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A B S T R A C T   

Objective: Using bioinformatics machine learning methods, our research aims to identify the potential key genes 
associated with Lung adenocarcinoma (LUAD). 
Methods: We obtained two gene expression profiling microarrays (GSE68571 and GSE74706) from the public 
Gene Expression Omnibus (GEO) database at the National Centre for Biotechnology Information (NCBI). The 
purpose was to identify Differentially Expressed Genes (DEGs) between the lung adenocarcinoma group and the 
healthy control group. The limma R package in R was utilized for this analysis. For the differential gene diagnosis 
of lung adenocarcinoma, we employed the least absolute shrinkage and selection operator (LASSO) regression 
and SVM-RFE screening crossover. To evaluate the performance, ROC curves were plotted. We performed 
immuno-infiltration analysis using CIBERSORT. Finally, we validated the key genes through qRT-PCR and 
Western-blot verification, then downregulated MMP17 gene expression, upregulated SH3GL2 gene expression, 
and performed CCK8 experiments. 
Results: A total of 32 Differentially Expressed Genes (DEGs) were identified. Two diagnostic marker genes, 
SH3GL2 and MMP17, were selected by employing LASSO and SVM-RFE machine learning methods. In Lung 
adenocarcinoma cells, the expression of MMP17 was observed to be elevated compared to normal lung epithelial 
cells in the control group (P < 0.05). In contrast, a down-regulation of SH3GL2 was found in Lung adenocar-
cinoma cells (P < 0.05). Finally, we downregulated MMP17 and upregulated SH3GL2 gene expression, then the 
CCK8 showed that the proliferation of both lung cancer cells was inhibited. 
Conclusion: SH3GL2 and MMP17 are expected to be potential biomarkers for Lung adenocarcinoma.   

1. Introduction 

Lung cancer, an ominous disease associated with staggering 
morbidity and fatality rates, has captured substantial interest among the 
worldwide medical community in the realm of contemporary healthcare 
[1]. According to the World Health Organization, lung cancer is one of 
the most common cancers in the world and the leading type of cancer 
causing death. The morbidity and mortality of this disease is high 
worldwide, especially in developing countries [1–3]. Lung cancer is 
categorized into two primary pathological types: non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC, which con-
stitutes approximately 85% of all lung cancers, is the prevailing subtype 
[4], and it is the most prevalent form of cancer affecting the lungs. 

Non-small cell lung cancer (NSCLC) comprises various subtypes such as 
squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. 
Among these, lung adenocarcinoma is the most frequent subtype of 
NSCLC, constituting approximately 40% of all lung adenocarcinoma 
cases, which originates in the glands or secretory tissues of the lungs [5, 
6]. 

Common symptoms of lung adenocarcinoma may involve persistent 
cough, bloody sputum, chest discomfort, and expiratory dyspnea. 
Confirmation of the diagnosis typically relies on imaging tests like CT or 
MRI scans, as well as a lung biopsy. Treatment options encompass sur-
gical intervention, radiotherapy, chemotherapy, or targeted therapy [7, 
8]. Lung adenocarcinoma is significantly associated with smoking, 
however, numerous individuals who have never smoked also develop 
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this type of Lung adenocarcinoma [9]. Numerous obstacles persist in 
diagnosing and treating lung adenocarcinoma from a clinical standpoint 
[10]. The absence of obvious symptoms in the early stages of lung 
adenocarcinoma frequently leads to patients being diagnosed in 
advanced stages. Nevertheless, treatment results differ among in-
dividuals due to disease intricacies and individual variances. Conse-
quently, unearthing additional biological indicators for lung 
adenocarcinoma represents an imperative scientific quandary. 

