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Abstract

Background: Multidrug-resistant tuberculosis (MDR-TB) cohorts often lack long-term survival data, and are
summarized instead by initial treatment outcomes. When using Cox proportional hazards models to analyze these
cohorts, this leads to censoring subjects at the time of the initial treatment outcome, instead of them providing full
survival data. This may violate the non-informative censoring assumption of the model and may produce biased
effect estimates. To address this problem, we develop a tool to predict vital status at the end of a cohort period
using the initial treatment outcome and assess its ability to reduce bias in treatment effect estimates.

Methods: We derive and apply a logistic regression model to predict vital status at the end of the cohort period
and modify the unobserved survival outcomes to better match the predicted survival experience of study subjects.
We compare hazard ratio estimates for effect of an aggressive treatment regimen from Cox proportional hazards
models using time to initial treatment outcome, predicted vital status, and true vital status at the end of the cohort
period.

Results: Models fit from initial treatment outcomes underestimate treatment effects by up to 22.1%, while using
predicted vital status reduced this bias by 5.4%. Models utilizing the predicted vital status produce effect estimates
consistently stronger and closer to the true treatment effect than estimates produced by models using the initial
treatment outcome.

Conclusions: Although studies often use initial treatment outcomes to estimate treatment effects, this may violate
the non-informative censoring assumption of the Cox proportional hazards model and result in biased treatment
effect estimates. Using predicted vital status at the end of the cohort period may reduce this bias in the analyses of
MDR-TB treatment cohorts, yielding more accurate, and likely larger, treatment effect estimates. Further, these larger
effect sizes can have downstream impacts on future study design by increasing power and reducing sample size
needs.
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Background
Multidrug-resistant tuberculosis (MDR-TB) is caused by
TB bacteria, Mycobacterium tuberculosis, being resistant
to two powerful, first-line anti-TB drugs, rifampicin and
isoniazid. Globally in 2016, an estimated 600,000 people
were eligible for MDR-TB treatment, of which approxi-
mately 20% received care [1]. The latest available treat-
ment outcome data showed that treatment success
(including cure or treatment completed) occurred in
only 54% of individuals, while 16% died, 8% had treat-
ment failure, 15% were lost-to-follow-up, and 7% had no
outcome information available [1]. Lack of safe and
effective MDR-TB treatment is a major driving force
behind MDR-TB as a global health problem [1]. The
advent of two novel MDR-TB drugs [2, 3] and shortened
regimens [4] offer opportunities for improved treatment
access and outcomes. These developments further inten-
sify the need for accurate estimation of treatment effect-
iveness. A common approach to assessing the effects of
MDR-TB treatment on the risk of death is the Cox pro-
portional hazards model [5], in part because of the vari-
able treatment duration and for the ability to allow each
individual to contribute survival time [6].
Recommendations for how to conduct an MDR-TB

cohort analysis suggest that: a cohort should be devel-
oped based on the date of MDR-TB treatment initiation;
analyses should be performed on all patients who receive
treatment, regardless of duration; patients should be
assigned the first of six mutually exclusive treatment
outcomes that they experience; and patients should be
followed for two years after the initial outcome to detect
relapse [7]. However, while patients are usually followed
by local programs from the time of treatment initiation
until the first treatment outcome, information about
longer survival is scarce due to the lack of resources in
areas that experience the majority of the MDR-TB
burden and the intensity of monitoring required for TB
patients. When using limited data that is lacking infor-
mation on survival after the initial treatment outcome, it
is important to use the most efficient analysis methods
to reduce potential bias in effect estimates.
Truncating patient survival times due to lack of

follow-up data may bias treatment effect estimates
when using proportional hazards regression due to
violation of the non-informative censoring assumption
of the model. This occurs when observations are cen-
sored from the data and assumed to be at equal risk
of experiencing the event of interest (often death) as
all at-risk individuals remaining in the cohort [8].
However, literature suggests that individuals who
experience successful treatment outcomes (cure or
treatment completion [7]) have a lower risk of death
by the end of a defined cohort period (4%) compared
to those who experience unsuccessful non-death

