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Abstract
Aims: To use a computer simulation model to predict the response time and survival impact of a sample of novel cardiac arrest response systems,

such as those that use cellphone apps to dispatch citizen mobile responders and those that use drones to deliver an AED to the cardiac arrest

location.

Methods: We developed a model which applies a Monte Carlo approach to simulate the response time and predicted survival for cardiac arrest

events within a specific region. We used the model to compare the performance of 4 dierent novel response systems, along with simulated EMS

performance, in Bellevue, Washington. We estimated the 10 year cost for each system, which was utilized together with the system performance

predictions in a cost-benefit analysis.

Results: The best performing systems in the simulation were a mobile responder system capable of providing both CPR and defibrillation, similar to

the PulsePoint verified responder program, as well as a drone AED delivery system with bystander application. Both systems showed an incremental

improvement in survival of 10% over the simulated EMS survival. The systems that provided the best cost-benefit ratio were the mobile responder

system providing only CPR (PulsePoint Respond) and drone systems with bystander application.

Conclusions: Our simulation results suggest that these novel response systems have the potential to substantially improve survival at an ecient

cost.
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Introduction

Over 350,000 out-of-hospital sudden cardiac arrests occur each year

in the United States.1 Out-of-hospital sudden cardiac arrest survival

remains stubbornly low at around 10%,2 due in part to the difficulty of

achieving early defibrillation through the response provided by emer-

gency medical service (EMS). EMS response times are often min-

utes longer than that necessary to achieve high survival rates.3

Automated External Defibrillators (AEDs) have put the tools for early

treatment into the hands of bystanders and other responders who do

not have medical training. Although there are a number of successful

applications of Public Access Defibrillation (PAD) strategies with

AEDs, only 2–5% of out-of-hospital cardiac arrests are treated with

an AED prior to EMS arrival.2,4,5 In many cases, even when an

AED is in the vicinity of a cardiac arrest, it is not used due to difficulty

in locating or retrieving it by a bystander.5 Additionally, about 70% of

cardiac arrests occur in private residences,2 although few AEDs are

located in homes. New response system concepts are being pro-

posed, tested, and implemented to augment the EMS response to

cardiac arrests with citizen responders to provide early CPR and

defibrillation treatment. These response systems share the objective

of bringing the AED and treatment to the cardiac arrest location,

rather than relying on a bystander to initiate the retrieval of a nearby

AED.

One approach is the use of smart phone apps to dispatch citizen

mobile responders within a close radius of the cardiac arrest location,

employing a type of “crowdsourcing” of the initial cardiac arrest

treatment response. One prominent system, PulsePoint,6 is active

in 3992 communities, primarily throughout the United States. Their

volunteer citizen responder network provides CPR to public location

cardiac arrests but relies on EMS to provide defibrillation. PulsePoint
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recently introduced a professional version of their response system,

which has verified responders. These are off-duty first responder

professionals, who are dispatched by the app to both public and pri-

vate locations, and these may carry an AED to provide both defibril-

lation and CPR until EMS arrives. Other mobile responder systems

include GoodSAM in the United Kingdom,7 which is similar to Pulse-

Point, “AED on wheels” in Singapore,8 which equips taxi cabs with

AEDs for a dispatched response, and HartslagNu (Heartsafe Now)

in the Netherlands,9 which directs citizen mobile responders both

directly to the arrest location as well as to nearby PAD AEDs, then

to the arrest location. A second approach is to use drones to deliver

an AED to the cardiac arrest location. These systems dispatch a

drone with an AED in its payload at the same time as EMS dispatch.

The drone’s ability to fly above buildings and take a direct route can

result in significantly shorter response times. A bystander or dis-

patched mobile responder then applies the AED.

These systems, many of which are still in their infancy, have been

used only in a small number of studies and simulated rescues.10–12

Although these new response systems have had sporadic suc-

cesses, their effectiveness remains largely unknown. Modelling

and simulation can be used to predict the performance of new sys-

tems prior to implementation. Although real-world studies may take

months or years to generate sufficient data, modelling and simulation

can provide predictions under many operational strategies and con-

ditions in relatively short time.