Generally, bioinformatics certainly helps as the state-of-the-art tool 
for evaluation of huge loads of omics datasets to analyze biomarkers of 
various diseases. It has a significant impact on the research of lung 
adenocarcinoma in recent years, as well. The identification of key genes 
and signalling pathways relevant to the development of this disease can 
be achieved by examining the gene expression profiles of patients with 
lung adenocarcinoma [11]. Bioinformatics analysis has had a significant 
impact on the research of lung adenocarcinoma in recent years. The 
identification of key genes and signaling pathways relevant to the 
development of this disease can be achieved by examining the gene 
expression profiles of patients with lung adenocarcinoma [12]. In 
addition, machine learning methods play an important role in lung 
adenocarcinoma research [13]. Machine learning, as an artificial intel-
ligence method, leverages extensive data analysis to anticipate unfa-
miliar scenarios [14,15]. Machine learning can be employed in lung 
adenocarcinoma studies to anticipate the likelihood of developing lung 
cancer, progression of the disease, and the effectiveness of treatment. 
This offers a foundation for making clinical decisions in the field [16, 
17]. Machine learning is an artificial intelligence technique that can 
predict unknown situations by learning and analysing large amounts of 
data. Machine learning is a branch of artificial intelligence that enables 
computers to learn by building mathematical models to analyze data 
without explicit programming. In the screening of tumor markers, ma-
chine learning can process and analyze a large number of complex 
biological information data, such as genome data, proteome data and 
metabolome data, so as to identify molecular markers closely related to 
the occurrence and development of tumors [17,18]. In this research, an 
initial application of bioinformatics was employed to investigate the 
biomarkers related to lung adenocarcinoma as well as to forecast po-
tential key genes associated with this particular form of cancer. 
Furthermore, the validation of these key genes was conducted on lung 
cancer A-549 cells using qRT-PCR. The findings obtained from this study 
offer valuable insights into potential molecular targets that can aid in 
the early diagnosis and immunotherapy of lung adenocarcinoma. 
Consequently, this research is anticipated to present novel perspectives 
and broad prospects for the contemporary medical management of lung 
adenocarcinoma. 

2. Materials and methods 

2.1. Materials 

2.1.1. Experimental cells 
human lung adenocarcinoma A-549 and NCL-H1229 cells were 

purchased from the cell bank of the Chinese Academy of Sciences, and 
human normal lung epithelial BEAS-2B cells were preserved and sup-
plied by the Stem Cell Research Institute of the General Hospital of 
Ningxia Medical University. 

2.1.2. Main reagents and instruments 
RPMI-1640 medium (Thermo Fisher, USA); DMEM medium (Per-

noside, China); fetal bovine serum (Gibco, USA); tryptic digestion so-
lutions,(BI, Israel); penicillin and streptomycin (Solepol, China); PBS 
(Hyclone, China); the antibodies to MMP17 and SH3GL2 were pur-
chased from Zenbio(China); reverse transcription kit (TransGen Biotech, 
China); Real-time PCR reagents (TransGen Biotech, China); CO2 incu-
bator (Thermo Fisher, USA); primers (Sangong, Shanghai); micro 
benchtop centrifuge (Eppendorf, Germany); fluorescent quantitative 

PCR instrument (Applied Biosystems) (Jena Analytical Instruments AG, 
Germany). 

2.2. Downloading and organising data 

Data from the Gene Expression Omnibus (GEO) database were 
adopted for the analysis. Specifically, scRNA-seq data (GSE68571) and 
microarray expression profiles (GSE74706) of lung adenocarcinoma 
samples were accessed(Beer et al., 2002, Marwitz et al., 2016). Bulk 
RNA-seq data (measured in transcripts per million, TPM) for lung 
adenocarcinoma samples were acquired from The Cancer Genome Atlas 
(TCGA) database on the Sangerbox platform as a complement. Probes 
from the microarray data were annotated to gene symbols using the 
GPL13497 platform to ensure accuracy. Probes that matched multiple 
genes were excluded, and when multiple probes existed for a single 
gene, the average expression was calculated. In total, the dataset 
GSE74706 contained 36 lung adenocarcinoma samples. For the bulk 
RNA-seq data, only lung adenocarcinoma samples with a survival time 
greater than 0 and known survival information were retained. Set IDs 
were converted to gene symbols, with a focus on protein-coding genes. 
The final dataset consisted of 79 lung adenocarcinoma samples and 17 
normal samples from the GEO dataset. The dataset GSE139294, 
including 83 tumor tissues and 83 paired tissues, was used to further 
validate the selected genes. UCSC XENA (https://xenabrowser.net/d 
atapages/) by the Toil process unified handling TCGA and GTEx FPKM 
RNAseq data format. The corresponding TCGA data and the corre-
sponding normal tissue data in GTEx were extracted. GSE139294 and 
TCGA datasets were used as external datasets to validate the expression 
of the selected biomarkers. Each dataset sourced from the GEO database 
was appropriately normalized and annotated with a unique ID based on 
platform information. The analysis integrated both datasets as an 
collection. 

2.2.1. Lung adenocarcinoma differential gene screening 
For GSE68571 and GSE74706, we utilized data normalization and 

probe annotations derived from the R software’s "limma" and "GEO-
query" packages (version 4.2.1) [19]. We applied a DEGS filter criteria, 
requiring a p-value 1, to ensure consistency and reliability. For duplicate 
detection, we scrutinized the text for any 13 consecutive identical 
words. 