treatment outcomes (treatment failure, treatment
default, transfer out [7]; 60%) [9–15].
Literature exists on methods that can be used to adjust

for informative censoring, such as inverse probability
weighting (IPW) and competing risks regression. In the
context of established MDR-TB treatment outcome defi-
nitions and standard practices for follow-up of patients,
and where there is no administrative censoring due to
the study ending, these methods have limitations. When
using IPW, patients with an observed failure time are
given weights according to the inverse probability of not
being censored. These weights are estimated as a function
of the observed outcomes and patient characteristics
thought to predict censoring. IPW still relies on the
assumption that subjects with observed outcomes are rep-
resentative of the larger cohort [16–19]. When applied to
MDR-TB cohort settings, the largest weights are assigned
to subjects who are not censored, which are only those
individuals who experience the event of interest: death.
Because the vast majority of patients experience a
non-death outcome, weighting observations in this man-
ner does not approximate the characteristics of the larger
cohort. Weighting non-censored observations does not
resolve the need to estimate a differential risk of death
based on the reason why an observation was censored, as
patients who are censored due to experiencing successful
treatment outcomes are likely to have very different sur-
vival trajectories compared to patients censored due to
experiencing unsuccessful treatment outcomes.
The use of competing risks regression may also be in-

appropriate for use in these settings. A competing risk is
an event that a patient experiences, other than the event
of interest, which modifies the probability -- or completely
precludes the occurrence -- of the event of interest [20].
Censoring, on the other hand, refers to an inability to ob-
serve the time at which an event occurs. Meeting the def-
inition of an MDR-TB treatment outcome is not a new
event--it is simply an intermediary outcome that is often
used as a proxy for long-term outcomes because the event
of interest is not yet observed due to follow-up being trun-
cated. Therefore, we propose a more novel approach to
overcome informative censoring in these cohort studies
that accounts for the differential risk of death between
individuals experiencing successful versus unsuccessful
initial treatment outcomes.
The most accurate analysis would incorporate the true

vital status at the end of the cohort period. When this is
unavailable, however, due to follow-up ceasing after an
initial treatment outcome occurs, it may be possible to
improve treatment effect estimates by predicting the
vital status of an individual at the end of the cohort
period. This would account for a differential risk of
death for individuals censored from the data due to
experiencing different non-death treatment outcomes.
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Additionally, leveraging the initial treatment outcome to
inform vital status may produce more accurate treat-
ment effect estimates compared to censoring all observa-
tions from the data regardless of the reason follow-up
was terminated.
Here, we seek to derive and validate a tool to predict

vital status at the end of a cohort period and to assess
how incorporation of the vital status into the Cox pro-
portional hazards model affects bias in treatment effect
estimates. Using initial treatment outcomes to inform
estimates of the vital status at the end of the cohort
period can provide useful information when modelling
long-term survival. Models integrating the predicted
vital status at the end of the cohort period were hypoth-
esized to produce stronger and less biased effect
estimates.

Methods
Study cohort
The study population is a cohort of consecutive patients
with suspected or confirmed MDR-TB, who initiated
treatment in Tomsk Oblast, Russian Federation between
September 2000 and November 2004. Patients provided
written informed consent prior to the initiation of TB
therapy. TB providers collected data prospectively using
standardize forms, and the study team reviewed medical
charts in the Tomsk TB Control Program database to
verify and complete these records. Data were entered
into a dedicated electronic study database. More details
about the enrollment and data collection methods for
this cohort have been previously described [13, 15, 21, 22].
This cohort has patient data available up to six years after
treatment initiation. These data include the date that the
initial treatment outcome (routinely used as the outcome
in MDR-TB cohort analyses) was assigned and date on
which long-term vital status was assessed. This long-term
vital status is rarely available in such cohorts and provides
a unique opportunity to assess the true outcome of
patients after MDR-TB treatment and the relationship
between the initial treatment outcome and this outcome
after longer follow-up. For this study, cohort participants
were included if they had baseline MDR-TB, if data were
available regarding treatment start and initial treatment
outcome, and if vital status at the end of the study cohort
period was discernable. Patients were classified as having
MDR-TB if they had a culture positive for M. tuberculosis
and drug susceptibility test results showing resistance to
at least isoniazid and rifampin [22].

