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Abstract: The ubiquitin–proteasome system (UPS) is crucial in maintaining cellular physiological
balance. The UPS performs quality control and degrades proteins that have already fulfilled their
regulatory purpose. The UPS is essential for cellular and organic homeostasis, and its functions
regulate DNA repair, gene transcription, protein activation, and receptor trafficking. Besides that,
the UPS protects cellular immunity and acts on the host’s defense system. In order to produce
successful infections, viruses frequently need to manipulate the UPS to maintain the proper level of
viral proteins and hijack defense mechanisms. This review highlights and updates the mechanisms
and strategies used by plant viruses to subvert the defenses of their hosts. Proteins involved in these
mechanisms are important clues for biotechnological approaches in viral resistance.
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1. Introduction

In the last thirty years, the ubiquitin–proteasome system (UPS) has become a relevant
issue in biology. Currently, the UPS plays a central regulatory process in virtually all aspects
of eukaryotic cells [1]. The cell’s very existence is only possible with the proper functioning
of the UPS and its participation in all vital processes, from the maintenance of cellular
genetic integrity, protein production, signaling, transport, differentiation, and survival. In
plants, the UPS acts in germination, flowering, senescence, and the response to abiotic and
biotic stress, reviewed by [2–4]. The UPS’s primary function is protein degradation in the
26S proteasome. In addition, the UPS components have an essential role in plant–pathogen
interactions, acting in fundamental defense mechanisms, as extensively shown. This review
exposes some of the most remarkable facts within the plant viral universe versus the host’s
UPS, highlighting important key proteins that may be putative biotech candidates for virus
resistance improvement.

2. The 26S Proteasome

The 26S proteasome is responsible for degrading ubiquitinated proteins [5], reviewed
by [6]. The 26S proteasome is a 2.5 MDa multisubunit protease located in the cytosol and
nucleus of every cell throughout the eukaryotic kingdom. It contains two sub-complexes
with well-differentiated functions. One sub-complex is the 20S core particle (CP), in the form
of a barrel where protein degradation occurs. The other, called the 19S regulatory particle
(RP), is responsible for capturing and preparing the substrate to enter the degradation site
correctly. The CP has a hollow cylinder shape of four rings, one on top of the other. α-rings
have seven subunits (α1−7) and are located at the cylinder ends, while the two rings with
the β subunits (β1−7) occupy the cylinder’s central part [7,8]. Lid and base components
compose regulatory particle 19S. The lid, which has nine subunits, recognizes ubiquitinated
substrates and removes ubiquitin (Ub) chains. The base has several subunits and unfolds
the substrate. RP recognizes ubiquitinated substrates, unfolding them and translocating
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them into the CP [9–11]. Advances in X-ray, crystallographic imaging, and cryo-electron
microscopy (EM) enabled the creation of an exceptionally well-resolved proteasome model
and are responsible for its current understanding [10–16] (Figure 1).
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Figure 1. E1 activates a ubiquitin molecule (Ub) in an ATP-dependent reaction by forming a high-
energy thioester bond between an E1 Cys residue and the carboxy-terminal Gly of ubiquitin. This
activated ubiquitin is then donated to a Cys on an E2 by trans-esterification. In most cases, the
ubiquitin–E2 intermediate serves as the proximal ubiquitin donor, using an E3 to identify the target
and catalyze ubiquitin transfer. The final product is a ubiquitin conjugate. The C-terminal Gly
carboxyl group of ubiquitin is linked through an isopeptide bond to an accessible amino group
(typically a Lys ε-amino) in the target. Depending on what lysine was ubiquitinated, mostly K11 and
K48, proteasome 26S could degrade the target protein.

