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Abstract

Motivation: Neural networks have been widely used to analyze high-throughput microscopy

images. However, the performance of neural networks can be significantly improved by encoding

known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping

from microscopy image data is rotation invariance. Here we consider the application of two

schemes for encoding rotation equivariance and invariance in a convolutional neural network,

namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic

convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier

transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our

new method the Conic Convolution and DFT Network (CFNet).

Results: We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several

different image classification tasks, including simulated and real microscopy images of subcellular

protein localization, and demonstrated improved performance. We believe CFNet has the potential

to improve many high-throughput microscopy image analysis applications.

Availability and implementation: Source code of CFNet is available at: https://github.com/bchidest/

CFNet.

Contact: jianma@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Though the appeal of neural networks is their versatility for arbi-

trary classification tasks, there is still much benefit in designing

them for particular problem settings. In particular, the effectiveness

of neural networks can be greatly increased by encoding invariance

to uniformative augmentations of the data (LeCun et al., 1989). A

key invariance inherent to many imaging contexts, including micros-

copy data, is rotation (Boland and Murphy, 2001). For biological

imaging, since data is often scarce and difficult or expensive to ac-

quire, improving the effectiveness and reliability of models by

encoding such invariance is highly significant.

Recently, convolutional neural networks (CNNs) have been

applied to the highly relevant problem of cell phenotyping based on

microscopy image analysis and have demonstrated much improved

performance (Kraus et al., 2016, 2017). Formerly, crafted features

that inherently exhibit such invariance, such as Zernike moments

and Haralick texture features, were extracted and used for subse-

quent analysis (Boland and Murphy, 2001), whereas CNNs are able

to learn relevant features directly. This has significant applications

to spatial proteomics, which has enabled the systematic probing of

changes of subcellular protein localizations, which are key to protein

functions (Lundberg and Borner, 2019), as a response to various

perturbations (Chong et al., 2015; Kraus et al., 2017). However, the

encoding of rotation equivariance and invariance into CNNs to

learn meaningful features for cell phenotyping is yet to be

considered.

Several approaches have been proposed recently for improving

the performance of CNNs by encoding rotation equivariance. The

most promising and popular of such methods is the group-

equivariant CNN (G-CNN) (Cohen and Welling, 2016), which

applies convolution over groups, such as rotation, translation and

flips, thereby maintaining equivariance throughout the convolution-

al layers. Notably, G-CNNs have recently been applied to several

biological imaging tasks, including cell boundary segmentation

(Bekkers et al., 2018; Weiler et al., 2018), annotation of cancerous

regions of tumors (Veeling et al., 2018) and dermoscopy image seg-

mentation (Li et al., 2018).

Here we consider the integration of rotation equivariance and in-

variance to analyze the localization of proteins in fluorescence

images, which, to the best of our knowledge, is the first such

work. Additionally, we propose a new simple and efficient
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rotation-equivariant convolutional scheme, called conic convolution

as an effective alternative to group convolution, with advantages of

computational and memory savings, interpretability of learned fea-

ture maps and improved performance. Rather than convolving each

filter across the entire image, as in standard or group convolution,

rotated filters are convolved only over corresponding conic regions

of the input feature map that emanate from the origin, thereby intui-

tively transforming rotations in the input directly to rotations in the

output. A comparison of conic convolution with other proposed

convolution schemes is shown in Figure 1.

To encode rotation invariance, we propose the integration of the

magnitude response of the 2D-discrete-Fourier transform (2D-DFT)

into a transition layer between convolutional and fully-connected

layers. The 2D-DFT is able to integrate mutual orientation informa-

tion between different filter responses, yielding more informative

features for subsequent layers than most previous approaches.

Though the insight of using the DFT to encode rotational invariance

has been employed for texture classification using wavelets

(Charalampidis and Kasparis, 2002; Do and Vetterli, 2002; Jafari-

Khouzani and Soltanian-Zadeh, 2005; Ojala et al., 2002) and for

general image classification (Schmidt and Roth, 2012), as of yet, its

application to CNNs has been relatively overlooked. As in these

prior works, rotations of the input are transformed to circular shifts,

to which the magnitude response of the 2D-DFT is invariant, in the

transformed space.