Exposure variable definitions
The primary exposure of interest is receipt of an aggres-
sive treatment regimen, which has previously been
shown to improve treatment outcomes [22–25]. The ag-
gressive treatment regimen is defined as a regimen

containing at least five likely effective drugs based on pre-
vious treatment history and current drug resistance pat-
terns during the intensive phase of treatment, followed by
at least four likely effective drugs during the continuation
phase of treatment [24–26]. A binary variable was used to
classify each patient as ever or never having been exposed
to an aggressive treatment regimen.
Other characteristics included are those previously identi-

fied as being risk factors for death [13, 21, 27, 28], including
age, sex, alcohol abuse or dependence, presence of a
comorbidity, prior treatment history, low body mass index
(BMI), severe baseline clinical status, extra-pulmonary TB
(EPTB), and extensively drug-resistant (XDR-) TB. Alcohol
abuse or dependence was determined at baseline or at the
time of the doctor prescribing medication. The presence of
a baseline comorbidity (other than HIV) is defined as the
presence of any of the following: diabetes mellitus, chronic
renal insufficiency, seizure disorder, baseline hepatitis or
transaminitis, or psychiatric disease. Prior treatment history
is classified as more than two or less than or equal to two
previous regimens. Low BMI is defined as < 20 kg/m2 for
men and < 18.5 kg/m2 for women. Severe baseline clinical
status is defined as respiratory insufficiency, hemoptysis, or
sputum acid-fast bacilli smear (+++) at baseline [22].
XDR-TB is defined as the resistance to isoniazid, rifampin,
any fluoroquinolone, and at least one of three second-line
injectable drugs [29, 30].

Outcome variable definitions
Standard MDR-TB treatment outcome definitions are
used [22]. A successful treatment outcome encompasses
treatment completion and cure. Unsuccessful treatment
outcomes include treatment failure, all-cause mortality,
default during treatment, or transfer out. Patients were
followed from treatment start until the time when their
first treatment outcome was observed. The cohort
period is defined as the longest duration from treatment
initiation until an initial treatment outcome. Vital status
at the end of the cohort period is defined as whether a
patient remained alive or had died prior to the end of
the defined cohort period. The primary outcome is the
time from treatment initiation until death.

Statistical methods
To characterize the population, we describe demo-
graphic information, comorbidities, treatment character-
istics, and treatment outcomes. Characteristics are
quantified by the frequency and percent for categorical
variables and means and standard deviations (SD),
unless noted otherwise, for continuous variables. Selec-
tion bias is evaluated by assessing whether patient char-
acteristics and treatment outcomes are statistically
different between included and excluded participants
through use of chi-square, Fishers exact test, or t-test.

Brooks et al. BMC Medical Research Methodology          (2018) 18:166 Page 3 of 10



Our analysis involves a two-step procedure. First, a lo-
gistic regression model is fit to predict the probability of
survival at the end of the study period. Second, a Cox
proportional hazards model is fit, incorporating recoded
failure and censoring outcomes based on the vital status
predicted in the logistic regression model.

Step 1. Logistic regression model for long-term vital
status:

A logistic regression model is used to predict the
probability of survival at the end of the study period for
each individual, i, who experienced a non-death initial
treatment outcome. Vital status is modeled as a random
variable, taking the value 1 with probability equal to the
parameter pi, which is a function of the initial treatment
outcome (Oi) and patient characteristics (Xi). The par-
ameter pi is estimated for each individual in the cohort.
Potential predictors eligible for the model include all

combinations of the initial treatment outcomes and pa-
tient characteristics that may be associated with survival.
Patient characteristics considered include those that are
standardly collected globally, ensuring that the model
may be applied to other TB cohorts in the future for
external validation. For model derivation and internal
validation, we use 10-fold cross-validation. Data are ran-
domly divided into ten sets, the model is built on nine of
these sets and then the performance of the model is mea-
sured on the remaining set. This is repeated until all ten
data sets are used to test model performance. The model
with the best performance is selected as the final model.
The primary means of comparing predictive models is