3. Ubiquitinylating Enzyme Cascade

Over 6% of the predicted Arabidopsis thaliana genome encodes UPS proteins, including
only two E1, 37 predicted E2 proteins [17], and at least 1400 predicted E3 proteins [17,18].
Four subfamilies compose the E3 Ub ligases: HECT (homologous to the E6-AP carboxyl
terminus), RING (really interesting new gene), U-box, and CRL (cullin-RING ligase). The
HECT, RING, and U-box E3 ligases are single polypeptides, whereas the CRLs consist
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of multiple subunits [19–21]. At this moment, CRLs are likely the best-characterized E3s
in plants [22]. CRLs participate in almost all aspects of plant growth and development,
auxin signaling, JA signaling, and regulation of antiviral response [23–30]. In the CRL
complex, the cullin protein serves as an elongated scaffold, recruiting the RING box protein
1 (RBX1) and E2 to its carboxy (C)-terminal region and binding a substrate adaptor to
its amino (N)-terminal region. There are four subtypes of CRLs in plants, each with a
different cullin: CUL1, CUL3, CUL4, and the cullin-like protein anaphase-promoting
complex 2 (APC2). CUL1 E3 ligases, also called SCF from S-phase kinase-associated
protein 1 (SKP1)–CUL1–F-box complexes, are the most carefully studied class in which the
substrate adaptor consists of SKP1 and an F-box protein [31,32]. SCFs are essential for cell-
cycle regulation and hormone signaling in plants and are closely related to many cellular
processes in eukaryotes (reviewed by [33]). CUL3 E3 ligases regulate cellular processes such
as biosynthesis, hormone signaling, and response to light and stress (reviewed by [34]).

The most common families of E3 Ub ligases impacting plant–pathogen interactions
are the RING and U-box E3 Ub ligases [35,36]. RING and U-Box predominate in the host-
pathogen relationship, and both transfer Ub from the E2-Ub complex to the substrate. Most
functionally characterized RING and U-boxes are found in the cytosol and throughout
the endoplasmic reticulum (ER) and participate in ER-associated degradation (ERAD). A
recent report of a genome-wide analysis of U-box ligases of tomatoes confirms that E3
ligases, which ultimately mark proteins, provide substrate specificity in the UPS [36]. Each
E3 ligase family controls the binding of ubiquitins to only one or a small subset of substrate
proteins, which accounts for the large number of genes that comprise the E3 ligase family.
There are 508 RING domains according to the annotated Arabidopsis genome [37]. The
growing interest in these topics reflects the constant flux of research and publications in
crops of interest like wheat (Triticum aestivum) [38] and flax (Linum usitatissimum) [39].

4. The Ubiquitin (Ub)

Like other UPS components, ubiquitin (Ub) has undergone very little diversification
and remained almost constant throughout evolution in organisms in the eukaryotic king-
dom [40,41]. It is currently one of the most important post-translational modifications to
maintain cellular homeostasis [42]. Three enzymes work in a cascade to attach ubiquitin
covalently to the substrate. It begins with the activation of Ub by E1 or the ubiquitin-
activating enzyme; it continues with E2 or ubiquitin-conjugating enzyme, and ends with
E3 or ubiquitin ligase [7,8] (Figure 1).

In the initial ATP-consuming reaction, E1 first activates the ubiquitin moiety by form-
ing a high-energy thioester bond between an E1 Cys residue and the carboxy-terminal
Gly of ubiquitin. This activated ubiquitin is then donated to a Cys on an E2 by trans-
esterification. In most cases, the ubiquitin-E2 intermediate serves as the proximal ubiquitin
donor, using an E3 to identify the target and catalyze ubiquitin transfer. The final product
is a ubiquitin conjugate. The C-terminal Gly carboxyl group of ubiquitin is linked through
an isopeptide bond to an accessible amino group (typically a Lys ε-amino) in the target [4].
By attaching ubiquitin in various ways, it is possible to create distinct target fates. This
binding of Ub molecules to the substrate is reversible through deubiquitinase enzymes
(DUBs), described for the first time by [43].