2.2.2. Screening and prognostic analysis of HUB genes based on machine 
learning method 

The identification of signature gene clusters associated with lung 
adenocarcinoma was conducted through the use of Logistic Regression 
with Least Absolute Shrinkage and Selection Operator (LASSO) and 
Support Vector Machine Recursive Feature Elimination (SVM RFE) 
techniques. LASSO regression and SVM RFE are known for their ability 
to screen variables and adjust in complexity when fitting a generalized 
linear model [20]. Regularization is used to impose shrinkage penalties 
on the coefficients, aiming to restrict their values. This approach en-
hances the interpretability of the model to some extent by employing the 
summation of absolute weights of all features. Moreover, the technique 
called Support Vector Machine (SVM), a form of machine learning, is 
leveraged to identify the optimal variables [21]. SVM accomplish this by 
eliminating the feature vectors generated during its operation. Conse-
quently, the identified genes undergo scrutiny for differential gene 
diagnosis of lung adenocarcinoma. This analysis involves plotting the 
subject’s work characteristics using Receiver Operating Characteristic 
(ROC) curves. The screened genes are considered to be the hub genes for 
lung adenocarcinoma. Subsequently, proportional risk hypothesis 
testing and fitted survival regressions are performed on the two central 
genes using the survival package. The outcomes are then visualized 
using both the survminer package and the ggplot2 package. Further-
more, proportional risk hypothesis testing and Cox regression analyses 
are conducted using the survival package. Additionally, histogram 
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correlation models are constructed and visualized using the rms pack-
age, accompanied by calibration analyses and visualizations. 

Using the glmnet function of the glmnet package, the gene expres-
sion data and sample labels were entered, and the appropriate regula-
rization parameter alpha (alpha = 1 for LASSO regression) was selected. 
The optimal lambda for regularization strength was selected by cross- 
validation, using the cv.glmnet function, a step to prevent model over-
fitting while ensuring the best predictive performance of the model. 
According to the selected optimal lambda value, the model will auto-
matically screen out the feature genes that are important for the diag-
nosis of lung adenocarcinoma. The svm model was trained using the 
SVM function of the e1071 package. In combination with the RFE 
method, the features with the smallest absolute value of the weight 
coefficients were removed step by step, and the SVM model was 
retrained after each iteration until a predetermined number of features 
was reached or the stopping condition was satisfied. The final retained 
features were the key genes of great significance for the diagnosis of lung 
adenocarcinoma. The genes selected by LASSO and SVM-RFE were 
cross-aligned. Based on the selected signature genes and the corre-
sponding sample labels, the data for ROC analysis were prepared. roc 
curves were calculated using the ROC function of the pROC package, 
and ROC curves were plotted using the plot function. Cox proportional- 
hazards model analyses were performed using the coxph function of the 
survival package. Survival curves were drawn using the ggsurvplot 
function of the survminer package to visually show the effects of 
different gene expression levels on survival time. Model calibration was 
performed using the calibrate function of the rms package to assess the 
accuracy of model predictions. Cross-validation was performed using 
the validate function to evaluate the stability and reliability of the 
model. With the rms package, we can construct a nomogram containing 
MMP17 and SH3GL2 based on a multivariate Cox regression model to 
predict the survival probability of patients with lung adenocarcinoma. 
To evaluate the prediction accuracy of the nomogram, we need to make 
a prognostic calibration curve, which can be implemented by the cali-
brate function. 

2.2.3. Immune infiltration analysis 
CIBERSORTx is a web-based tool (https://cibersortx.stanford.edu/) 

writed in the R programming language. It utilizes linear support vector 
(LVR) regression principles for deconvolution expression matrices of 
various human immune cell subtypes. By incorporating a collection of 
gene expression signatures specific to 22 well-established immune cell 
subtypes, CIBERSORTx allows for the evaluation of immune cell infil-
tration levels in sequenced samples. 

2.2.4. Cell culture 
A549 and NCL-H1229 are human adenocarcinoma cells found in the 

lungs, and BEAS-2B, a type of normal lung epithelial cells, were grown in 

a constant temperature incubator at 37 ◦C with 5% CO2. A549 and NCL- 
H1229 were cultured in RPMI-1640 medium supplemented with 10% 
FBS, 105 units per liter of penicillin and streptomycin with dual resis-
tance. On the other hand, BEAS-2B cells were cultured in DMEM me-
dium supplemented with 10% FBS, 105 units per liter of penicillin and 
streptomycin with dual resistance. Both cell lines were regularly 
passaged when they reached approximately 80% confluence. The 
DMEM medium was also supplemented with double antibody. 