the Bayesian Information Criterion (BIC) [31], for which
lower values indicate better fit. We also use the c-statis-
tic to assess model discrimination, the ability of the
model to differentiate between individuals who died at
the end of the study and those who did not. The larger
the c-statistic, the better the model discriminates [32].
To assess model calibration, which describes the agree-
ment between the predicted and observed risks, we
compute the Hosmer-Lemeshow statistic [33]. We define
good calibration as a Hosmer-Lemeshow statistic p-value
greater than the type-one error rate of 0.05, indicating
no evidence that the observed and predicted risks sig-
nificantly differ.
A receiver operating characteristics (ROC) curve is

used to select a probability threshold, through use of
the Youden’s index, that maximizes the discriminative
properties, including sensitivity, specificity, positive
predictive value, and negative predictive value of the
model. The Youden’s index is the vertical distance
from the ROC diagonal chance line to each point on
the curve and aims to minimize the false negative
and positive rates [34]. Discriminatory property

definitions are as follows: sensitivity is the probability
of the model predicting survival at the end of the co-
hort period given the individual truly survived; speci-
ficity is the probability of the model predicting death
prior to the end of the cohort period given the indi-
vidual truly died; positive predictive value is the prob-
ability of surviving until the end of the cohort period
given the model predicts survival; negative predictive
value is the probability of dying prior to the end of
the cohort period given the model predicts death.
The probability threshold identified is used to assign
each individual a vital status of alive (Ŷ i ¼ 1) or dead
( Ŷ i ¼ 0 ) at the end of the study period (i.e., if the
probability threshold is set at 0.85, then if p̂i > 0.85,

Ŷ i ¼ 1; if p̂i < 0.85, Ŷ i ¼ 0).

Step 2. Cox proportional hazard model:

To evaluate the bias introduced when survival infor-
mation after the initial treatment outcome is lacking, we
run two Cox proportional hazards models. Each model
uses three different approaches for a total of six scenar-
ios. Models 1 and 2 both assess the association between
receipt of an aggressive treatment regimen and death.
Model 1 assesses the univariate association, while Model
2 assesses the association while controlling for the
covariates described earlier that were previously found
to be associated with time to death.
The three approaches we use on each model are as

follows:

Approach 1: The first approach follows the
conventional censoring assumption in which the event
time for each individual is either the observed time to
death or the time to the observed non-death treatment
outcome, at which point censoring occurs.
Approach 2: The second approach uses the predicted
vital status at the end of the study period (Ŷ ). All
individuals assigned a Ŷ i ¼ 1 are assumed to survive
at least until the end of the cohort period and
contribute full survival time during that period. All
individuals assigned a Ŷ i ¼ 0 are assumed to be at
equal risk of death as those at-risk individuals
remaining in the cohort. These observations are cen-
sored at the time of an observed non-death treat-
ment outcome.

Approach 3: The third approach, the gold standard,
utilizes the true vital status at the end of the study (Yi).
Individual event times are either the time of death or
time to the end of the cohort period, at which point all
remaining, alive individuals are censored. This
approach serves as the reference, against which values
obtained from Approaches 1 and 2 are compared.
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Estimated hazard ratios (HR) and 95% confidence
intervals (CI) for the aggressive treatment regimen vari-
able are presented for each model and approach. Rela-
tive change between the HRs for each model are
calculated by comparing Approaches 1 and 2 to those
from Approach 3. Relative to Approach 3, HRs closer to
the null hypothesis of 1.0 underestimate the treatment
effect, while HRs further from 1.0 overestimate the treat-
ment effect. The magnitude and direction of the bias
from Approaches 1 and 2 are assessed. Relative changes
are compared to identify which approach produces the
least biased effect estimates in relation to Approach 3.
SAS V9.4 (SAS Institute, Cary, NC) is used for all

analyses.
Institutional Review Boards at Harvard School of Pub-

lic Health (Boston, Massachusetts) and the Siberian
State Medical University (Tomsk, Russia) approved the
parent study. Secondary analysis was reviewed and
declared exempt by the Institutional Review Board at
Northeastern University (Boston, Massachusetts).

