783
Inflammatory bowel disease Gastrointestinal tissue Bulk 461 2029 GSE193677
Food allergy CD4+ T cells Bulk 71 63 GSE114065
Cancer metastasis Metastasis: Breast→ lung Single cell 1170 1274 GSE202695
Macular degeneration Macular retina and retinal pigment epithelium Bulk & single cell 433 104 GSE135092
Type 1 diabetes CD4+ T cells Single cell 557 2502 GSE182870
Non–small cell lung cancer Blood platelets Bulk 376 400 GSE89843

Simple trait Tissue Seq. type Nbaseline Nvariant GEO series

MODY3 Differentiated embryonic stem cells Single cell 113 158 GSE129653

Complex trait Tissues Seq. type Nbaseline Nvariant DepMap series

Pancancer metastasis 86 primary cancers, 34 lineages Single cell 838 447 24Q2

The columns represent (from Left to Right) the traits considered, the tissues of origin, the type of sequencing, the number of samples of the baseline and variant phenotypes, and the
GEO or DepMap series accession numbers.

Causal Dimensions of Complex Trait Variation. We select the
eigengenes that are most determinative of the trait phenotypes (i.e.,
are causal). Conceptually, eigengenes are weighted combinations
of genes that vary in concert within the eigengene, but any given
eigengene can vary independently of the others. Mathematically,
they are eigenvectors of the TWAVE-generated gene expression
matrix Y and form an orthogonal basis ei in gene expression
space (25). This basis corresponds to the columns of the unitary
matrix U = [e1, ..., ei, ..., el ] in the singular value decomposition

Y T = UΣV T , where Σ is a diagonal matrix of singular values in
descending order and V T contains the left eigenvectors of Y T .
For each dataset, we perform singular value decompositions of
the m×n matrix Y , where m is the number of sample expression
profiles in the TWAVE dataset, n is the number of genes in each
sample, and l = min(m, n) is the rank of Y .

We proceed to determine which eigengenes are most likely to
capture differences between the baseline and variant trait pheno-
type by adapting Bayesian fine-mapping (17) to eigengenes. This

A

B D

C

Fig. 2. TWAVE construction and validation, presented for the inflammatory bowel disease trait. (A) TWAVE architecture, where gene expression profiles are
projected onto a low-dimensional latent space (Z) and subsequently reconstructed with a neural network decoder. (B) First two principal components (PC)
of the latent space Z, showing a clear separation of complex trait phenotypes (baseline and variant). A linear interpolation between the means of the two
populations in the latent space (blue-to-red stars) falls along the first principal component. (C) Comparison between original (blue) and TWAVE-reconstructed
(red) distributions of gene expression for four different genes, conveying strong agreement. (D) Receiver operating characteristic for significant gene associations
in the reconstructed versus original data, confirming that TWAVE retains significant associations found in the original data.
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Fig. 3. Dimension reduction by selecting the most causal eigengenes for
the inflammatory bowel disease trait. (A) Posterior inclusion probability for
eigengenes to be causal arranged in descending order of their singular values.
(B) Classification accuracy from logistic regression on data projected onto an
increasing subset of the top d eigengenes arranged in descending order of
the posterior probability of being causal (blue), in descending order of the
singular values (gray), and randomly (red).

procedure seeks a small set of r eigengenes that can accurately
distinguish between the phenotypes according to the posterior
inclusion probability, which quantifies how well a proposed set
of eigengenes explains the data (i.e., how causal the set is). The
fine-mapping procedure starts by projecting the data onto the
d = 200 eigengenes with the largest singular values X = YUn×d .
This choice of d ensures that the set of eigengenes from which
the causal set is selected accounts for the large majority of the
variance, as shown in SI Appendix, Fig. S1. A logistic regression
model over eigengenes is then fit using the expression profiles
and associated trait phenotype labels, achieving high accuracy,
F1-score, and recall, for all datasets analyzed. We also show that
a maximum likelihood estimator for the posterior distribution
of causal eigengenes can be formed from: 1) the odds ratios
� = log[�/(1 − �)] from the logistic regression, where � is the
probability of a data point belonging to the variant class; and
2) the projected expression matrix X . To reduce from d to r
eigengenes, we perform Markov chain Monte Carlo (MCMC)
sampling to maximize the likelihood of causal eigengenes given
the regression data. For each of these d eigengenes, we evaluate
the posterior inclusion probability that each eigengene is causal
p(ei causal | data = {X, �}) and build sets from the top r = 50
causal eigengenes (r = 10 for allergic asthma) with the largest
posterior inclusion probability. We show p(ei|X, �) for the first
d principal components of Y in Fig. 3A, ordered from noncausal
(p = 0) to causal (p = 1).