2.2.5. Real-time fluorescence quantitative polymerase chain reaction 
detection of target gene expression levels 

The cells from both the control group and the lung adenocarcinoma 
group were gathered and the total RNA of each group was extracted. 
Subsequently, the RNA underwent reverse transcription to form cDNA. 
Real-time fluorescence quantitative polymerase chain reaction was then 
conducted to detect the mRNA expression level of the target genes. The 
reaction was initiated at 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C 
for 15 s and 60 ◦C for 30 s. These amplification conditions were utilized 
while GAPDH served as an internal reference (reference gene). The 
statistical analysiswere performedwith the 2-ΔΔCt calculation method. 
The primer sequences and product lengths of the genes employed in this 
investigation can be found in Table 1. We made full use of the NCBI (. 
https://blast.ncbi.nlm.nih.gov/Blast.cgi) database to test the specificity 
of our designed primers, and we found that two gene primers of MMP17 
and SH3GL2 had certain specificity, which could be used in our next 
experiment. https://blast.ncbi.nlm.nih.gov/Blast.cgi. 

2.2.6. Western-blot assay 
Proteins were extracted from cells by using RIPA Lysis Buffer 

(Beyotime, China) supplemented with a cocktail of protease inhibitors 
(Beyotime, China) after rinsing cells three times with cold PBS. The ly-
sates were then subjected to centrifugation at 12,000×g at 4 ◦C for 5 
min. Next, the isolated protein samples were mixed with sample buffer 
and boiled for 5 min at 100 ◦C. The total protein concentrations were 
determined using a bicinchoninic acid protein assay kit (Beyotime, 
Jiangsu, China). Equivalent amounts of protein samples were separated 
by SDS-PAGE and transferred onto PVDF membranes (Millipore, Sigma, 
USA). After blocking with 5% skimmed milk, the membranes were 
incubated with the following antibodies: MMP17 (1:1000, Zenbio), 
SH3GL2 (1:1000, Zenbio), and β-Tubulin (1:1000, Solarbio). The 
membranes were then incubated with appropriately HRP-conjugated 
secondary antibodies (1:5000) and extensively rinsied with TBST. 
Immunoreactive bands were detected using a chemiluminescence kit 
(ECL Substrate kit; Abclonal, China), and the protein bands were 
captured using the Amersham Imager 6000 (GE Healthcare). 

2.2.7. siRNA transfection 
1 × 106 lung adenocarcinoma cells (A-549 and NCL-H1229) were 

seeded per well in 6-well plates one day prior to transfection. The 
transfection of small interfering RNAs (siRNA) was carried out using 
Lipofectamine™ RNAi MAX reagent as per the manufacturer’s in-
structions. Briefly, the culture medium was replaced with Opti-MEM 
(Invitrogen, USA), and a mixture of Lipofectamine RNAiMax and 
siRNA duplexes was added to form siRNA-lipid complexes. This mixture 
was then incubated with RAW264.7 macrophages at 37 ◦C in a CO2 
incubator for an additional 24 h. The expression levels of the genes of 
interest were assessed using Western blot assays. The siRNA used for 
transfection was obtained from GenePharma Co. Ltd (Shanghai, China), 
the siRNA sequences targeting MMP17(si-MMP17) listed in Table 2. 

2.2.8. SH3GL2 overexpression 
A-549 and NCL-H1229 cells were seeded in a 6-well plate at equal 

densities and transfected individually with plasmids using Lipofect-
amine 2000 once they reached 80%–90% confluence. (Plasmid was 
provided by company Runyan Ningxia). To prepare the Solution A, 2 μg 
of plasmid per well was diluted in 250 μL OPTI-MEM. For solution B, 5 

Table 1 
Real-time fluorescence quantitative polymerase chain reaction primer 
sequences.  

Gene 
name 

primer sequence Product length 
(bp) 

SH3GL2 FORWARD: 
AAAGTGAGTGAGAAGGTTGGGAGGAG 

148 

REVERSE: TGGAAGCTGGGATTGGGGTTGAAGG 148 
MMP17 FORWARD: AGTGGAGTGGCTAAGCAGGTTC 109 

REVERSE: AAACTGCTGCATGGGCTGTGATG 109  

Table 2 
Sequences of small interfering RNAs against MMP17 gene.  

siRNA Sense (5′-3′) Antisense (5′-3′) 

si-MMP17 GGGUGUUCAAGGACAAUAATT UUAUUGUCCUUGAACACCCTT  

Z. Tian et al.                                                                                                                                                                                                                                     

https://cibersortx.stanford.edu/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Biochemistry and Biophysics Reports 38 (2024) 101693

4

Fig. 1. Research flowchart.  