Modelling and simulation of cardiac arrest
response

Modelling and simulation methods have been employed since the

1970s to evaluate and improve operational strategies for emergency

response systems. Much of the focus has been on optimizing EMS

systems by optimizing ambulance base locations13–16 and evaluating

strategies to improve availability and response time.17–19

A limited body of modelling and simulation work has been pub-

lished for the emerging systems that augment EMS, and we are

not aware of any studies that have systematically compared emerg-

ing systems. Pulver et al. solved a coverage problem to determine

drone locations in Salt Lake City, Utah,20 while Boutillier et al. opti-

mized drone locations in Toronto using a Markov Chain queueing

model to predict a 3 minute improvement over EMS response.21

Claesson et al. modeled drone locations around Stockholm, Swe-

den, and predicted that a drone would arrive before EMS in 32%

of urban cases and 93% of rural cases.22 Marshall et al. used Monte

Carlo simulation to predict response times of dispatched mobile

responders in Belfast, Ireland.23 The model predicted arrival before

EMS in 19% of cases, while a corresponding trial found 15% of

cases were treated before EMS.

This paper describes a simulation study that we conducted to

estimate the potential effectiveness of these emerging response sys-

tems. Our simulation model predicts the response times and incorpo-

rates the geographical attributes of the region under simulation,

including the locations of existing ambulance bases, the type of road

network in the region, and the effects of weather on the drone

response capability. Our model has the flexibility to simulate a large

diversity of systems and any geographic region. The model also

evaluates the effect of response times on cardiac arrest survival.

The intended purpose of the model is to inform decision-makers on

the potential response time and survival improvements of different

response system concepts. We applied the model to simulate

response times and predicted survival of four novel response sys-

tems, along with a simulated EMS response. Together with a cost

estimate for each system, we provide a cost-benefit analysis, from

which public health decision-makers could find the most efficient

and beneficial option that meets both budgets and community

preferences.

Methods

Study setting

To demonstrate the use of our model to compare the effectiveness of

different systems within a single region, we simulated a region within

the city of Bellevue, Washington, covering 40 sq. km of the city’s 83

sq. km. Bellevue is a city in King County, Washington, lying just east

of Seattle, with a population of 147,000. The city of Bellevue had 85

out of hospital cardiac arrests in 2019, about 20% of which were wit-

nessed and had an initial rhythm of ventricular fibrillation (VF). It is

primarily a suburban city, with a downtown area with a few high-

rise buildings.

Model construction

Our model was constructed to capture the complex sequence of both

transit time and non-transit times which constitute the overall

response time from the 911 call until treatment. A detailed discussion

of the model inputs, data sources, construction, logic, and calcula-

tions can be found in a previous work.24,25 A brief overview is pro-

vided here.

For driving responses, we used an empirically derived Minkowski

distance metric to approximate the actual road network distances (the

Minkowski distance is a generalized distance metric, which in 2

dimensions uses the formula d ¼ ð x1 � x2ð Þp þ y1 � y2ð Þp)1/p.26–27
The Euclidean distance, p = 2, and the Manhattan distance, p = 1,

are specific cases of the Minkowski distance). We assumed a Eucli-

dean distance, (straight line route), for drone responses, and a near

Euclidean distance for walking responses, allowing for obstacle nav-

igation. Our model includes additional non-transit factors for the time

from 911 call to dispatch, from dispatch until start of transit, and from

arrival until start of treatment. Other stochastic factors, such as the

availability of ambulances, mobile responders, and drones, are

applied as well. Table 1 provides a list of these factors and their nom-

inal values. The data used to identify the inputs for the model was

sourced from published literature, data provided by the King County

public health department, manufacturers’ drone specifications, and

where necessary, elicited from experts in emergency response sys-

tems as well as drone operations.

Model structure and logic

We used this data to construct simulation models of multiple sys-

tems. For each system, the model fixed certain values, including

the actual Bellevue EMS locations, and assumed drone locations

at existing Bellevue fire stations. Each run of the model simulated

the system’s response to one cardiac arrest event. This included ran-

dom sampling to determine the cardiac arrest location, the

locations of the mobile responders (if any), and the availability of
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Table 1 – Description of system factors used in simulation model, with nominal simulation values.