A substrate protein of the ubiquitin system may be (i) monoubiquitylated, whereby a
single ubiquitin molecule conjugates to the substrate; (ii) multimonoubiquitylated, resulting
in the conjugation of several ubiquitin molecules to the same substrate protein on different
lysine residues; or (iii) polyubiquitylated, in which additional ubiquitin molecules are
conjugated to the first ubiquitin molecule, resulting in the formation of a polyubiquitin
chain on one lysine residue of the substrate protein. The shortest polyubiquitin chain
capable of activating degradation by the 26S proteasome is four monomers [7].
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5. Ubiquitin-Proteasome System (UPS) Role under Viral Infection

The UPS acts ambiguously during viral infections. In some cases, the UPS can improve
the function of viral proteins by ubiquitin adding as a post-translational modification.
On the other hand, the UPS can degrade viral proteins as a host defense mechanism to
counteract infection [44]. Remarkably, plant viruses can manipulate UPS for their benefit.
The various means range from inducing, inhibiting, or modifying the enzymes involved
in the process, especially the E3 ligases. Some viruses such as turnip yellow mosaic
virus (TYMV) and maize rayado fino virus (MRFV) can encode deubiquitinase enzymes
(DUBs) to achieve a favorable environment for viral infection by inhibiting host defense
mechanisms [45,46].

Two viruses belonging to the Tombusvirus genus, tomato bush stunt virus (TBSV)
and cymbidium ringspot virus (CymRSV), help elucidate the plant’s UPS during viral
replication [47]. Replication in the infected cell occurs after translating two replication
proteins: p33, an RNA chaperone, and p92pol, an RNA-dependent RNA polymerase (RdRp).
Two subgenomic RNAs also originate from genomic RNA to express three viral proteins
related to cell-to-cell movement, viral particle assembly, and gene silencing suppression.
Several studies using the yeast protoarray system and genome-wide screens have shown
many host genes linked to viral replication in this group of viruses [48,49]. Ubiquitin
has a fundamental role in Tombusvirus infection. In infected plants, the copurification of
TBSV p92pol replicase with the Arabidopsis UBC2 (ubiquiting-conjugating enzyme 2) and
CDC34p (cell division cycle protein 34) E2 ubiquitin-conjugating enzymes are essential for
replicating tombusviruses [47]. UBC2 and CDC34p participate in cellular processes and
can ubiquitinate p33 with one or two molecules. Ubiquitination enables the recruitment of
ESCRT (endosomal sorting complexes required for transport) proteins bound to Vps23p
involved in membrane flexion and invagination and the formation of viral spherules during
tombusvirus replicase complexes [50,51].

Tombusvirus replication ubiquitinates lysines K70 and K76 of p33. Both are monoubiq-
uitinated or biubiquitinated, and together with a sequence similar to a late domain (se-
quence P T/S XP, where X symbolizes any amino acid), Ub-lysines facilitate the binding
between p33 and the host factor Vps23p ESCRT-I. Mutations in both lysines and/or in a
sequence similar to the late domain of p33 disturbed the interaction with Vps23p, causing
a decrease in TBSV replication in yeast and plant cells [51].

Studies related to the role of host proteins in the interaction with TBSV viral proteins
demonstrated the function of Rsp5p. Rsp5p is an E3 ligase member of the Nedd4 family,
with three types of functional domains. Rsp5p was shown to bind to p33 and p92 and
is a negative regulator of TBSV replication. The overexpression of Rsp5p, which has a
WW protein interaction domain and a protein-ubiquitination domain HECT, decreases
the level of viral replication of TBSV and vice versa [52]. Additionally, the WW domain
plays a crucial role in inhibiting replication and the endosome–vacuole pathway in a
proteasome-unrelated mechanism [52]. Another UPS host protein is Rpn11p (regulatory
particle non-ATPase), a deubiquitinase that forms a heterodimer with Rpn8p. Both are part
of the lid of the regulatory particle (RP), one of the components of the 26S proteasome [14].
Rpn11p is known to intervene in the TBSV viral replication complex (VRC), where it
interacts with the viral replication protein p92 and recruits the DDX3-like Ded1p/RH20
DEAD-box helicase, a potent suppressor of the viral recombination. Rpn11p has a dual
function because it intervenes in the proper assembly of the proteasome. It is also a key
player in the assembly of the VRC of TBSV, influencing the virus’s replication and genetic
recombination [15,53].