As a validation test for the selected eigengenes, we perform the
logistic regressions on X summarized in Fig. 3B. The regression
accuracy for including data projected onto the first i eigengenes
sorted in order of causality p(ei|X, �) quickly climbs to above 0.9
within r top eigenvectors. This validates our choice of keeping r
eigengenes in our dimensionality reduction. On the other hand,
including eigengenes in principal component order (i.e., ordered
by the fraction of variance that aligns along each eigenvector),
yields significantly poorer classification results. Arranging the

eigengenes randomly can actually produce a better result than
arranging them in order of the singular values when keeping
less than 60 eigengenes, but principal component ordering
outperforms the random one as the dimension of this reduced
space is increased.

Complex Trait Transitions via Eigengene Perturbations.
Constrained optimization. To implicate genes responsible for
transitioning between the baseline and variant phenotypes, we
explore extensive data on transcriptional responses to gene
perturbations. Specifically, we define a perturbation response
matrix, B, whose rows represent eigengenes in the original
dataset and whose columns are average transcriptional responses
to a transcriptional perturbation (one response profile for each
column). This matrix consists of 10% overexpressions and 90%
knockdowns (most of the latter are implemented through RNA
interference), as indicated in Dataset S1. With this matrix in
hand, we investigate which combinations of perturbations can
cause the baseline transcriptional profile to match the variant,
and vice-versa. Formally, this question is answered by solving the
following constrained optimization problem:

u∗ = argmin
u|0≤u�≤1

{D(u) + �
∑
�

u�}, [1]

where
D(u) = ||xvariant − xbaseline − Bu||, [2]

and ||·|| denotes the Euclidean distance. The choice of Euclidean
distance reflects our assumptions 1) that there is a single
phenotype for each transcriptional state and 2) that differences in
the expression of each eigengene are equally likely to contribute
to phenotypic differences. We discuss alternative choices of
the distance metric in SI Appendix. Here, perturbations add
with weight u in causal eigengene space to transition from the
state xbaseline to the state xvariant (Fig. 4A). Before considering
transitions between individual states in the baseline and variant
clusters, we consider transitions between average baseline and
variant states.

Since we expect the baseline and variant phenotypes to be stable
with respect to the fluctuations inherent to transcription, the
closer we approach states known to belong to a given phenotype
transcriptionally, the more likely that state is to exhibit that
phenotype. We quantify this likelihood with the coefficient of
determination

R2 = 1− D(u∗)/D(0), [3]

where R2
≤ 1 and R2 close to 1 indicates high efficacy. In

particular, R2 > 0.5 indicates that the distance between the two
states has been at least halved. The relationship between distance
and cell behavior becomes less precise in the full high-dimensional
expression space because there are many points that are a given
distance away from a target point. Thus, reducing the number
of dimensions of our problem by working with a select set of
eigengenes is crucial, which is implemented through our choice
to express matrix B in the space of eigengenes.

We use the Python function minimize from SciPy (which
implements the L-BFGS-B method) to solve the constrained
optimization problem in Eq. 1 for all of our RNA-Seq datasets.
The optimal u∗ yields R2

≈ 1 for all complex traits we consider,
namely allergic asthma, inflammatory bowel disease, food allergy,
cancer metastasis (where baseline and variant refer to primary
and metastatic tumors), age-related macular degeneration, type 1
diabetes, and non–small cell lung cancer (Fig. 4B). This is further
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Fig. 4. Attributing complex trait phenotypes to sets of genes. (A) Identifica-
tion of gene sets that differ between baseline and variant trait phenotypes,
where blue and red dots represent individual states. A state in the baseline
cluster (blue background) transitions to a state in the variant cluster (red
background) upon targeted transcriptional perturbations. (B) Coefficient of
determination for controlled transitions between phenotypes of complex
traits, where R2 close to 1 indicates that the final transcriptional state
approaches that of the target phenotype.

confirmed by examining the selected perturbations for individual
trait phenotypes and noting that they generally point toward the
phenotype expression in question.