Description of System Factor Nominal value

Time from 911 call to EMS dispatch (minutes) 0.5

Time from EMS dispatch to start of ambulance transit (minutes) 3

Ambulance velocity (km/h) 70

Ambulance availability (due to other calls, maintenance, etc.) 76%

Time from EMS arrival until start of treatment (minutes) 1

Mobile responder density (responders per sq km in system) 5

Mobile responder dispatch time from 911 call (minutes) 1

Mobile responder time from alert to begin walk transit (minutes) 0.75

Mobile responder time from alert to begin driving transit (minutes) 1

Mobile responder walking velocity (km/h) 7

Mobile responder driving velocity (km/h) 32

Mobile responder reliability (likelihood of acting upon alert) 0.3

AED reliability (likelihood AED is in a fully functional state) 0.99

Time from mobile responder arrival until start of treatment (minutes) 1

Time from 911 call to drone dispatch (minutes) 1

Drone vertical flight time (minutes) 0.5

Drone velocity (km/h) 80

Drone descent and AED deployment time (minutes) 1

Drone operational availability (due to other calls, maintenance, etc.) 96%

Drone weather availability 90%

Time from drone arrival until start of treatment (minutes) 1
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Fig. 1 – Simulation region of Bellevue, Washington, with the randomly sampled locations of cardiac arrests and

mobile responders and the fixed locations of EMS and drone bases.
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the responders for that event (Fig. 1). The model then calculated, for

each available responder, the distance from the responder to the car-

diac arrest event and the corresponding response time. The travel

distance depends upon whether the responder is flying, driving, or

walking. All response times included travel time (based on the travel

distance and the responder’s speed) and non-transit delays. For

example, the EMS response time included both transit time as well

as dispatch time, chute time, and time from arrival until treatment.

Our model does not distinguish between cardiac arrests in public

locations and private residences, and is limited to witnessed arrests

with shockable arrhythmias.

The primary objective of the model was to estimate response

times, i.e. tCPR, the elapsed time (minutes) at which CPR would

begin, and tdefib, the elapsed time at which defibrillation would begin.

To provide context to the response times, our model also estimated a

survival probability for each event. Cardiac arrest survival rates have

been correlated with many factors, including the time from collapse

to CPR and the time to defibrillation.2 In analyzing witnessed arrests

with an initial rhythm of VF, Valenzuela et al. performed regression

analysis on a number of factors but concluded that a simple model

with these two factors provides nearly the same predictive capability

as the complex model.28 We employed their logistic regression

model to predict Ps, the survival probability for each simulated car-

diac arrest case, whereby:

logit Psð Þ ¼ 0:26� 0:106tCPR � 0:139t defib (1)

To apply this survival prediction model, we limited the simulation

to only witnessed cases with VF, without quantifying the survival

gains for other cardiac arrests.

As each cardiac arrest simulation includes many stochastic fac-

tors (cardiac arrest location, mobile responder locations, responder

availability), we usedMonte Carlo simulation (a method utilizing many

simulation runs with random factors sampled independently for each

run) to perform thousands of simulated events, which yielded a distri-

bution of response times and survival predictions (Fig. 2). System

performance was characterized as the mean of these distributions.

Our model was implemented using Excel 2016 (Microsoft) with

Crystal Ball (Oracle). Statistical analysis was performed using

Minitab Version 18 (Minitab). The model validation process was

described in a previous work.25

Application of simulation model

We simulated one established mobile responder system and three

emerging novel systems:

A. A mobile responder system which provides CPR therapy only;

similar to the PulsePoint Respond system.

B. A mobile responder system which provides both CPR and

defibrillation; a verified responder system, in which all respon-

ders are provided AEDs to keep near them e.g. in their cars.

C. A drone AED delivery system which relies upon bystanders to

apply and operate the AED, as well as provide CPR when

coached by the AED, similar to the Flirtey trial in Reno,

Nevada.12

D. A drone AED delivery system which relies upon dispatched

mobile responders to apply and operate the AED; a currently

untested system concept.

The intent of this paper is not to compare all possible systems,

but to demonstrate a robust modeling method for comparing the cost

effectiveness of different systems.

For each modelled system, we evaluated multiple operating con-

ditions. For the mobile responder systems, we ran simulations with

responder densities of 2/sq. km, 5/sq. km, 8/sq. km. The drone sys-

tems simulated 1, 2, and 5 drones, based at the existing fire stations

within the region. System D, which utilizes both drone delivery and

mobile responders, was simulated at all 9 combination of conditions.