We call our new method the Conic Convolution and DFT

Network (CFNet). We demonstrate the effectiveness of the two

novel contributions in CFNet, namely conic convolution and inte-

gration of the DFT, based on evaluations from both synthetic and

real microscopy images for localizing proteins in budding yeast cells.

We show that CFNet improves classification accuracy generally

over the standard raster convolution formulation and over the

equivariant method of G-CNN across these settings. We also show

that the 2D-DFT clearly improves performance across these diverse

datasets, and that not only for the proposed conic convolution, but

also for group convolution.

1.1 Related work
To encode rotation equivariance for general image classification, a

variety of methods exist. One straightforward strategy is to trans-

form the domain of the image to an alternative domain, such as the

log-polar domain (Henriques and Vedaldi, 2017; Schmidt and Roth,

2012) in which rotation becomes some other transformation that is

easier to manage, but this can be unstable to translations and this

warping will introduce distortion, as pixels near the center of the

image are sampled more densely than pixels near the perimeter. Our

proposed conic convolution also encodes global rotation equivar-

iance about the origin, but without introducing such distortion,

which greatly helps mitigate its susceptibility to translation. The re-

cently developed spatial transform layer (Jaderberg et al., 2015) and

deformable convolutional layer (Dai et al., 2017) allow the network

to learn non-regular sampling patterns and can potentially help

learning rotation invariance, though invariance is not explicitly

enforced, which would most likely be a challenge for tasks with

small training sets.

An alternative, simple means for achieving rotation equivariance

and invariance was proposed in (Dieleman et al., 2016), in which

feature maps of standard CNNs are made equivariant or invariant

to rotation by combinations of cyclic slicing, stacking, rolling and

pooling. RotEqNet (Marcos et al., 2017) improved upon this idea

by storing, for each feature map for a corresponding filter, only the

maximal response across rotations and the value of the correspond-

ing rotation, to preserve pose information, yielding improved results

and considerable storage savings. Our proposed conic convolution is

most similar to these methods and further decreases storage and

computation requirements. The recently developed capsule network

(Sabour et al., 2017) is able to auto-encode affine transformation,

including rotation, by the routing-by-agreement process. However,

our CFNet developed in this paper works well even without aug-

mentation because equivariance and invariance are encoded.

Another related work extended G-CNN using steerable filters

(Weiler et al., 2018), as proposed in H-Net (Worrall et al., 2017), to

provide equivariance for finer angles. This can be considered as a

parallel contribution to our work, which could also use a steerable

filter design. In summary, CFNet improves upon previous methods

by reducing computation and storage requirements and improving

interpretability and performance.

2 Materials and methods

We consider CFNet and G-CNN within the context of microscopy

image analysis to classify cell features. Each network takes, as input,

an image of a cell and predicts a label of interest, such as the local-

ization of fluorescence-tagged proteins. The overall architecture of

CFNet is illustrated in Figure 2. We first give a brief description of

group-equivariant convolution and then describe our proposed conic

convolution in CFNet, which uses similar notation from group the-

ory. Next, we discuss the preservation of rotation equivariance

through non-linear operations within a neural network as well as

the efficiency of conic convolution. We then describe the integration

of the 2D-DFT in CFNet as a transition layer between group or

conic convolutional layers and subsequent fully-connected layers in

a CNN.

2.1 Group-equivariant convolution
For convenience, as in Cohen and Welling (2016), we represent fea-

ture maps, of dimension K, f : Z2 ! R
K and filters, / : Z2 ! R

K, of

a standard CNN as functions over the 2D space Z
2 of integers, or

pixel locations in the case of images. The expression for convolution

of a filter over a feature map in a standard CNN is given by:

f � /ðxÞ ¼
XK�1

k¼0

X
z2Z2

fkðzÞ/kðz� xÞ: (1)

The success of CNNs can be attributed largely to the fact that

standard convolution is equivariant to translations and many image

classification tasks are invariant to small local translations.