Table 2 shows the genes with the top 12 perturbation weights
in u∗ for allergic asthma along with a brief annotation of
their function. Many of these top-selected genes have been
implicated in allergic asthma, lung and airway function, and
inflammation and immunity. Mutations in BMPR2, for example,
have been shown to cause asthma-like symptoms and pulmonary
hypertension in response to mild antigens in the airway (34, 35).
In addition, TCF7 promotes T-cell differentiation to Th2 or
memory T cells (36), consistent with allergic asthma being the
result of immune system dysregulation. Other identified genes,
such as TARDBP, TENT4B, and HNRNPL, have not been
previously implicated in allergic asthma. However, these genes
are associated with RNA metabolism and modifications including
alternative splicing and poly-A tail alteration, which in turn are
related to immune response (46). In particular, TARDBP (TDP-
43) has been shown to regulate alternative splicing and alternative
polyadenylation in CD8+ T cells, and specific RNA splicing
and polyadenylation events depend on the presence of TARDBP
during CD8+ T-cell costimulation (31). TENT4B is involved
in mRNA stabilization, influencing B-cell proliferation and the
cellular response to viral infections (32), whereas HNRNPL par-
ticipates in the regulation of inflammatory responses, particularly
through its interaction with long noncoding RNAs and its role
in regulating TNF-� transcription (44, 45). We performed the
optimization between the average baseline and variant states for
all 6 other complex traits shown in Fig. 4B, and refer the reader
to SI Appendix, Tables S1–S6 for the top selected genes for each
trait.

Optimization for individual baseline–variant states. We perform
optimizations across individual baseline and variant pairs to
account for the fact that the measured transcriptional signatures
of a given phenotype vary heterogeneously across cell samples and
individuals (Fig. 4A). An analogous approach in TWAS would
require subsampling an already small number of measurements,
leading to a large uncertainty in the variance and an inability
to detect baseline–variant differences (47). By recasting the
hypothesis test as an optimization problem, we avoid this issue
using information on how the regulatory network responds to
perturbations. This reformulation allows us to investigate how
the gene perturbations responsible for a trait may change across
individual baseline–variant pairs. We break down our strategy
into two steps: 1) find the optimal set of perturbations for a
large number of baseline–variant state pairs and 2) compare
the observed co-occurrence of perturbation pairs with a null
model. The null model is designed to preserve both the frequency
with which each perturbation is selected and the number of
perturbations needed for each pair of states.

The transition between any xi and xj can be induced by
applying the perturbation

uij = argmin
u | 0≤u�≤1

{||xi − xj − Bu||+ �
∑
�

u�}, [4]

where the variant state is xi and the baseline state is xj. We solve
this optimization problem over a range of different � values,
taking the largest � (the sparsest solution) such that R2 = 1 −
D(uij)/D(0) > 0.99. This is repeated for N = 2,500 randomly
selected pairs in the forward (baseline-to-variant) and reverse
directions. We then construct a bipartite network represented by
the (adjacency) matrix

A = [..., uij, ...]T , [5]

where the columns of A are perturbed genes and the rows are
different accepted i, j pairs. We take the dot-product between
the columns � and � of A to get the frequency f�� at which the
corresponding perturbed genes co-occur in the same uij:

f�� =
1
N

N∑
�=1

A��A�� . [6]

To identify statistically significant pairs �, �, we compare f��
to the frequency at which � and � occur together in a null model

Table 2. Allergic asthma transcriptional perturbations
(GSE96783)
Gene Annotation

TARDBP− RNA metabolism and regulation (31)
TENT4B− Posttranscriptional modifications (32)
KRR1− Ribosome biogenesis (33)
BMPR2− Inflammatory signaling (34, 35)
TCF7+ Growth/migration in airway (36)
APOBEC3G+ Innate immunity, antiviral (37)
INTS12− Lung function via protein synthesis pathways (38)
NEAT1− Inflammation in asthma (39)
MTHFD1− Folate and methionine metabolism (40, 41)
PRMT5− Allergic airway inflammation (42)
FASTKD1− Mitochondrial function, apoptosis (43)
HNRNPL− RNA splicing and expression regulation (44, 45)
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of a random maximum entropy graph whose row and column
sums are fixed to that of A (48, 49). The expected co-occurrence
frequency in the null model is