The presence of the P3 protein of the Rice grassy stunt virus (RGSV), a negative-sense
single-stranded RNA virus, induces an increase in ubiquitination and degradation of the
rice nuclear protein RNA polymerase D1a (OsNRPD1a) [54]. OsNRPD1a is one of the two
orthologs of RNA polymerase IV (Pol IV) required for RNA-directed DNA methylation
(RdDM). The accumulation of P3 induces the expression of host P3-inducible protein 1
(P3IP1), a U-box E3 ligase that interacts with OsNRPD1a, marking it for degradation. Inter-
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estingly, the OsNRPD1 knockdown and the overexpression of P3IP1 in rice produce symp-
toms similar to RGSV infection. The absence of OsNRPD1-driven methylation generates
smaller plants with development deficiencies. These findings point to a new mechanism
where RGSV induces degradation of host RNA Pol IV polymerase, facilitating infection
and producing the development of disease symptoms. Therefore, P3IP1 degradation of
OsNRPD1 via the proteasome increases RGSV susceptibility.

6. Viral Movement Proteins and UPS

The UPS and movement protein (MP) interaction was studied using the turnip yellow
mosaic virus (TYMV, genus Tymovirus). The translation of the genomic RNA of TYMV
produces MP 69K and polyprotein 206K, composed of proteins 66K and 140K. The 66K
protein, a component of RNA-dependent RNA polymerase (RdRp), is degraded via the
proteasome, causing its decrease and affecting viral replication. Besides RdRp, the MP 69K
is also degraded by 26S proteasome, with the polyubiquitination of lysines 109 and 111 [55].
The degradation of MP can have two interpretations. In one way, the UPS may protect
cell homeostasis, reducing foreign potentially toxic proteins that can be harmful to the cell.
This idea makes sense, since MPs facilitate the passage from one cell to another through
the plasmodesmata, so the degradation of these viral proteins would be a way to protect
the cellular integrity of the host and thus guarantee the survival of the cells. Interpreted in
another way, this degradation of viral MPs constitutes a defense mechanism of the host to
reduce the spread of the virus to neighboring cells [55,56].

The best well-studied MP is the 30K MP from the tobacco mosaic virus (TMV, genus
Tobamovirus). Almost 22 years ago, Reichel & Beachy (2000) [56] showed that the 26S
proteasome degrades MP 30K from the mobile complexes associated with the endoplasmic
reticulum (ER). In the presence of MP, mobile complexes associated with ER constitute virus
“factories” where TMV replication takes place. However, in the late stages of infection, the
accumulation of MP in the cell hinders normal functioning, damaging the cortical ER and
the cytoskeleton. The cell only recovers its functions when the MP has been degraded [56].
In the presence of a proteasome inhibitor, an increase and intercellular accumulation of MP
17K of the potato leaf roll virus (PLRV, genus Polerovirus) occurs [9]. These phenomena
observed in the TYMV, TMV, and PLRV demonstrate that viruses can modify UPS functions
through various strategies to achieve cell survival on their own. More in-depth studies are
needed to characterize each component of UPS involved in MP degradation and the role of
each component in the face of attack by phytopathogenic viruses.

7. Unfolded Protein Response and UPS

The unfolded protein response (UPR) is a protein quality-control system in the endo-
plasmic reticulum that routes defective proteins for degradation in the proteasome and
prevents their accumulation to dangerous levels for cellular balance. There is evidence
that in the absence of bZIP60, a transcriptional factor involved in the UPR, potato virus X
(PVX) cannot successfully infect protoplasts or plants [57]. PVX TGBp3 movement protein
resides in ER and activates the upregulation of SKP1. These facts indicate that the UPR
and UPS are necessary for regulating damaged proteins and maintaining tolerable PVX
TGBp3 levels. In the absence of UPR, PVX TGBp3 can accumulate toxic levels and prevent
successful virus infection [57].