However, standard convolution does not in general exhibit equivar-

iance to other important transformations, such as rotations, unless

certain constraints on the filters are met. The insight of Cohen and

Welling (2016) was to generalize convolution to operate on func-

tions on groups, thereby achieving equivariance for other types of

transformations. A group is a mathematical term referring to a par-

ticular set paired with a binary operation, which together meet cer-

tain criteria. The set of indices Z
2 with the operation of translation

is a particular instance of a group.

A more relevant group for microscopy image data is the p4

group, or roto-translation group, which consists of both translations

and rotations about the origin of p
2 of Z

2, and a function on this

group is indexed not just by translation, such as the x position of

feature maps of normal CNNs, but also by rotation. In this way, ro-

tation information is preserved throughout the network and equiv-

ariance can thereby be maintained.
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We denote this group by G, where g 2 G is the transformation

of rotation about the origin and a translation. The first group convo-

lutional layer of a G-CNN operates on functions on Z
2, over which

the input image is defined, and is given by:

f � /ðgÞ ¼
XK�1

k¼0

X
z2Z2

fkðzÞ/kðg�1zÞ: (2)

Whereas in standard convolution, the filter is translated over the

image and the inner product is computed at each translation, in

group convolution, the filter is transformed by each element g 2 G.

The output of group convolution is then a function of the group G.

Subsequent layers of the network must therefore operate on such

functions, and group convolution for these layers is defined as:

f � /ðgÞ ¼
XK�1

k¼0

X
h2G

fkðhÞ/kðg�1hÞ: (3)

As shown in Cohen and Welling (2016), standard operations

used in neural networks, including pooling, batch normalization

and activations, can be defined on the feature maps of group convo-

lution to preserve the equivariance property, and a full G-CNN can

be defined by the composition of such operations. We refer the read-

er to Cohen and Welling (2016) for more details.

2.2 Rotation-equivariant quadrant convolutional layers
Rather than operating on functions on groups, conic convolution is

simpler in that it maintains rotation equivariance while operating still

on functions on the spatial domain Z
2, as in standard convolution.

We begin the formulation with a simpler, special case of conic convo-

lution, which we call quadrant convolution. Its difference from stand-

ard convolution is that the filter being convolved is rotated by
rp
2 ; r 2 f0;1;2; 3g, depending upon the corresponding quadrant of

the domain. We show that for quadrant convolution, rotations of p
2 of

the input are straightforwardly associated with rotations of the output

feature map, which is a special form of equivariance called same-

equivariance [as coined by Dieleman et al. (2016)].

Relevant to our formulation is the group of two-dimensional ro-

tation matrices of p
2, which we denote by G1 and which can be easily

(a) (b) (c) (d)

Fig. 2. The overall architecture of CFNet. (a) Filtering the image by various filters at rotations in corresponding conic regions preserves rotation-equivariance. (b)

Subsequent convolutional feature maps are filtered similarly. Rotation-invariance is encoded by the transition from convolutional to fully-connected layers, which

consists of (c) element-wise multiplication and sum, denoted by �, with rotated weight tensors, transforming rotation to circular shift and (d) application of the

magnitude response of the 2D-DFT to encode invariance to such shifts. (e) This output is reshaped and passed through the final, fully-connected layers

Fig. 1. Comparison of convolution schemes. The domain of filter ‘F’ in the input and its corresponding outputs in the feature map are colored red. That of the rota-

tion of ‘F’ by 225 degrees is colored blue. The local support on the domain for the convolution at a few points for each scheme is shown in gray. Conic convolu-

tion, with rotations of 45 degrees in this example, encodes rotation equivariance without introducing distortion to the support of the filter in the original domain

(unlike the log-polar transform) and without requiring additional storage for feature maps (unlike group convolution). The example shown for group convolution

is the first layer of a G-CNN, mapping from Z
2 to the roto-translation group

i532 B.Chidester et al.
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parameterized by g(r), and which acts on points in Z
2 by matrix

multiplication, i.e. for a given point x ¼ ðu; vÞ 2 Z
2:

gðrÞx ¼
cos

rp
2

� �
�sin

rp
2

� �

sin
rp
2

� �
cos

rp
2

� �
2
6664

3
7775

u

v

2
6664

3
7775: (4)

Let Tg denote the transformation of a function by a rotation in

G1, where Tgf ðxÞ¢f ðg�1xÞ applies the inverse of g to an element of

the domain of f. For an operation U : F ! F ; F being the set of

K-dimensional functions f on Z
2 (which represent feature maps), to

exhibit same-equivariance, applying rotation either before or after

the operation yields the same result, i.e.