〈f��〉 =
1
N

N∑
�=1

p��p�� , [7]

where pij is the probability of an edge existing between nodes i
and j of the maximum entropy graph (Materials and Methods).
In addition to 〈f��〉, the SE ��� can be approximated via
error propagation using the fact that the probability of edge
occurrences are Bernoulli random variables. From these ensemble
statistics a z-value can be constructed as z�� = (f��−〈f��〉)/��� .

Now that we have established a null model for the co-
occurrence of perturbations in causing/reversing the variant
behavior, we can examine the network formed by the statistically
significant co-occurrences that deviate from the maximum
entropy model. To determine where co-occurrences begin to
deviate from the null model, we identify the set of significant
pairs with high z�� above a threshold defined by inspection of
the quantile–quantile plot (SI Appendix, Fig. S2).

Application to Allergic Asthma. In the case of allergic asthma,
pairs with z�� > 20 were kept for analysis. The corresponding
network is depicted in Fig. 5A for the baseline-to-variant
transition (i.e., the onset of asthma). Each node represents
a perturbed gene within a significantly co-occurring pair and
is color-coded according to the nature of the perturbation
(knockdown or overexpression). Edges represent significant co-
occurrences and are color-coded by the expression correlations
across responses between the genes they connect. We find that
genes with many connections in this network representation,
such as ADAR, PAN3, and MAPK1 have been implicated in
allergic asthma before (50–52). We also optimized over gene
perturbations in the reverse direction, as shown in Fig. 5B.
Among the genes featured in this network, we again find several
linked to allergic inflammation: SUZ12 inhibition is associated
with the reduction of allergic inflammation through is role in
the protein complex PRC2, JAK2 inhibitors have been proposed
to alleviate asthma because of JAK2’s role in the JAK-STAT
signaling pathway, and knockdown of MYC has been shown to
repress ILC2 (type 2 innate lymphoid cell, a type of immune
cell) activity, which in turn reduced airway inflammation and
immune hyperresponsiveness (53–55).

Note that many of the genes in the forward and reverse co-
occurrence graphs in Fig. 5 A and B are distinct. In a dynamical
network, reversing a perturbation does not generally restore the
state of the system, a phenomenon that is accounted for by
the bounds placed on u in Eqs. 1 and 4. These bounds may
prevent the same genes from being selected in the forward and
reverse directions, which within our approximation reflects the
fact that the responses to knockdowns and overexpressions are
not exactly antialigned. In our case, this phenomenon gives rise to
the observation that the genes causing a given trait phenotype are
not necessarily the ones that mitigate it. Moreover, as shown
in Fig. 5C, the number of perturbations required to make
the transition in the forward and reverse directions are also
different. Remarkably, it takes a combination of fewer single-
gene perturbations to induce a transition in the reverse direction
(i.e., from the variant to the baseline state) than in the forward
one. This may be because it takes more perturbations to go to
a particular variant state than to a generic baseline state (“all
roads lead to Rome” but not necessarily the inverse). A second

A

B

C

Fig. 5. Genes perturbed in transitions between baseline and variant clusters
for allergic asthma. (A and B) Gene perturbation co-occurrence networks
for forward (A) and reverse (B) transitions. Edges appear between a pair of
perturbed genes if they frequently co-occur in successful transitions (i.e.,
they both occur with high frequency in uij compared to a maximum entropy
graph null model). The edges are colored by gene–gene correlation in the
perturbation response dataset. The nodes are sized proportionally to the
number of edges and color-coded according to whether the perturbation is
a knockdown (blue) or overexpression (red). (C) Histograms of the number of
gene perturbations required to induce the forward transition (red) and the
reverse transition (blue).
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possibility is that there is an overrepresentation of certain genes
in the library of gene perturbations (Materials and Methods).