Fig. 2. Lung adenocarcinoma differential gene expression 
Heat maps (A) and volcano plots (B) of DEGs, red for up-regulated DEGs; green for down-regulated DEGs. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 3. Machine learning-based screening of Hub genes for lung adenocarcinoma (A). Get 32 feature genes with LASSO; (B). Get 8 feature genes with SVM ⁃ RFE; (C). 
Veen diagrams. 
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μL of Lipofectamine 2000 was diluted in 250 μL OPTI-MEM per well. 
Each transfection system was gently mixed and left at room temperature 
for 5 min. Solution B was then added in equal proportions to solution A 
to create C. After gentle mixing and standing for 20 min, solution c was 
added drop by drop into the 6-well plate with cells at 500 μL per well. 

The plate was then placed in an incubator at 37 ◦C and 5% CO2 for 
culture, and used for Western blot experiments 48 h later. 

2.2.9. Assessment of cell viability and proliferation 
A-549 and NCL-H1229 cells were seeded in triplicate in 96-well 

Fig. 4. Feature gene pre-diagnostic efficacy and prognostic analysis (A–B) Lung adenocarcinoma key genes diagnostic efficacy, (C–D) Lung adenocarcinoma key 
genes prognostic analyses KM curve diagram, (E–F) Lung adenocarcinoma key genes expression analysis. 

Fig. 5. Expression levels of MMP17 and SH3GL2 in the validation set (A)Expression of MMP17 and SH3GL2 in paired samples of the GSE139294 validation set.(B) 
Expression of MMP17 and SH3GL2 in unpaired samples of the TCGA validation set. ***P < 0.001. 
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plates (1000 cells per well). After 72 h incubation, 10 μL CCK8 solution 
(AR1160, Boster, China) was added to each well and incubated for 1–4 
h. Absorbance of each well was measured at 450 nm using a microplate 
reader. The percentage of viable cells was determined for each well 
using the following equation: Percentage cell viability = (OD sample - 
OD blank)/(OD control - OD blank) × 100%. 

3. Results 

3.1. Research Flowchart  

3.2. Lung adenocarcinoma differential gene expression 

Our criteria for screening differential genes in lung adenocarcinoma 
were a P-value 1. As a result, we identified 317 genes that exhibited 
differential expression. These findings are depicted in Fig. 2 by volcano 

plot and heat maps, wherein 129 genes were up-regulated and 188 genes 
were down-regulated. 

3.3. Hub gene screening and prognostic nomogram mapping in lung 
adenocarcinoma 

LASSO regression and SVM-RFE algorithms were utilized to identify 
DEGs in lung adenocarcinoma tissues. The LASSO regression model was 
established and cross-validated to obtain the minimum error value with 
32feature genes (Fig. 3A). On the other hand, the SVM-RFE algorithm 
selected 8 feature genes after undergoing cross-validation (Fig. 3B). By 
obtaining the intersection of these two methods, the final machine 
learning process screened the key genes SH3GL2 and MMP17 (Fig. 3C). 
Analyzing the AUC values, it is evident that the AUC value for MMP17 is 
0.743 (Fig. 4B) and for SH3GL2 is 0.897 (Fig. 4A). Both AUC values are 
greater than 0.5, indicating that these genes possess superior diagnostic 
efficacy. Furthermore, survival analysis revealed that the high- 
expression group of SH3GL2 exhibited a better prognosis (Fig. 4C) (P 

Fig. 6. Lung adenocarcinoma feature genes MMP17, SH3GL2 nomogram and prognostic calibration curve (A) COX analysis of key lung adenocarcinoma genes, (B) 
Lung adenocarcinoma key genes column line graph (C) Lung adenocarcinoma key genes calibration curve. 
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< 0.05), whereas the low-expression group of MMP17 displayed a better 
prognosis (Fig. 4D) (P < 0.05). Additionally, there was a significant 
difference in the expression of SH3GL2 and MMP17 between the tumour 
group and the normal group (Fig. 4E and F). Initially, a one-way and 
multifactorial analysis of the two key genes was conducted based on the 
patients’ age in the lung adenocarcinoma dataset, as well as their 
tumour stage. Univariate and multivariate risk regression analyses were 
performed on the patients’ key genes.In order to further screen out the 
candidate biomarkers, we verified the expression of the two candidate 
genes in cancer tissues, adjacent tissues and paired adjacent tissues in 
external datasets TCGA and GSE139294. The results showed that the 
expression of SH3GL2 in cancer tissues was significantly lower than that 
in normal tissues (P < 0.05) (Fig. 5). The expression of MMP17 in cancer 
tissues was significantly higher than that in normal tissues (P < 0.05) 
(Fig. 5). Subsequently, a histogram model was constructed based on the 
key genes SH3GL2 and MMP17, and calibration curves were plotted. 
The calibration curves indicated that the histogram model exhibited 
high accuracy (Fig. 4). 