TgUðf Þ ¼ UðTgf Þ: (5)

Quadrant convolution can be interpreted as weighting the con-

volution for each rotation with a function x : Z2 ! ½0;1� that sim-

ply ‘selects’ the appropriate quadrant of the domain. The weighting

function for the first quadrant is defined as:

xðu; vÞ¢

1 u > 0; v > 0;
1

2
u ¼ 0�v ¼ 0;

1

4
ðu; vÞ ¼ ð0; 0Þ;

0 else:

8>>>>><
>>>>>:

(6)

Since the origin does not strictly belong to a particular quadrant,

it is handled by averaging the response of the filter at all four rota-

tions. Boundary values are averaged over the responses of the neigh-

boring regions. The appropriate weighting function for other

quadrants is just a rotation of x (i.e. Tgx) by the appropriate angle.

The output of the layer is then given by:

Uðf Þ¢
X
g2G1

½Tgx�½½Tg/� � f �: (7)

In our notation, parenthesis convey the parameter of a function,

whereas square brackets merely clarify the order of operations.

Example convolutional regions with appropriate filter rotations are

shown in Figure 1.

Note that the equivariance property is established (see

our detailed proof in the Supplementary Material)

independent of the definition of x, yet its definition will greatly

influence the performance of the network. For example, if x is

simply the constant 1/4, it is equivalent to merely averaging the

filter responses.

2.3 Generalization to conic convolutional layers
The above formulation can be generalized to conic convolution in

which the rotation angle is decreased by an arbitrary factor of p
2R,

for some positive integer R, instead of being fixed to p
2. Rather

than considering quadrants of the domain, we can consider conic

regions emanating from the origin and their boundaries, defined

by:

C ¼ ðx; yÞ 2 Z
2
þ : 0 < arccotðx=yÞ < p

2R

� �
; (8)

B ¼ ðx; yÞ 2 Z
2
þ : arccotðx=yÞ 2 0;

p
2R

� �� �
: (9)

The weighting function is changed to have value one only over

this conic region:

xRðu; vÞ¢

1 ðu; vÞ 2 C;
1

2
ðu; vÞ 2 B;

1

4R
ðu; vÞ ¼ ð0; 0Þ;

0 else;

8>>>>><
>>>>>:

(10)

of which x1 ¼ x is a special case.

If we consider feature maps to be functions over the continuous

domain R
2 instead of Z

2 and define the group GR, with

parameterization:

gRðrÞx ¼
cos

rp
2R

� �
�sin

rp
2R

� �

sin
rp
2R

� �
cos

rp
2R

� �
2
6664

3
7775

u

v

2
6664

3
7775; (11)

for r 2 f0; 1; . . . ;4R� 1g and x ¼ ðu; vÞ 2 R
2, it is easy to show

similarly as above that

URðf Þ¢
X
g2GR

½TgxR�½½Tg/� � f � (12)

is equivariant to GR.

However, due to subsampling artifacts when discretizing R
2 to

Z
2, as in an image, rotation equivariance for arbitrary values of R

cannot be guaranteed and can only be approximated. In particular,

the filters will have to be interpolated for rotations that are not a

multiple of p
2. In our experiments when applying CFNet, we chose

nearest neighbor interpolation, which preserves the energy of the fil-

ter under rotations. This defect notwithstanding, it can be shown

that conic convolution maintains equivariance to rotations of p
2, and

as we found in our experiments, the approximation of finer angles

of rotation can still improve performance. Additionally, we note

that R need not be the same for each layer, and it may be advanta-

geous to use a finer discretization of rotations for early layers, when

the feature maps are larger, and gradually decrease R.