8. The Role of the UPS in Plant Immunity

The UPS mediates the degradation of cellular proteins when viruses interact with
the host cell. Inhibition of SGT1, a highly conserved component of the SCF E3 and COP9
signalosome (CSN), a multiprotein complex involved in degradation, abolishes the resis-
tance mediated by the N gene against TMV, thus suggesting a pivotal role for the UPS in
regulating the innate immune response of plants [58].

As part of the SCF complex, SNIPER7 (snc1-influencing plant E3 ligase reverse) regu-
lates the response to pathogen attacks on plants. SNIPER7 interacts with the CDC48 (cell
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division cycle 48) unfoldase as part of the SCF E3 ligase complex, marking it to CDC48 for
degradation via the proteasome pathway. Given the large number of functions that CDC48
fulfills in the cell and considering that its absence is lethal, the interaction with SNIPER7
is finely regulated [59]. SNIPER4 (snc1-influencing plant E3 ligase reverse) regulates two
redundant tumor necrosis factor receptor (TNFR)-associated factors (TRAF) proteins, called
MUSE13 (mutant, snc1-enhancing 13) and MUSE14, related to the immune response in
plants. MUSE13 and MUSE14 function as adapters between the F-box CPR1 and its sub-
strates nucleotide leucine rich immune sensors suppressor of NPR1, constitutive 1 (SNC1)
and resistant to Pseudomonas syringae 2 (RPS2). The lack of MUSE13 and MUSE14 causes
extreme autoimmune behavior due to the accumulation of SNC1, which interferes with
plants’ proper growth and development [60].

E3 ligase SAUL1 (senescence-associated E3 ubiquitin ligase 1) is a positive regula-
tor of PAMP-triggered immunity, and the immune receptor SOC3 (genetic suppressor of
CHS1-2-3) controls homeostasis [61]. Other E3 ligases, members of the HECT family, play
a fundamental role in the immune response generated by plants. The salicylic acid (SA)
signaling pathway is significantly affected when mutating UPL1 (ubiquitin–protein ligase),
UPL3, and UPL5 proteins. Mutants of upl3 proved unable to restart SA-induced tran-
scriptome formation and failed to orchestrate defense against hemibiotrophic pathogens.
UPL3 is essential to generate an immune response in plants to the attack of pathogens and
interacts with the proteasome’s regulatory particle and other UPS components [62].

9. Viral Protein Degradation by the UPS

The degradation process in the 26S proteasome depends on the activation of an
enzymatic cascade composed of E1-E3 enzymes. Among the critical factors for pathogenesis
is the ability of viruses to subvert host pathways. One of the main sites where this occurs
is UPS. Viruses have coevolved to use the host’s UPS to their advantage in many aspects
of their life cycle, including the exit of the virus from the invaded cell, the increase in
viral replication, the alteration of the cell cycle, and evasion from defense mechanisms of
the host [63]. The regulation of the UPS is critical for the correct operation of the defense
systems of plants. Therefore, many pathogens, including viruses, have evolved to evade or
counteract these mechanisms.