Importantly, both genes involved in the forward direction and
genes involved in the reverse direction can be associated with
the trait because they can promote or reverse a change from the
baseline to variant phenotype. For example, the involvement of
MYC in the reverse direction may be due to its known function
in promoting plasticity between transcriptional states and
amplifying gene expression overall when overexpressed (56, 57).
Moreover, pluripotent stem cells with MYC knocked-down have
been shown to decrease allergic reactions in mice by inhibiting
T-helper cell immune reaction (58). Aberrant translation of
the CEBPA gene, which is implicated in the forward direction,
has also been associated with causing bronchial smooth muscle
cells—a tissue that plays a key role in asthma—to proliferate
faster (59). Notably, there are genes featured in both the
forward and reverse co-occurrence networks that play roles in
both promoting and attenuating allergic asthma. For example,
FOXO1 overexpression in mice has been shown to promote
allergic asthma through macrophage polarization, Th9 (T-helper
9 cell) differentiation, and regulation of IRF4 expression, though
inhibition of FOXO1 led to attenuation of immune response and
asthmatic inflammation through regulation of IRF4 (60, 61).
Likewise, the role of JUNB depends on the state of other
transcription factors. Though JUNB significantly influences
Th2 (T-helper 2 cell) differentiation and the production of Th2
cytokines, promoting allergic inflammation, it also plays a role
in maintaining homeostasis. Specifically, knockdown of JUNB
limits excessive inflammation by modulating regulatory T-cell
differentiation (62).

We also find that, except for BMPR2 and TENT4B, the genes
appearing in the co-occurrence graphs from the optimization
between individual baseline–variant states are distinct from those
identified by the average variant-baseline optimization (Table 2).
The apparent contrast between optimizing over average transcrip-
tional states and individual pairs highlights the fact that there
can be multiple paths (defined by different perturbation sets)
through which the disease progresses and is mediated and that
these paths are not necessarily the ones connecting the average
transcriptional states. Consequently, the distinct co-occurring
genes in Fig. 5 could potentially relate to different mechanisms
playing a role in allergic asthma. We emphasize that such a co-
occurrence structure cannot be inferred from studying population
averages alone, as typically done in GWAS/TWAS (47).

It is instructive to consider the transcription factors that
regulate the genes in our perturbation response library (upstream
transcription factors). Not all upstream transcription factors have
transcriptional responses measured in our library, so we use the
Enrichr gene set enrichment database to find them. We focus on
the case where the upstream factors simultaneously regulate both
genes in a co-occurring pair so that a single transcription factor
could explain their combined influence on the trait phenotype.
For instance, GATA2, TET2, and TWIST1 are enriched for more
than one gene co-occurrence pair and are known to influence
allergic asthma (63–65). The most parsimonious explanation
for the enrichment of these transcription factors is that they
exert their influence on the phenotype (at least in part) through
the genes that appear in our perturbation response dataset. The
enrichment of these additional factors shows that we may be able
to infer trait-associated genes outside our dataset.

Learning Across Different Contexts with TWAVE. Thus far, we
have considered 7 complex traits, each based on data from
a unique tissue type and previously examined by differential

expression. Next, we generalize to contexts where 1) the data (and
trait phenotype) in question are associated with multiple disparate
tissues and 2) the trait phenotype is caused by a mutation that
affects the function of the protein instead of its transcriptional
expression.

We consider a phenotype that manifests itself through multiple
tissues by studying the trait of cancer metastasis in the cancer de-
pendency map (DepMap) dataset (66). Because these pancancer
data come from many different cell types, there are confounding
variables that render a simple differential expression analysis
unable to detect any differentially expressed genes common to
the process of metastasis across all tissues. Indeed, we found
no statistically significant associations by performing such an
analysis. However, using TWAVE, we are able to disentangle
the effects of the confounding variables associated with different
disease contexts (e.g., cell type, tissue origin, tumor location, and
systematic effects) to uncover common biological mechanisms
driving cancer metastasis (SI Appendix, Fig. S3). In this case, we
again find that our co-occurring perturbation networks contain
many genes previously found to promote or mitigate cancer
metastasis, including NF1 knockdown, SOX5 overexpression,
CBFB overexpression, TOX4 knockdown, PROX1 overexpres-
sion, and EHF knockdown (67–72). An Enrichr search for the
co-occurring genes reveals out-of-sample upstream transcription
factors that are known to affect metastasis as well, such as STAT3
and CTCF (73, 74). Although both of these genes appear to
be essential for growth (75, 76), which limits opportunities
to perturb them in cell-line experiments, one can detect their
influence on trait phenotype variation through the pairs of genes
in the co-occurrence graph that they regulate.