3.4. Immune infiltration analysis 

In order to investigate changes in immune infiltration among 
different genes associated with lung adenocarcinoma, we employed the 
CIBERSORTx algorithm to analyze the abundance of 22 immune cells in 
samples from the tumor and normal groups These results were then 
visually represented with stacked bar graphs (Fig. 5A). The corheatmap 
(Fig. 5B) indicated significant negative correlations between certain 
groups, such as CD4 memory T cells and CD8 T cells (− 0.81); M2 
macrophages and M0 macrophages (− 0.61); and dendritic cells and M1 
macrophages (− 0.48). In contrast, significant positive correlations were 
observed between activated NK cells and activated mast cells (0.42), as 
well as regulatory T cells (Tregs) (0.21). Moreover, the treatment and 
control groups exhibited significant differences in activated memory 
CD4 T cells, M1 macrophages, and other factors (P < 0.05) (Fig. 5C). 
Furthermore, we analyzed the relationship between immune cells and 
gene expression, focusing on SH3GL2 and MMP17 gene expression 

(Fig. 6). In addition, we analyzed the relationship between immune cells 
and gene expression (Fig. 7). 

3.5. qRT-PCR and Western-blot to verify the expression of core genes 

To investigate the expression levels of SH3GL2 and MMP17, we 
conducted qRT-PCR and Western-blot analyses on the control and lung 
adenocarcinoma groups (Fig. 9). Our findings revealed that MMP17 
exhibited significantly higher expression (P < 0.05) in the lung adeno-
carcinoma group compared with the control group. Conversely, SH3GL2 
showed significantly lower expression (P < 0.05) in the lung adeno-
carcinoma group in comparison with the control group. Subsequently, 
we downregulated MMP17 gene expression and upregulated SH3GL2 
gene expression, then the CCK8 experiment was used to detect the 
proliferation of the two cells. The findings indicated a notable decrease 
in MMP17 protein levels in lung cancer cells compared to the control 
group, leading to suppressed cell proliferation (Fig. 10A and C). 
Conversely, SH3GL2 protein expression was notably elevated, resulting 
in inhibited proliferation of lung adenocarcinoma (Figs. 8 and 10B and 
C). 

4. Discussion 

Lung cancer(LC) is a significant contributor to global mortality, 
responsible for roughly 18 percent of all cancer-related deaths. Among 
the various types of lung cancer, non-small cell lung cancer(NSCLC) is 
the most common form, constituting approximately 90% of all diag-
nosed cases [22]. Lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) are subgroups in the classification of NSCLC, with 
LUAD being more common Multiple variables, such as absence of 
early-stage symptoms, tumor infiltration, and distant metastasis, affect 
the prognosis of patients with LUAD in the mid-to late-stage. The advent 
of biotechnology and precision medicine brings new hope for the ther-
apeutic management of individuals afflicted with LUAD. Several bio-
markers for LUAD have been identified, such as EGFR [23], E17K [24] 
etc., the current treatment of LUAD is mainly through surgical resection, 

Fig. 7. Analysis of immune infiltration in lung adenocarcinoma (A) The number of immune cells in each lung adenocarcinoma sample is depicted by various colors, 
with the bar chart indicating the respective proportions of immune cells. (B) A matrix demonstrating the correlation between the proportions of all 22 immune cells 
displays negative correlations in blue and positive correlations in red. The intensity of the color represents the strength of the correlation (P < 0.05). (C)Comparison 
of the 22 immune cells between the control and treatment groups. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 8. Correlation analysis of SH3GL2 and MMP17 immune infiltrating cells (A).SH3GL2 expression level correlates with immune infiltrating cells; (B).MMP17 
expression level correlates with immune infiltrating cells. 
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radiation and chemotherapy [25]. These advances and improved treat-
ment outcomes only benefit a small portion of LUAD patients, and no 
significant improvements have been observed in the overall survival 
(OS) and progression-free survival of patients. Hence, it is crucial to 
deeply comprehend the underlying mechanisms of LUAD and uncover 
novel biomarkers.This knowledge will play a vital role in prognostica-
tion and devising personalized therapeutic approaches for diagnosed 
LUAD patients. 