A note must be made about subsequent nonlinear operations for

a convolutional layer. It is typical in convolutional networks to per-

form subsampling, either by striding the convolution or by spatial

pooling, to reduce the dimensionality of subsequent layers. Again,

due to downsampling artifacts, rotational equivariance to rotations

smaller than p
2 is not guaranteed. However, given that the indices of

the plane of the feature map are in Z
2 and are therefore centered

about the origin, a downsampling of D 2 Z>0 can be applied while

maintaining rotational equivariance for rotations of p
2, regardless of

the choice of R. After subsampling, the result is passed through a

non-linear activation function r : R! R, such as ReLU, with an

added offset ck 2 R.

2.4 Computational efficiency of conic convolution
In CFNet, the response for each rotation in conic convolution is

only needed over its corresponding conic region. However, since

GPUs are more efficient operating on rectangular inputs, it is faster

to compute the convolution over each quadrant in which the conic

region resides. The output of conic convolution can be achieved by

convolving over the corresponding quadrant, multiplying by the

weighting function, summing the responses in each quadrant to-

gether, and then concatenating the responses of quadrants. For the

special case of quadrant convolution, this process incurs negligible

additional computation beyond standard convolution. Additionally,

conic convolution produces only one feature map per filter as in

standard convolution and therefore incurs no additional storage

costs, in contrast to G-CNN and cyclic slicing, which both produce
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one map per rotation (Cohen and Welling, 2016; Dieleman et al.,

2016), and two for RotEqNet, one for the filter response and one

for the orientation (Marcos et al., 2017).

2.5 Rotation-invariant transition using the magnitude of

the 2D-DFT
After the final convolutional layer of a CNN, some number of fully-

connected layers will be applied to combine information from the

various filter responses. In general, fully-connected layers will not

maintain rotation equivariance or invariance properties.

Commonly, convolution and downsampling are applied until the

spatial dimensions are eliminated and the resulting feature map of

the final convolutional layer is merely a vector, with dimension

equal to the number of filters.

Rather than encoding invariance for each filter separately, as in

most other recent works (Cohen and Welling, 2016; Weiler et al.,

2018), in CFNet we consider instead to transform the collective fil-

ter responses to a space in which rotation becomes circular shift so

that the 2D-DFT can be applied to encode invariance. The primary

advantage of the 2D-DFT as an invariant transform is that each out-

put node is a function of every input node, and not just the nodes of

a particular filter response, thereby capturing mutual information

across responses.

Since the formulation of this transition involves the DFT, which

is defined only for finite-length signals, we switch to represent fea-

ture maps as tensors, rather than functions. We denote the feature

map generated by the penultimate convolutional layer by

f 2 R
M�M�K, where M 2 Z>1.

At the transition to fully-connected layers, the input f is

passed through N fully-connected filters, /ðnÞ 2 R
M�M�K;

n 2 f0;1; . . . ;N � 1g. The operation of this layer can be interpreted

as the inner product of the function and filter, h/ðnÞ; f i. If we again

consider rotations of the filter from the group GR,

Wðn; rÞ¢hTgRðrÞ/
ðnÞ; f i; (13)

this is equivalent to the first layer of a G-CNN, mapping from the

spatial domain to GR (though this group does not include the trans-

lation group since the convolution is only applied at the origin), and

rotations of the final convolutional layer f will correspond to permu-

tations of GR, which are just circular shifts in of the second dimen-

sion of the matrix W.

The magnitude response of the 2D-DFT is applied to W to trans-

form these circular shifts to an invariant space:

jDFT fWgjðn; rÞ ¼
XN�1

n0¼0

X4R�1

r0¼0

Wðn0; r0Þe�j2p n0n
N þr0r

4Rð Þ
�����

�����: (14)

This process of encoding rotation invariance corresponds to the

‘Convolutional-to-Full Transition’ in Figure 2. The result is then

vectorized and passed into fully-connected layers that precede the

final output layer, as in a standard CNN.