Each system was simulated as working in conjunction with the

existing EMS system. As a baseline for comparison, we also simu-

lated response time and survival with only the existing EMS system.

Our study was focused on the response time improvements provided

by these novel systems, and we did not include the potential for

bystander CPR and PAD defibrillation as alternative means of

response. We ran 5000 Monte Carlo simulations for each system

under each condition.

Fig. 2 – Monte Carlo simulation results for time-to-defibrillation for a mobile responder system with a responder

density of 5/sq. km.
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Cost estimates of system

We estimated the cost to implement and operate each of these sys-

tems over a period of 10 years. We also considered a fifth alterna-

tive, as a point of comparison, which is the addition of a basic life

support (BLS) ambulance to the Bellevue EMS fleet. Our cost esti-

mates came from retail and catalog costs, or published literature,

where available. Otherwise, we elicited estimates from experts in

the fields of EMS and drone operations. Although the systems costs

are uncertain and change over time, we believe the relative costs of

each system are reasonably accurate, as these systems employ

many of the same cost components. We created a cost model for

each system, considering capital costs, consumable costs, and

recurring expenses. Our models calculated a Net Present Value over

10 years of operation assuming a 5% discount rate. Our cost models

assumed 100 cardiac arrest responses per year, accounting for

increased events with population growth. For the EMS fleet with

one additional BLS ambulance, we allocated 20% of the ambulance’s

cost to the response to cardiac arrests, as the ambulance would pro-

vide additional utility in non-cardiac medical responses. An example

cost model for system D with 5 drones and a density of 2 responders

per sq. km is shown in Table 2.

Results

The mean response times and survival predictions of the simulations

are shown in Table 3. Response times showed improvements in

mean time-to-defibrillation from 0.1 minutes (decimal time) for Sys-

tem D (1 drone with 2 verified responders/sq. km) to 2.3 minutes

for System B (8 verified responders/sq. km). The predicted incre-

mental improvement in survival rate for patients with witnessed VF

ranges from 3% to 10%. These survival rate improvements would

result in 4–17 additional lives saved over the 10-year period.

The estimated mean survival is plotted against the 10-year NPV

cost for each combination of system and operating conditions

(Fig. 3). The systems along the red line represent the efficient

(non-dominated) solutions that have lower cost and better survival

rates than the systems that are below and to the right of that line.

Thus, these results suggest that, in this region, the most efficient sys-

tems can expect to save approximately 3 lives per $100,000 spent

over ten years.

Discussion

The simulation results show that the novel response systems are

expected to reduce the response times for CPR and defibrillation

and increased the survival rates from the benchmark (the existing

EMS system). Although improvements were expected, because

these systems are expansions of the current EMS system and

should not perform worse than the benchmark, the simulation results

estimate the magnitude of improvements that can be obtained and

identify the conditions required to achieve these improvements. Sys-

tem A (mobile responder providing only CPR) provides the smallest

improvement to predicted survival because it reduces time to CPR

but not time to defibrillation. Because response time decreases with

increased responder density, the mobile responder systems require

a significant density of responders (8/sq. km) to achieve a substantial

improvement in response time. Although systems like PulsePoint

advertise large citizen responder networks, the activation accep-

tance rate of the responders is low,29 and thus high densities of

responders are necessary for system effectiveness.

Unlike System A, Systems B (mobile responders with AED) and

C (drone AED delivery) provide both CPR and defibrillation. These

systems can reduce average response times by 2.3 minutes and

can improve predicted survival rate by up to 10%. Although the ver-

ified responders likely have higher reliability than the citizen network,

significant densities of responders are still required to achieve the

largest survival improvements. Although the technology costs (i.e.

cell phone app integration with 911 dispatch system) of such a sys-

tem are minimal, the cost of equipping each responder with an AED

is substantial. System C provided the best predicted survival with

minimal operational costs. Although the drones are the largest cost

of these systems, the small number of drones is less expensive than

the large number of AEDs required by System B. In System C, how-

ever, bystanders may be unwilling to apply the AED to the cardiac

arrest victim.30,31 As these systems are untested, it is not currently

known how prevalent this bystander apprehension may be.