In the interaction between the virus and host E3 ligases (and their regulators), viruses
hijack SCFs and CRL, influencing E3 ligase activity, degrading host proteins, and facilitating
viral spread [31,32,64]. Furthermore, some viruses have a very particular way of evading
the defense response of plants by encoding F-box proteins. This uniqueness allows them
to modify the functioning of E3 ligases to benefit the viral machinery, increasing viral
replication capacity (Figure 2). Tomato chlorosis virus (ToCV) p22 protein have a motif
F-box like, can suppress the auxin signaling pathway by competing with NbTIR for binding
to the C-terminal domain of NbSKP1, which interferes with the assembly of the SCFTIR E3
ligase complex, increasing the accumulation of viral RNA and the severity of symptoms [65]
(Figure 2b). There is evidence of different strategies among criniviruses to subvert the
UPS’s functioning through interference in the SCF E3 ligase complex [66]. Overexpression
of the C4 of beet severe curly top virus (BSCTV, genus Geminivirus) protein is decisive in
the virus’s leading symptoms and generates an atypical host cell division. RKP, a RING
finger protein, is induced by BSCTV C4. RKP is a functional E3 ligase and interacts in vitro
with cell cycle inhibitory ICK/KRP proteins, which accumulate when RKP is mutated.
In the presence of BSCTV, the level of ICK/KRP decreased, but with overexpression, the
susceptibility to BSCTV infection decreased (Figure 2b). The induction of RKP by the
BSCTV C4 protein can affect virus infection by regulating the host cell cycle through its
interaction with the inhibitory proteins ICK/KRP [67].
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Figure 2. (a) Examples of viral proteins subverting SCF E3 ligase complex. Several viruses had
already been shown to encode proteins that may interfere or plays as components of the SCF E3
ligase complex to benefit viral infection. Color of the arrows are representing the cellular process
affected by the subverting of E3 ligase complex by individual virus. Viral proteins represented
by a hexagon shape may act as plant F-box proteins taking part directly of the complex, leading
to the ubiquitination of their targets, or may compete for SKP1 with the host F-box protein. A putative
host F-box protein is shown in gray inside the complex. (b) Some of these viral proteins may hypotheti-
cally take part in the complex acting as F-box proteins, as already shown for P0, C10, and p22. P0 of the
polerovirus interacts with host SKP1, affecting RNAi antiviral defense. BrYV P0 interaction with SKP1
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in A. thaliana suppress P0 degradation by SCFP0 stabilizing it and allowing P0 AGO degradation
by autophagy. Clink (C10) of FBNYV interacts with SKP1 and with RB. As C10 interferes in cell
cycle regulation, it can be hypothesized that it may target RB to be ubiquitinated by SCF complex
allowing cell cycle activation. The p22 protein of ToCV presents an F-box-like domain that interacts
with host SKP1 and interferes with the correct assembling of host SCF complex, perturbing hormone
signaling. The C4 protein of the geminivirus BSCTV interacts with RKP E3 ligase, promoting the
degradation of the cell cycle inhibition protein ICK/KRP and inducing cell cycle that favors virus
replication. C2 proteins of BSCTV, TYCLV, and BCTV interact with the CSN enzyme, which promotes
deneddylation of CUL1 and makes the SCF complexes responsible for SAMDC1 and JAZ degradation
unable to work properly. In consequence, DNA methylation and de novo methylation and JA defense
pathway are impaired, respectively. The presence of TGBp3 from PVX, by its side, induces host SKP1
expression, affecting UPR regulation and programmed cell death (a). The βC1 protein of satellite
virus of the geminivirus CLCuMuV interacts with SKP1 interfering with SCF formation. βC1 from
TYLCCNV interacts with the NBR1 protein, impairing the correct functioning of SCF RFP1, which
would otherwise ubiquitinate βC1 and promote its degradation by proteasome. Thus, interference or
usurpation of SCF E3 ligase complex seems to be common among plant viruses.

The UPS regulates signaling pathways and hormones during viral invasion [68].
The βC1 protein, a multifunctional pathogenicity factor encoded by the satellite DNA of
the cotton leaf curl Multan virus (CLCuMuV), subverts ubiquitination to enhance virus
infection [69,70]. The interaction of βC1 with S1UBC3 (ubiquitin-conjugating enzyme)
correlates with the severity of symptoms in plants, which is similar to the phenotype
observed when disturbing the UPS [71]. Interestingly, βC1 interacts with glyceraldehyde-3-
phosphate dehydrogenase GLCA1 and 2, inducing autophagy [72]. The above-described
behavior reveals how the UPS may regulate signaling pathways and hormone.