In addition, the 2D-DFT, as a rotation invariant transform, can

also be integrated into other rotation-equivariant networks, such as

G-CNN. At the final layer of a fully-convolutional G-CNN, since

the spatial dimension has been eliminated through successive convo-

lutions and spatial downsampling, rotation is encoded along con-

tiguous stacks of feature maps f 2 R
N�4 of each filter at four

rotations. In this way, rotations similarly correspond to circular

shifts in the final dimension. This representation W is then passed

through the 2D-DFT, as in Eqn. 14.

3 Results

3.1 Application to rotated MNIST
We first used the rotated MNIST dataset (Larochelle et al., 2007),

which has been utilized as a benchmark for previous works on ro-

tation invariance, to place CFNet against results previously

reported for G-CNN. The model was trained on 10 000 images,

using training augmentation of rotations of arbitrary angles as in

(Cohen and Welling, 2016) (Though the paper (Cohen and

Welling, 2016) did not state the use of training augmentation,

code posted by the authors at https://github.com/tscohen/gconv_

experiments indicates that rotations of arbitrary angles were

used.), and the best model parameters were selected based on

scores on a validation set of 5000 images. Our best CFNet archi-

tecture consisted of six conic convolution layers, with R¼2 for the

first three and R¼1 for the next three, followed by the DFT transi-

tion and an output softmax layer of 10 nodes. Filters were three

pixels in size, with 15 filters per layer, and spatial max-pooling

was applied after the second layer. This architecture was similar in

terms of number of layers and filters per layer as that of the G-

CNN of (Cohen and Welling, 2016). As shown in Table 1, on a

held-out set of 50 000 test images, CFNet achieved a 25% reduc-

tion in test error over G-CNN. To evaluate the G-CNN with the

DFT, the only changes we made from the reported architecture for

G-CNN was to reduce the number of filters for each layer to 7, to

offset the addition of the 2D-DFT, which was applied to the out-

put of the final convolutional layer. Incorporating the DFT transi-

tion into G-CNN further reduces the test error by 13%. These

results demonstrate in a standard setting the value of incorporating

mutual rotational information between filters, through the DFT,

when encoding invariance and the added value of conic

convolution.

3.2 Application to synthetic biomarker images
To precisely evaluate the advantage of encoding rotation equivar-

iance, we created a set of synthetic microscopy images in which we

could explicitly control the manifestation of rotations and intra-

and inter-class variation. We utilized Gaussian-mixture models

(GMMs), which have been used previously to emulate real-world

fluorescence microscopy images of biological signals (Zhao and

Murphy, 2007). Examples of synthetic images from across and

within classes are shown in Figure 3a and b. Specifically, we

defined 50 distribution patterns and generated 50 and 100 exam-

ples per class for training and 200 examples per class for testing.

Each image consists of points sampled from several Gaussians,

which have mean and variance defined by their particular class.

Some intensity fluctuation, exponential noise and jitter are incor-

porated into the generating model to add variation. The image size

was 50 pixels. A batch size of 50 examples, a learning rate of

5� 10�3 and a weight decay ‘2 penalty of 5� 10�4 were used dur-

ing training. We used the Adam optimizer and decreased the

Table 1. Test error on the rotated MNIST dataset

Algorithm Test error (%)

Cohen and Welling (2016) (CNN) 5.03

Schmidt and Roth (2012) 3.98

Cohen and Welling (2016) (G-CNN) 2.28

G-CNN þ DFT 2.00

CFNet 1.75
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learning rate by 0.95 every few epochs. To help all methods, we

augmented the training data by rotations and random jitter of up

to three pixels, as was done during image generation. A more

detailed description of the approach for generating the synthetic

images is provided in the Supplementary Material.

Classification accuracies on the test dataset over training steps

for various numbers of training samples, denoted by N, for several

methods are shown in Figure 3c and d. A variety of configurations

were trained for each network, and each configuration was trained

three times. The darkest line shows the accuracy of the configuration

that achieved the highest moving average, with a window size of

100 steps, for each method. The spread of each method, which is the

area between the point-wise maximum and minimum of the error, is

shaded with a light color, and three standard-deviations around the

mean is shaded darker.