System D (drone delivery with mobile responder activation)

avoids potential problems with bystander use by utilizing trained

mobile responders to apply the AED. This increases response time,

however, because both the drone and the mobile responder must

arrive at the arrest location to start the treatment. The fact that the

mobile responders do not carry AEDs in this system may provide

advantages over system B, such as improved responder activation

acceptance rate, as well as reduced costs due to fewer AEDs

required.

There are some limitations to our modeling and simulation

approach and our results. These results are from a simulation of

a single region, using specific attributes of the locale (EMS stations,

road network, and weather). Modelling of other regions could reveal

differences in response time improvements or survival. The model

assumed no bystander CPR and deployment of PAD AEDs in a

community, and it does not consider the redirection of en route

ambulances. Our model does not distinguish between cardiac

arrests in public locations and private residences, and assumes

Table 2 – Example 10-year NPV cost model for system
D with 5 drones and a density of 2 responders per sq.
km.

Capital costs

Drone $119,048

Telemetry hardware $4,762

Ground control station/EMS dispatch $14,286

Drone nest $47,619

AED $9,714

Consumables costs

Payload drop mechanism $772

Drone Battery $1,604

AED Pads $46,330

AED Battery $15,752

Recurring costs

Drone pilot (subscription) $23,165

Drone/Nest Maintenance $57,913

Administration $193,043

Total 10 year NPV Cost $534,009
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all cardiac arrests are recognized by the 911 system. Our model

evaluates the aleatory variation, or natural randomness of factors

in the response to cardiac arrest. This study does not evaluate

the epistemic uncertainty in the factor inputs that were used, includ-

ing the logistic survival model. These limitations would affect the

accuracy of the survival prediction. Additionally, our model does

not quantify the survival improvement for patients who are not wit-

nessed VF arrests. We acknowledge that estimating costs of sys-

Table 3 – Predicted Mean Time-to-Defibrillation and Mean Survival Probability results of simulations of 4 systems
(A: mobile responders providing CPR only; B: mobile responders provisioned with AEDs; C: drone AED delivery
with bystander application; D: drone AED delivery with mobile responder application).

System Mobile Responder

Density (per sq. km)

Drones Mean Time to Defib

(decimal minutes)

Mean Time to CPR

(decimal minutes)

Mean Survival

Probability

A 2 N/A 6.8* 5.4 0.22

A 5 N/A 6.8* 4.8 0.24

A 8 N/A 6.8* 4.5 0.24

B 2 N/A 5.4 5.4 0.26

B 5 N/A 4.8 4.8 0.29

B 8 N/A 4.5 4.5 0.30

C N/A 1 5.6 5.6 0.27

C N/A 2 5.2 5.2 0.28

C N/A 5 4.7 4.7 0.30

D 2 1 6.7 6.7 0.22

D 2 2 6.7 6.7 0.22

D 2 5 6.6 6.6 0.23

D 5 1 6.0 6.0 0.26

D 5 2 5.8 5.8 0.26

D 5 5 5.6 5.6 0.27

D 8 1 5.8 5.8 0.26

D 8 2 5.5 5.5 0.27

D 8 5 5.3 5.3 0.28

EMS N/A N/A 6.8 6.8 0.20

*System A does not provide defibrillation, thus time to defibrillation is equivalent to the simulated EMS time.

Fig. 3 – Cost-benefit analysis of system options, showing 10 year system cost estimate and predicted mean survival

(for witnessed VF cases) for each system. The system conditions [density of responders, number of drones] are

shown in the brackets by each system designator (systems with no mobile responders or no drones have N/A). The

red line connects the systems that provide the maximum benefit for a given cost.
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tems, some of which are not yet implemented, has considerable

uncertainty. Data from real world trials and simulations of the

untested systems are needed to better understand assumptions

within the model, such as bystander willingness to apply an AED

retrieved from a drone.

Conclusions

Novel cardiac arrest response systems have the potential to improve

response times and survival, but previous studies have not system-

atically compared their cost and effectiveness. The results from our

simulation study suggest that these systems can incrementally

improve the survival rate as much as 10%, at efficient costs, com-

pared with a high performing EMS system in Bellevue, Washington.

The benefits of these systems could be even greater in communities

or regions with typical or poor EMS response times.
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