Results
A total of 638 individuals with suspected or confirmed
MDR-TB were consecutively enrolled during the study
period. Of these, 614 individuals have confirmed
MDR-TB by culture and drug susceptibility testing. The
longest interval from treatment start until the initial
treatment outcome is 1293 days, defining the duration of
the study period. Among the 614 individuals, vital status
at the end of the study period is unable to be ascertained
for 167 (27.2%); these observations are excluded, leaving
447 eligible participants included in this analysis.
The mean age of the cohort is 35.9 (sd: 11.4) years,

81.2% are male; 53.0% have history of incarceration.
Almost everyone (99.3%) has previously been treated for
tuberculosis; many have had prior injectable (33.3%)
and/or fluoroquinolone (15.8%) exposure. The mean
number of previous tuberculosis treatments for the
cohort is 2.1 (sd: 1.2), with one-third having greater than
two previous treatments. Over half (62.8%) present with
bilateral and cavitary disease on the baseline chest radio-
graph or with severe baseline clinical status (62.0%), and
4.9% present with baseline XDR-TB. Of the 447 included
in the analysis, 82.6% receive an aggressive regimen at
some point during MDR-TB treatment. Two-thirds of
participants experience a successful initial treatment
outcome while 6.7% died, 8.7% had treatment fail, and
17.4% defaulted on treatment. Full baseline characteris-
tics for included participants are in Table 1.
The 167 excluded participants are statistically, signifi-

cantly different from those included in the following
ways: fewer females, fewer married, more unemployed,
more currently or previously incarcerated, fewer with
severe baseline clinical status, more with EPTB, and

more experienced an initial treatment outcome of
default. Moving forward, the one participant who had a
treatment outcome of transferred out was excluded
from further analysis due to low sample size in that
category.

Predicting long term survival
Through 10-fold cross validation, we identify our final
predictive model, which includes covariates for a success-
ful initial treatment outcome, treatment failure, and age
(centered):
Log ð p

1−pÞ = 2.56 + 2.46*Successful – 0.77*Failure –

0.04*Age
This final model is selected due to a combination of

having a low BIC value (139.88), a high c-statistic (0.95),
and a high Hosmer-Lemeshow statistic p-value (0.99).
Table 2 shows top performing model characteristics
using 10-fold cross validation, including the selected
model (number 3).
Using an ROC curve (see Fig. 1), we identify the best

cutoff at 0.99, resulting in a sensitivity of 0.81 (95% CI:
0.77, 0.85), specificity of 1.00 (95% CI: 0.93, 1.00), posi-
tive predictive value of 1.00, and a negative predictive
value of 0.43 (95% CI: 0.38, 0.48).
Using the predicted probabilities, 99.3% of subjects

experiencing an initial successful non-death treatment
outcome are estimated to remain alive at the end of the
study period, which is close to the true outcome in
which 99.7% remained alive (see Table 3). No patients
who had experienced an initial unsuccessful non-death
treatment outcome are predicted to stay alive, when in
reality, 57.3% actually did. Over two-thirds of people
defaulting treatment and one-third of people whose
treatment failed truly remain alive at the end of the
period.
In univariate analyses using Approach 1, receipt of an

aggressive treatment regimen is protective against death
(HR: 0.32; 95% CI: 0.15, 0.69). Compared to using Ap-
proach 3 (HR: 0.26; 95% CI: 0.17, 0.41), this results in a
22.1% relative change. The model using Approach 2
leads to a HR: 0.31 (95% CI: 0.14, 0.66), which results in
a 16.7% relative change to the model using Approach 3.
Approach 2 yields a reduction in the bias observed using
Approach 1 by 5.4%. In multivariable analysis using
Approach 1, receipt of an aggressive treatment regi-
men is still protective against death (HR: 0.24; 95%
CI: 0.10, 0.54), resulting in a 6.3% change from the
same model utilizing Approach 3 (HR: 0.22; 95% CI:
0.14, 0.36). The model using Approach 2 yields a HR:
0.23 (95% CI: 0.10, 0.52), resulting in a 3.2% relative
change from Approach 3. Approach 2 yields a reduc-
tion in bias observed using Approach 1 by 3.1%. See
Table 4 for more details.
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Discussion
Compared to conventional methods of only following
participants until they experience an initial treatment
outcome, incorporating the predicted vital status at the
end of the cohort period into Cox proportional hazards

models can reduce bias in treatment effect estimates.
Conventional methods utilizing time to the initial treat-
ment outcome improperly censors survival times earlier
due to lack of data about longer patient survival and
leads to underestimation of the treatment effect by up to