Recent publications help to delve into the interaction between polerovirus silencing
suppressor protein (P0) and argonaute 1 (AGO1) and its relationship with the SCF complex.
One of the most exciting findings is that the brassica yellow virus (BrYV) P0Br can avoid
degradation by mimicking the F-box domain and interacting with SKP1, a component of
the host’s SCF E3 ligase complex, forming the SCF–P0 complex [73] (Figure 2b). AGO is
the most critical enzyme of the RISC complex and is essential for RNA silencing virus
defense. Stabilization of P0 in the SCF-P0 complex triggers AGO degradation, eliminating
the silencing of the viral RNA, which can lead to successful infection [73]. The P0 F-box
domain of an Argentinian potato leafroll virus interacts with Solanum tuberosum SKP1
orthologue (StSKP1), triggering the ubiquitination and subsequent degradation of AGO1
and other ARGONAUTE proteins [74].

P0s from the polerovirus beet western yellows (BWYV), cucurbit yellow aphid virus
(CABYV), and others and from the Enamovirus pea enation mosaic virus (PEMV) are known
potent suppressors of RNA silencing, one of the plants’ primary defense strategies [75,76].
BWYV and CABYV P0s interact with Arabidopsis SKP1 homologs (AtSK1 and AtSK2).
The suppressive activity of P0 silencing was already related to the interaction of its F-box
domain with the AGO1 PAZ motif and adjacent sequences of AGO proteins to mediate
its degradation [75,77]. However, P0-mediated AGO1 degradation occurs by autophagy,
an independent proteasome pathway [76]. Li et al. [73] recent findings show that the
stabilization of P0 by forming the SCF-P0 complex is crucial for preventing its degradation
by proteasome and enabling virus infection.

The first report of a virus-encoded F-box interacting with a host component was
founding in bean necrotic yellow virus (FBNYV, genus Nanovirus). One of the proteins
encoded by component 10 of FBNYV, C10, called clink, for “cell cycle link”, contains an
F-box that binds to SKP1 from Mendicago sativa. Clink was also found to interact with the
cell cycle regulator retinoblastome (RB) protein, increasing viral replication capacity [78]
(Figure 2b). Upon RB activity being altered, the virus acquires the ability to modify the cell
cycle and force DNA synthesis, creating a favorable cellular environment for the successful
replication of the viral genome.
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10. Viral Strategy Using E3 to Protect Unstable Proteins

An inverse viral strategy is the modification of the UPS to stabilize cellular proteins that
are very unstable under normal conditions. The interaction of the geminivirus BSCTV C2
protein with the Arabidopsis S-adenosylmethionine decarboxylase proenzyme 1 (SAMDC1)
enzyme inhibits the degradation of SAMDC1 through the 26S proteasome. Thus, host
methylation pathway suppression and host reduction de novo methylation in the presence
of BSCTV C2 favors the replication of viral DNA [79] (Figure 2b). Moreover, C2 from
other geminiviruses, such as tomato yellow leaf curl virus (TYLCV) and beet curl virus
(BCTV), can modulate the function of some ligases of the SCF complex of infected cells,
inhibiting host defense JA pathway activation [80]. Transgenic Arabidopsis plants expressing
C2 suppressed the response to the hormone jasmonate (Figure 2b). Jasmonic acid and its
metabolites, called jasmonates (JA), integrate relevant signaling pathways in plants and are
part of various physiological processes and responses to biotic and abiotic stress. Under
basal conditions, JA levels are low, and jasmonate ZIM-domain (JAZ) proteins repress the
expression of related genes. The expression of bioactive jasmonate (JA-Ile) increases with
stressful elements, which mediates the interaction between the JAZ repressors and the
F-box protein coronatine-insensitive 1 (COI1), a member of the receptor complex from JA,
the E3 ligase SCFCOI1. These relationships allow JAZ to be ubiquitinated and subsequently
degraded via the 26S proteasome, allowing the expression of JA-responsive genes. This
behavior makes sense if we think that the jasmonate signaling pathway begins when
components of the SCFCOI1 complex detect the hormone [81].