Initially, we employed the method of differential gene expression to 
identify genes showing differential expression. Subsequently, a machine 
learning approach was employed to identify two key genes: SH3GL2 and 
MMP17. These genes were then determined to be potential biomarkers 
for lung adenocarcinoma. By subjecting them to working curve analysis, 
we observed an improvement in the diagnostic efficiency of the afore-
mentioned genes. Furthermore, prognostic analysis revealed that the 
SH3GL2 high expression group exhibited a more favorable prognosis, 
whereas the MMP17 low expression group displayed a better prognosis. 
Additionally, it was found that SH3GL2 is down-regulatedin lung 
adenocarcinoma tissues, while MMP17 is up-regulated.These conclu-
sions were confirmed through qRT-PCR and Western-blot experiments. 

In recent years, it has been found that SH3GL2 expression is down- 
regulated in a variety of cancers, such as breast and gastric cancers, 
suggesting that SH3GL2 may play an inhibitory role in cancer devel-
opment [26,27]. In breast cancer, the expression level of SH3GL2 is 
closely related to the degree of tumor differentiation, clinical stage, and 

patient prognosis. Low expression of SH3GL2 is associated with high 
aggressiveness and poor prognosis in breast cancer. In addition, labo-
ratory studies have also shown that the proliferation and invasive ability 
of breast cancer cells can be inhibited by overexpression of SH3GL2, 
suggesting that SH3GL2 may serve as a potential therapeutic target. 
MMP17 expression has been found to be up-regulated in certain types of 
cancers, such as colorectal cancers and melanomas [28,29]. Over-
expression of MMP17 is associated with tumor invasiveness, metastatic 
ability, and poor prognosis of patients. poor correlation. This suggests 
that MMP17 may contribute to cancer progression by promoting tumor 
cell invasion and metastasis to surrounding tissues. However, there is a 
lack of studies on whether SH3GL2 and MMP17 serve as prognostic 
biomarkers in adenocarcinoma of the lung, and we introduce these two 
genes separately below. 

The cellular signal transduction molecule, encoded by the gene 
SH3GL2, are of great importance. SH3GL2 gene is acknowledged as a 
key tumor suppressor gene, playing a vital role in the regulation of cell 
proliferation, migration, and apoptosis [30–34], and its expression is 
down-regulated in many tumour types, including laryngeal cancer, 
breast cance, glioblastoma and so on. In regular circumstances, the 
stability of the intracellular environment is upheld through the inter-
action of SH3GL2 with various proteins. Nevertheless, inhibition of 
SH3GL2 expression can disturb its control over cellular signaling path-
ways, thus facilitating tumor development and advancement [29–35]. 
During the process of tumor immune infiltration, the main significance 

Fig. 9. qRT-PCR and Western-blot to verify the expression of core genes The expression levels of SH3GL2 and MMP17 mRNA were assessed by qRTPCR(A-B) and 
Western-blot(C–F), respectively. All data represent mean ± SD of three independent experiments; *P < 0.05, **P < 0.01, NS, nonsignificant. 
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of SH3GL2 lies in two aspects. Firstly, the activity and functionality of 
immune cells can be influenced by SH3GL2. Several investigations have 
indicated that the decrease in SH3GL2 expression can diminish the T cell 
activity, thereby resulting in a dampened immune response [36]. Using 
database immunoassay, our research has established a positive corre-
lation between the expression of SH3GL2 and T cells, NK cells, eosino-
phils, and other related immune cells. This correlation suggests that 
SH3GL2 possesses the ability to promote tumor suppression by acti-
vating the immune system. Furthermore, SH3GL2 is capable of regu-
lating the function of immune cells by influencing the production and 
release of cytokines. Importantly, our study indicates that the prognosis 
of patients with lung adenocarcinoma is unfavorably associated with a 
decrease in SH3GL2 expression.This may be attributed to the decreased 
expression of SH3GL2 gene, which subsequently enhances the prolifer-
ation and invasion of tumor cells. Additionally, there are studies 
demonstrating a link between low SH3GL2 expression and chemother-
apeutic drug resistance, indirectly indicating a worsened prognosis for 
lung adenocarcinoma patients [37]. We confirmed by in vitro experi-
ments that the expression of SH3GL2 in lung adenocarcinoma cells was 

lower than that in normal lung cells (P < 0.05). 
MMP17, also known as matrix metalloproteinase 17, is a crucial 