To examine the scenario in which a causal mutation affects a
gene’s protein function but not its transcriptional expression, we
consider maturity-onset diabetes of the young type 3 (MODY3).
MODY3 is known to be a largely monogenic trait caused by
mutations to the transcription factor HNF1A that impact beta
cell function and diabetes in general. Since HNF1A is one of the
genes perturbed in our perturbation response matrix B, MODY3
provides an excellent example where the solution is known. Doc-
umented mutations of HNF1A alter its protein function, which
in turn alters the expression of other genes as opposed to its own.
In fact, HNF1A overexpression appears in 30.2% of baseline–
variant pair optimizations. This is compared to the top overall
perturbation, NEAT1 knockdown, appearing 57.4% of the time.
However, HNF1A, as opposed to NEAT1, also appears in the
forward co-occurrence network (SI Appendix, Fig. S4). Of the
top 13 gene perturbations, three of them—MED1 knockdown,
HNF1A overexpression, and GATA2 overexpression—were also
in the forward co-occurrence network and have been implicated
in diabetic function.

This narrows down the large list of possible genes to a number
that could be tested in low-throughput lab experiments. For
instance, MED1 knockout mice show a heightened sensitivity
to insulin and an improved glucose tolerance (77). All of the
other genes in the co-occurrence network exhibit transcriptional
responses that are highly positively correlated with that of
HNF1A, meaning that their corresponding column vectors in B
all point in the same direction. This pattern is markedly different
from those observed in the complex traits above, in which we also
find transcriptional responses that are negatively correlated and
uncorrelated. Among the perturbations correlated with HNF1A
overexpression is ALOX5 overexpression, which also impacts beta
cell function in diabetes via increased insulin resistance (78, 79).

Finally, we directly compare the genes identified by our
method, differential expression, and TWAS in the case of
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inflammatory bowel disease in SI Appendix, Fig. S5. We find that
the only 8% of the differentially expressed genes identified in the
dataset (80) overlap with the TWAS genes, which is reflective
of the challenges inherent to reconciling results produced by
different approaches. Applying our method, we find that 36%
of the genes participating in over 54% of the solutions to Eq. 4
overlap with TWAS. We emphasize that this improvement by our
method occurs because it accounts for the downstream impacts
of the gene perturbations through the B matrix, which naturally
filters out spurious differentially expressed genes.

Discussion

The approach presented here leverages existing transcriptomic
data to address the challenges that complex traits pose to
traditional mutation-association screening methods (13). We
implement this by identifying generalized cellular pathways
(eigengenes) relevant to a complex trait and by calculating op-
timal sets of gene perturbations whose transcriptional responses
change the combined state of these pathways from one phenotype
to another. Our approach accounts for limited data, heterogene-
ity within phenotypes, confounding biological variation, and
combinatorial explosion in gene sets in ways that traditional
methods cannot (13). In particular, limited data are addressed by
our development of the generative model TWAVE; inference of
heterogeneous pathways is illustrated in the example of allergic
asthma; common drivers of cancer progression across biological
subtypes are found in the DepMap example; and finally, a
combinatorial explosion is avoided by casting the identification of
causal genes as an optimization problem. The approach can also
implicate candidate genes through their known downstream ef-
fects on the gene regulatory network obtained from experiments.

An overarching goal of our approach is to narrow the scope of
candidate gene combinations to a number amenable to targeted
low-throughput experiments. As in previous successful applica-
tions of Boolean networks (81–86) and principal component-
based techniques that uncover low-dimensional structure in gene
regulatory networks (87), we aim to uncover causal influences.
The main advantage of our approach is that it can generate
predictions solely from publicly available data without explicit
network reconstruction or specific knowledge concerning the
gene functions and interactions, making it broadly applicable.