We observed a consistent trend of CFNet outperforming G-

CNN, which in turn outperforms the CNN, both in overall accuracy

and in terms of the number of steps required to attain that accuracy

Figure 3c and d. Additionally, the spread of CFNet is mostly above

even the best performing models of G-CNN and the CNN, demon-

strating that an instance of CFNet will outperform other methods

even if the best set of hyperparameters has not been chosen. We also

included a network consisting of conic convolutional layers, but

without the DFT, noted as ‘CNet’ (Fig. 3), to show the relative ad-

vantage of the DFT. CNet performs comparably to the standard

CNN while requiring significantly less parameters to attain the same

performance, though the true advantage of conic convolution is

shown when integrated with the DFT to achieve global rotation in-

variance. In comparison, including the 2D-DFT increases the per-

formance of G-CNN, to a comparable level with CFNet, though it

does not train as quickly.

3.3 Application to subcellular protein localization

images in budding yeast cells
To further demonstrate the advantage of rotation equivariant archi-

tectures and CFNet, we evaluated the models on real microscopy

images of budding yeast cells generated from Kraus et al. (2017),

which were collected as follow-up analysis of the data from Chong

et al. (2015) and are more challenging, since they include more sub-

classes. In this dataset, cells were first modified by homologous re-

combination and SGA protocol to express fluorescent markers and

GFP fusion query proteins. The cells were then transferred into 384-

well plates and ten images (1338�1003 pixels) were taken per plate

per channel. As shown in Figure 4, each image consists of a single or

few cells and three stains, where blue shows the cytoplasmic region,

pink the nuclear region and green the protein of interest. The classi-

fication for each image is the subcellular compartment in which the

protein is localized and expressed, such as the cell periphery, mito-

chondria, or eisosomes, some of which exhibit very subtle differen-

ces. Our goal therefore is to predict the protein localization for a

given image.

We compared the performance of CFNet with G-CNN and a

standard CNN. Figure 4b and c shows the results of each method

for classifying the protein localization for each image. To compare

with DeepLoc (Kraus et al., 2017), we used the same reported

architecture and hyperparameters for the CNN. For CFNet and G-

CNN, we removed the last convolutional layer and reduced the

number of filters per layer by roughly half to offset for encoding of

equivariance and invariance. The same training parameters and

data augmentation were used as for the synthetic data, except that

a dropout probability of 0.8 was applied at the final layer and the

maximum jitter was increased to five pixels, since many examples

were not well-centered. For each method, several iterations were

run, and the spread and the best performing model is shown. We

found that CFNet consistently outperforms G-CNN and the stand-

ard CNN representing DeepLoc, when the number of training

examples per class is either 50 or 100 (see Fig. 4b and c), demon-

strating that the gains of the 2D-DFT and conic convolution trans-

late to real-world microscopy data. We note that the best reported

algorithm that did not use deep learning, called ensLOC (Chong

et al., 2015; Koh et al., 2015), was only able to achieve an average

precision of 0.49 for a less challenging set of yeast phenotypes and

with �20 000 samples, whereas all runs of CFNet achieved an

average precision of between 0.60 and 0.67 with �10% of the

data used for training.

We further analyzed the variation of performance for different

protein localization labels (Fig. 4d). CFNet outperforms CNN on al-

most all classes. For instance, CFNet improves the accuracies on ‘nu-

clear periphery’, ‘nucleolus’, ‘nucleus’ and ‘punctate nuclear’ by 10,

14, 7 and 14%, respectively. Nucleolus and punctate nuclear are

both structures inside the nucleus and their only difference is that

punctate nuclear is generally smaller and rounder, which is rather

subtle and CNN misassigns 13% of proteins that are in punctate nu-

clear with label ‘nucleolus’. In contrast, CFNet decreases this misas-

signment to less than 5%. However, we also observed a few classes

in particular for which CFNet could be further improved. For ex-

ample, we found that CFNet tends to confuse the class ‘bud’ and

‘budding periphery’, likely because many proteins are present in

both locations. Nevertheless, the application of CFNet to the

(a)

(c) (d)

(b)

Fig. 3. Comparison of the results of CFNet, CNet (network with conic convolution but without the DFT), G-CNN, G-CNNþDFT and a standard CNN on the synthetic

biomarker images. (a, b) Example images, shown as heat maps for detail, showing inter- and intra-class variation. The results with varying numbers N of training

examples per class are in (c, d)
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subcellular protein localization data demonstrates the effectiveness

of the method.