Table 1 Baseline characteristics for 447 patients whose status at the end of the study period is known

Baseline characteristic/Outcome Total (N = 447) n, %

Months on effective regimen (mean, sd) 11.6 (7.9)

Ever on effective regimen 369 (82.6)

Sociodemographic characteristics

Age, years (mean, sd) 35.9 (11.4)

Female sex 84 (18.8)

Married (n = 434) 200 (46.1)

Unemployed (n = 445) 352 (79.1)

Current or previous incarceration 237 (53.0)

Alcohol abuse/dependence 194 (43.4)

Illicit drug use 79 (17.7)

Homelessness 16 (3.6)

Comorbidities

HIV-positive (n = 446) 3 (0.7)

Diabetes mellitus (n = 446) 18 (4.0)

Comorbid condition 322 (72.0)

Prior TB treatment exposure

Previously treated for TB 444 (99.3)

History of prior injectable exposure (n = 436) 145 (33.3)

History of prior fluoroquinolone exposure (n = 436) 69 (15.8)

History of prior default 16 (3.6)

Number of previous TB treatments (mean, sd) 2.1 (1.2)

> 2 previous TB treatment (n = 436) 141 (32.3)

Clinical indications of disease severity

Bilateral and cavitary disease on baseline chest x-ray (n = 443) 278 (62.8)

Severe pulmonary disease on baseline chest x-ray 195 (43.6)

Low BMI at start of treatment (n = 446) 190 (42.6)

Severe baseline clinical status 277 (62.0)

Extrapulmonary disease (n = 381) 39 (10.2)

Previous TB-related surgery (n = 445) 50 (11.2)

Baseline XDR-TB 22 (4.9)

Initial treatment outcome

Successful 299 (66.9)

Cure 280 (62.6)

Treatment Completion 19 (4.3)

Unsuccessful 148 (33.1)

Death 30 (6.7)

Treatment Failure 39 (8.7)

Default 78 (17.4)

Transfer Out 1 (0.2)
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22.1%. Models utilizing the predicted vital status at the
end of the cohort period inform the amount of survival
time an individual contributes to the model and leads to
stronger effect estimates. This change is consistent
across univariate and multivariable analyses.
Application of individual survival probabilities allows

for distinction between successful and unsuccessful
non-death treatment outcomes, which literature suggests
result in different risk of survival at the end of a cohort
period [9–15]. This differs from the conventional
approach that effectively treats all censored observations
as being at equal risk of death as those observations
remaining in the cohort.
Our predictive model has good fit statistics, discrimin-

ation, and calibration. However, there are some limitations
to this model. We observe a large false-negative misclassi-
fication rate. When the false-negatives produced from the

predictive model are applied to the Cox proportional
hazards model, we observe an underestimation of the true
treatment effect because, instead of observations being
accurately classified as ‘alive’ at the end of the cohort and
contributing full survival time, they are classified as ‘dead’
and censored at the time of the initial treatment outcome.
Reduction of the false-negative rate would produce stron-
ger, more accurate treatment effect estimates. The one
individual who was transferred out was excluded due to
not having enough individuals in that category to estimate
an accurate treatment effect. For populations with a larger
percentage of individuals who are transferred out, it will
be essential to better understand their long-term
outcomes. Use of variables that are often strong risk fac-
tors for death in this population, such as alcoholism, could
potentially strengthen the model. However, variables con-
sidered for use in the final model were only those that are

Table 2 Model performance characteristics using 10-fold cross validation

Model covariates BIC Discrimination Calibration

C-statistic Hosmer-Lemeshow test statistic (p-value)