It is constructive to reflect on the key assumptions underlying
our approach. First, we assume that cellular traits are well reflected
by gene expression, which is validated by the fact that we
and others (24, 88–92) can accurately classify gene expression
profiles by their phenotypic labels. While transcriptional data
do not directly account for posttranscriptional/translational
regulation (93), they do account for downstream impacts on gene
expression. Nevertheless, it is straightforward to incorporate mul-
tiomic (94–97) data to directly account for mechanisms beyond
transcription. Second, we assume that transcriptional responses
combine additively, which has been demonstrated to be a good
approximation to control cell behavior (24). Recent work has
applied VAEs to the forward problem of estimating nonadditive
transcriptional responses to combinatorial perturbations (98),
raising the possibility of going beyond the additive assumption in
the future. Integration of this technique into our method to solve
the inverse problem of mapping causes to trait phenotypes, as con-
sidered here, would require targeted experiments to train the VAE
to recognize nonadditivity. Finally, we assume that our library
of transcriptional responses is sufficiently large and diverse to
comprehensively capture the impact of genes. Notwithstanding,

we demonstrate that enrichment analysis (99, 100) can implicate
upstream transcription factors that are not included in our library.

The success of our approach has several far-reaching impli-
cations. First, it suggests that cell line perturbations in vitro
are informative of the gene behavior in situ (101). Second, it
shows that the genes needed to drive a phenotypic change can
be distinct from those that reverse the change, a hallmark of
complex systems with nonlinear dynamics. This is a consequence
of our optimization model acknowledging the fundamentally
different network impacts of reversing a knockdown versus
overexpressing a given gene, which is consistent with persistent
responses to transient perturbations observed in gene regulatory
networks (102–104). Third, the success of TWAVE suggests
that gene expression can be represented in a low-dimensional
space (87), which might be a general feature across many complex
network systems (105). Ultimately, our approach provides a
tool to investigate genotype–phenotype relationships in complex
traits, which is applicable across a range of organisms and traits.
In humans, our approach also lays the groundwork for the design
of next-generation multitarget strategies for the treatment of
complex diseases.

Materials and Methods

TWAVE Architecture. We employ a conditional variational autoencoder in
PyTorch, which is tailored for the analysis of genomic data and leverages class
labels (baseline or variant) to impart enhanced interpretability and classification
precision. The architectural blueprint consists of three neural networks: an
encoder, a decoder, and a classifier.

The encoder comprises two fully connected hidden layers, each embedding
256 and 128 units, respectively, with Rectified Linear Unit (ReLU) activation
functions. The input layer takes a single gene expression profile, length aligned
with the number of genes, and is concatenated with pertinent class labels.
This design not only captures the intricate gene expression patterns but also
incorporates class-specific information for a more nuanced latent representation.
The decoder component reconstructs the input RNA-Seq data through a series
of ReLU-activated layers, culminating in a sigmoid activation function. This
reconstruction process aims for the faithful reconstruction of the input profile
from the encoded latent space. Simultaneously, the classifier, featuring a linear
layer, facilitatesclasspredictionsgroundedintheextractedlatentrepresentation.

TWAVE Training and Sampling. During the training phase, a set of loss
functions drives the optimization process. The combination of reconstruction loss
and Kullback–Leibler divergence loss is deployed, ensuring a balance between
accurate data reproduction and the regularization of the latent space. The training
regimen spans 500−104 epochs, depending on the dataset, with minibatches
consisting of 50 to 200 samples. We use an Adam optimizer, with a learning
rate set at 0.0001.

For sampling, we generate synthetic profiles within the latent space of
TWAVE. Latent vectors are obtained by sampling from clusters corresponding
to distinct class labels. The latent vectors corresponding to different classes are
then clustered, and marginal distributions of baseline and variant profiles in the
latent space are extracted using kernel density estimation (KDE). The bandwidth
parameter for our KDE is set to 0.2 to control the smoothness of the estimated
density. We then sample new latent space points from these two clusters using
our density estimator, and these points are decoded to the full gene expression
space with the decoder, producing synthetic profiles for both class labels.

Bayesian Inference of Causal Eigengenes. We perform Bayesian inference
of causal eigengenes from the gene expression data projected onto the top
d = 200 eigengenes, X = YUn×d , where we observe that these eigengenes
account for over the overwhelming majority of the variance in all traits. In
SI Appendix, Fig. S1, we show that the remaining percent variance afterd = 200
eigengenes is less than 1% for all traits except (lung) cancer metastasis and type 1
diabetes, where the remaining eigengenes account for about 22% and 23.5%
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of the total variance, respectively. Our choice d trims the number of eigengenes
to a tractable one that allows for relatively fast Monte-Carlo optimization.