The expression of C2 directly affects the plant’s response to viral infections because it
influences the activity of the CSN, one of the regulators of the activity of CRL E3 ligases.
CSN is in charge of removing the remains of the related to ubiquitin (RUB) protein (also
called NEDD8). This ubiquitin-like protein binds reversibly to cullin 1 (CUL1) from CRL
ligases [82,83]. CUL1 is part of the SCF complex and its neddylation upregulates CRL activity.
If this release of RUB does not occur, CUL 1 accumulates in the cell in its rubylated form. This
accumulation alters the functioning of the cell because of the incorrect regulations made by
CRL ligases involved in the activation of various hormones involved in defense responses.
Hence, C2/L2 is a critical powerful viral strategy to achieve successful infection [80].

SCF complexes regulate many physiological processes, some with a recognized
pleiotropic character that complicates the interpretation of phenotypes [84]. Therefore, the
capability of geminiviruses to encode proteins that intervene in SCF functions is a relevant
tool that can intervene in most of these processes that maintain the proper development of
life in plants; specifically, those related to the hormonal defense response, as is the case of
jasmonate, the main target of tomato yellow leaf curl Sardinia virus (TYLCSV) C2 protein
through interference with CSN and, by extension, of the SCF complex [80] (Figure 2b).

No less surprisingly, some SCF complexes escape this effect by overexpressing the
F-box, which also occurs during geminivirus infection [85]. These findings suggest that
geminiviruses selectively intervene in the modulation of the subunits of the SCF complex,
both negatively and positively.

Furthermore, the C1 protein of the DNA β of the CLCuMuV also interacts with the
ubiquitin-conjugating enzyme of tomato SlUBC3, and the presence of the myristoylation-
like motif domain of βC1 is necessary for the development of viral symptoms [69]. βC1
CLCuMuV regulates the host ubiquitination pathway through its interaction with SKP1
in N. benthamiana (NbSKP1) [70]. This interaction leads to the disruption of the binding
of NbSKP1 with NbCUL1. When silencing NbSKP1 or NbCUL1, viral genomic DNA
accumulates, and symptoms increase substantially. These results confirm that βC1 from
CLCuMuV inhibits the process that the SCF E3 ligase complex should carry out through
interaction with NbSKP1, which promotes an increase in viral infection and the induction
of more severe symptoms in the host [70] (Figure 2b).

Autophagy is an immune response of plants that geminiviruses strategies are capable
of subverting. The selective autophagic receptor NbNBR1 improves expression in the
presence of βC1 from tomato yellow leaf curl China betasatellite (TYLCCNB) associated
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with the tomato yellow leaf curl China virus (TYLCCNV). The interaction of NbNBR1 and
βC1 produces cytoplasmic granules and protects βC1, a substrate for the RING-finger
NbRFP1 E3 ligase, from degradation. The overexpression of NbNBR1 in N. benthamiana
increases the accumulation of βC1 and favors viral infection (Figure 2b). In contrast,
viral infection inhibition happens when NbNBR1 is mutated or silenced, lowering βC1
levels [86]. These results demonstrate the ability of TYLCCNB and TYLCCNV to protect
themselves from the action of the E3 ligase NbRFP1 through the creation of cytoplasmic
granules formed from the interaction between the viral protein βC1 and NbNBR1, an
autophagic protein.

11. Conclusions

The UPS performs a regulatory function and is closely related to essential processes
carried out by the cell, including the activation of defense mechanisms. However, viruses
developed different strategies to successfully suppress or modulate the UPS to establish
infection. Currently, numerous advances in the field of technology allow a more in-depth
study of the complex interactions that take place between the UPS of the host and phy-
topathogenic viruses. Viral strategies to escape the host’s defense mechanisms deserve
special mention, ranging from the hijacking of central components of the UPS such as the
presence of genes that encode proteins that can compete with host proteins and “trick” the
UPS, managing to subvert hormonal signaling mechanisms, key in plant defense. The weak
interactions between E3 ligases and their known substrates demonstrate the need to create
new tools, both in vitro and in vivo, that contribute to the discovery and characterization of
still unknown substrates, as well as the extensive and complicated regulatory network that
governs the behavior of the UPS against the attack of pathogens. Finally, designing new
plant cultivars resistant to the most devastating viral diseases will need in-depth studies of
the interaction between host viruses and the UPS.
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