One of the most significant advantages of CFNet, especially for

biological knowledge discovery, is its interpretability. Figure 5

shows the activations of two particular filters from both CFNet and

CNN at their third layer for example images of ‘nucleus’ and ‘nu-

clear periphery’ localizations, two classes that are challenging to dif-

ferentiate. Since rotations of the input correspond directly to

rotations of the output of conic convolution, as seen, the activations

of the learned features do not change, except for rotating, thereby

eliminating rotation as a confounding source of variation. It is im-

portant to note that even for rotations of 45 degrees, which conic

convolution with R¼2 approximates, the activations are noticeably

similar. Conversely, the activations for the standard CNN signifi-

cantly change based upon the orientation of the image. This is espe-

cially apparent for the activation of filter 1 for the nucleus sample,

which has a high response at the nucleus that splits in half under 90

degree rotation. We also observe that the activation of the CNN’s

filter 2 for the nuclear periphery sample only outlines the upper right

boundary of the nucleus, since it is applied only at a specific orienta-

tion, whereas filter 1 of CFNet outlines the entire nucleus. The prop-

erty of equivariance of conic convolution drastically enhances the

ability to distinguish biological meaning of the learned representa-

tion from uninformative rotation.

4 Discussion

In this work, we explored the application of rotation equivariant

and invariant neural networks to analyze cellular images. We have

demonstrated the effectiveness of enforcing rotation equivariance

and invariance in CNNs by means of the proposed conic

convolutional layer and the 2D-DFT, even for group convolution. In

addition, by applying our methods to a dataset of subcellular protein

localizations, we showed that rotation equivariant models outper-

form the standard CNN and, in particular, CFNet with both conic

convolutional layer and the 2D-DFT performs the best in our

evaluations.

There are a few directions that we can further improve our mod-

els. For example, CFNet could be potentially further improved by

incorporating steerable filters (Freeman and Adelson, 1991; Liu

et al., 2014) for convolution, as was done in (Weiler et al., 2018), to

enhance group-equivariant convolution and in Worrall et al. (2017),

which allow for finer sampling of rotations of filters without induc-

ing artifacts. Further evaluations would be needed to thoroughly as-

sess these new approaches. Additionally, in the future, we intend to

apply CFNet to full micrograph screens in a multiple-instance learn-

ing setting, as was done for CNNs in (Kraus et al., 2016), since this

is the setting with potentially more microscopy data and

applications.

We believe that the proposed enhancements to the standard

CNN will have much utility for future applications in many problem

settings, in particular, high-throughput molecular and cellular imag-

ing data, where training data is usually sparse, especially for rare cel-

lular events. One of the most exciting frontiers in current biomedical

research is to understand different cellular identities at single cell

resolution, their functions and their compositions in different con-

texts, including various human tissues. With the datasets from large-

scale projects such as the ongoing Human Cell Atlas (Rozenblatt-

Rosen et al., 2017) and the Human BioMolecular Atlas Program

(HuBMAP) becoming available, our methods have the potential to

complement existing approaches to more effectively analyze high-

throughput cellular images.

(a)

(b)

(c)
(d)

Fig. 4. Evaluation results based on subcellular protein localization images from Chong et al. (2015). (a) Example images. (b–c) Comparison results of CFNet, G-

CNN and a standard CNN with varying numbers N of training examples per class. (d) Confusion matrix for the results for CFNet (X-axis) as compared to the true

labels (Y-axis)
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Fig. 5. Visualization of learned features of CFNet and CNN. Example images with protein localized (a) in the nucleus and (b) at the nuclear periphery. (c)

Activations of two particular filters from the third layer in CFNet (top row) and CNN (bottom row) for each input rotated by 0, 45 and 90 degrees
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