Our inference procedure adapts the fine-mapping of causal variants in
GWAS (17) to eigengenes. The first step of the fine-mapping is a logistic
regression using class labels. We fit the log-odds ratios � to the data X with effect
sizes �:

� = log
�

1− �
= X� + �, � ∼ N (0, �2), [8]

where � is a noise vector, the vector�denotes the probabilities that each (binary)
label is1,andthelogfunctionis takenelement-wise. Inthisscheme,weseektoin-
feranoptimald-dimensionalvectorofcausaleffects = (i),i ∈ {0, 1},which
take on values of zero or one depending on whether eigengene i is causal or not.

It can be shown that the likelihood of � , X given  is

p(� , X|) = N (�|0, R + RΣR), [9]

where � = XT�/d is the z-value, R = XTX/
√
d�2 is the eigengene correlation

matrix,Σ = ds2 diag(), and s is a hyperparameter. We set an initial s = 0.05
as in FINEMAP (17). Taking a uniform prior on the number of causal effects k,

qk = (1/d)k(1− 1/d)d−k , [10]

we can then express the posterior distribution of causal effects given our data as

p(|� , X) = qkp(� , X|). [11]

We use MCMC to optimize this distribution over s and  , though other
techniques such as FINEMAP or the sum of single effects (SuSiE) model could
be employed as well (19). Posterior inclusion probabilities are calculated as an
average over MCMC samples of the posterior distribution

PIPi = p(i|� , X) =
1
N

N∑
j=1

(j)i , [12]

where N is the number of samples. The Monte Carlo steps consist of flipping a
causal effect (eigengene) on or off at random and we attempt 105 steps with a
burn-in period of 103 steps, according to a Metropolis acceptance criterion.

Maximum Entropy Null Graph Model. As a null model for our gene
concurrence graph, we construct a maximum entropy graph constrained by
the row and column sums of our matrix A. The null model G maximizes the
entropy S(G) = −

∑
G P(G) ln P(G), where P(G) is the canonical distribution

P(G) ∝ exp[−
∑

i �iki −
∑

i i�i]. Here, ki =
∑

j Aij is the row sum and
�i =

∑
j Aji is the column sum of node i, whereas �i and i are the respective

Lagrange multipliers that enforce ki and �i to be fixed as all other degrees
of freedom equilibrate. The row and column sums sequences must follow the
maximum entropy conditions

ki =
∑
j 6=i

e�i+j

1 + e�i+j
, �j =

∑
i 6=j

e�j+i

1 + e�j+i
. [13]

These conditions can be solved for the Lagrange multipliers iteratively as

�(`+1)
i = log ki − log

∑
j 6=i

r(�(`)
i , (`)j ) [14]

and

(`+1)
j = log �j − log

∑
i 6=j

r(�(`)
j , (`)i ), [15]

where ` denotes the iteration and r(x, y) = 1/(e−y + ex). From here, the link
probabilities in Eq. 7 can be computed as

pij =
1

1 + e−(�i+j)
. [16]

Complex Disease Data Curation. We obtained our seven datasets from GEO
(Table 1). The expression matrices, originally in raw counts, are curated keeping
those genes and samples that meet the following criterion: average counts in
a gene >5 and total counts in a sample >105. The data were normalized to
the number of transcripts per million (NTPM) using reference transcript lengths
mapped from the ENSEMBL gene database, and the final expression data were
saved as log10(NTPM + 10−10) + 10. Labels, whether they are baseline or
variant, were one-hot encoded.

Transcriptional Response Library. The transcriptional response data was
curated as described in ref. 24. The list of GEO series accession numbers
and associated gene perturbations are listed in Dataset S1. The inclusion of
a knockdown in the library does not imply the inclusion of its overexpression
and vice versa.

Data, Materials, and Software Availability. Raw gene expression counts
data are available through GEO. Relevant accession numbers are included in
Table 1 and Dataset S1. The software and processed data for employing the
method are available from the GitHub repository (106). Source data for training
TWAVE are stored on Dryad (107).
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