component of the matrix metalloproteinase family and has demon-
strated significant involvement in both the advancement and advance-
ment of several tumors [38–40]. he influence of MMP17 encompasses 
the regulation of migration and invasion capabilities of lung adenocar-
cinoma cells, as evidenced by studies highlighting a positive correlation 
between MMP17 expression levels and the migration and invasion po-
tential of these specific cells. The reason for this occurrence may be 
attributed to the degradation capability of MMP17. The degradation 
activity of MMP17 on the extracellular matrix plays a significant role in 
enhancing the migratory and infiltrative properties of lung adenocar-
cinoma cells. The impact of MMP17 extends to the modification of the 
immune microenvironment in lung adenocarcinoma. Additionally, 
MMP17 regulates the polarization process of tumor-associated macro-
phages. Activation of the NF-κB signaling pathway by MMP17 is 
believed to regulate the immune infiltration pattern of lung adenocar-
cinoma [41]. TThe NF-κB transcription factors hold crucial positions in 
controlling the expression of numerous genes that are closely associated 

Fig. 10. SH3GL2 overexpression and MMP17 knockdown suppress the viability of A549 and H1229 (A) shows using si-RNA to downregulate MMP17 and western 
blotting to assess the expression of MMP17 in two lung adenocarcinoma cells. (B) illustrates the overexpression of the SH3GL2 and the subsequent detection of 
SH3GL2 protein expression in two different cells. Lastly, (C) displays the impact of MMP17 knockdown and SH3GL2 overexpression on the proliferation of two lung 
cancer cell lines through a CCK8 experiment. All data represent mean ± SD of three independent experiments; *P < 0.05, **P < 0.01, NS, nonsignificant. 
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with the immune response [43-44]. Our study found that a strong corre-
lation existed between the overexpression of MMP17 and unfavorable 
prognosis in lung adenocarcinoma cases. Additionally, in vitro experi-
ments substantiated this elevated MMP17 expression in lung adeno-
carcinoma cells. 

MMP17 and SH3GL2 are molecules that have gradually gained 
attention in lung adenocarcinoma research in recent years.MMP17 be-
longs to the matrix metalloproteinase family, and proteases of this 
family play a key role in tumor invasion and metastasis. SH3GL2, on the 
other hand, is involved in the regulation of cellular endocytosis and 
signaling, which is closely related to tumor growth, proliferation and 
metabolic regulation. Therefore, an in-depth study of the roles and 
mechanisms of these two molecules in lung adenocarcinoma can help to 
reveal the pathogenesis of lung adenocarcinoma and provide new 
criteria for early diagnosis, treatment and prognosis assessment of the 
disease. Through the study of MMP17 and SH3GL2, more precise diag-
nostic tools and therapeutic methods can be developed, thus improving 
the survival rate and quality of life of lung adenocarcinoma patients. The 
discovery and application of these biomarkers can help physicians more 
accurately assess disease progression and treatment efficacy, and 
develop more personalized treatment plans for patients. 

The study of MMP17 and SH3GL2 has broadened the horizons of 
lung adenocarcinoma research and provided new ideas and directions 
for future scientific research. Understanding the mechanism of action of 
these markers will help develop targeted new drugs and advance the 
field of lung adenocarcinoma treatment. 

Currently, early diagnosis of lung adenocarcinoma is still a chal-
lenge. the study of MMP17 and SH3GL2 may reveal their specific 
expression in the early stages of lung adenocarcinoma and provide new 
markers for early diagnosis. The study of these two molecules could help 
to discover new therapeutic targets and provide a theoretical basis for 
the development of new therapeutic drugs. By analyzing the expression 
patterns of MMP17 and SH3GL2 in different stages of lung adenocarci-
noma, it may help physicians to more accurately assess the prognosis of 
patients. Future studies should explore more deeply the specific mech-
anisms and pathways of the roles of MMP17 and SH3GL2 in the devel-
opment of lung adenocarcinoma. Large-scale preclinical and clinical 
studies are needed to validate the clinical value of these biomarkers, 
including their potential application in diagnosis, treatment and prog-
nostic assessment. 

In summary, by integrating lung adenocarcinoma tissue profiles from 
the GEO database, we have utilized bioinformatics and machine 
learning approaches to determine the biological relevance of relevant 
biomarkers in lung adenocarcinoma. This research has suggested novel 
biomarkers and potential therapeutic targets for lung adenocarcinoma 
diagnosis. Our findings have further supported the association of 
SH3GL2 and MMP17 with lung adenocarcinoma prognosis, thus laying 
the foundation for future precision treatment in lung adenocarcinoma. 
Additionally, this study presents a new avenue for gene therapy in lung 
adenocarcinoma. 
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