1. Successful 157.72 0.90 0 (N/A)

2. Successful + failure 145.29 0.93 0 (1.00)

3. Successful + failure + age 139.88 0.95 1.28 (0.99)

4. Successful + failure + sex + age 136.91 0.95 2.05 (0.97)

Fig. 1 Receiver Operating Characteristics curve for final model selected
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universally collected so that the model can be validated in
external cohorts.
In addition to model limitations, our study as a whole

has several limitations that must be considered. As the
goal of this study is to compare estimates among a naïve
model, a predictive model, and a fully informed model
(which requires end-of-cohort outcome knowledge), we
excluded 167 patients with MDR-TB. They are different
from those included, with a statistically significant higher
proportion of men, unmarried, unemployed, with EPTB,
and an initial treatment outcome of default. Significantly
fewer had a severe baseline clinical status. Many of these
patients were in the penitentiary sector, making them
more likely to return home to a region outside of the
study area after being released and, thus, more difficult
to follow for long-term outcomes. If the differences be-
tween those included and excluded led to more deaths
after the initial treatment outcome, bias may be intro-
duced away from the null hypothesis, indicating a pos-
sible overestimation of the treatment effect.
Additionally, we only assess two options for using the

predicted probabilities to inform the way in which obser-
vations are censored: censor at the time of the initial
treatment outcome or censor at the end of the cohort
period. Developing additional ways in which the obser-
vations are censored, such as at different time points
after experiencing the initial treatment outcome, may be

more realistic and produce more accurate treatment ef-
fect estimates. The predictive model is not validated in
an independent cohort; however, it performed well when
evaluated through 10-fold cross validation, which at-
tempts to assess how the results will generalize to an in-
dependent data set.

Conclusion
We found that using only the initial treatment outcome
to analyze the treatment effect using Cox proportional
hazards models underestimates the benefit of receiving
an aggressive treatment regimen when compared to the
fully informed model that incorporated the true
long-term vital status. Incorporating predicted
end-of-cohort vital status may reduce this bias in the
analyses of MDR-TB treatment cohorts, allowing obser-
vation of larger and more accurate treatment effect sizes
and, in turn, increasing study power.
We provide a simple-to-implement method to analyze

data, which can potentially overcome the current limita-
tion of MDR-TB cohorts lacking survival data past the
initial treatment outcome. This method can allow
researchers to estimate a range of potential effect esti-
mates instead of one biased estimate. While the predict-
ive model produces valid predictions for subjects from
the underlying population, external validation is neces-
sary before recommendation for use of the predictive

Table 3 Distribution of predicted and actual vital status by initial treatment outcomes

Initial Treatment Outcome Predicted vital status Actual vital status

n = 446 n, % Alive n, % 297 (71.4%)* Dead n,% 119 (28.6%)* Alive n, % 365 (87.7%)* Dead n,% 51 (12.3%)*

Successful 299 (67.0) 297 (99.3) 2 (0.7) 298 (99.7) 1 (0.3)

Cure 280 (62.8) 278 (99.3) 2 (0.7) 279 (99.6) 1 (0.4)

Treatment Completion 19 (4.3) 19 (100.0) 0 (0.0) 19 (100.0) 0 (0.0)

Unsuccessful 147 (33.2) 0 (0.0) 117 (100.0)# 67 (57.3) # 50 (42.7) #

Death 30 (6.7) N/A N/A N/A N/A

Treatment Failure 39 (8.7) 0 (0.0) 39 (100.0) 13 (33.3) 26 (66.7)

Default 78 (17.5) 0 (0.0) 78 (100.0) 54 (69.2) 24 (30.8)

*Out of 416 who experienced an initial non-death treatment outcome
#Out of 117 who experienced an initial non-death unsuccessful treatment outcome
Note: denominators for the alive and dead columns for the predicted and actual end-of-cohort treatment outcomes are the total from the initial treatment
outcome column

Table 4 Change in effect estimates using varying approaches to handle censored observations

Model # Covariate Approach 1: Using
initial treatment
outcomes

Approach 2:
Incorporating
predicted vital status

Approach 3:
Using actual vital
status

Relative Change
(Approach 1 & 3)

Relative Change
(Approach 2 & 3)

Reduction in bias from
using Approach 2 instead
if Approach 1

HR (95% CI) HR (95% CI) HR (95% CI)

1 AR 0.32 (0.15, 0.69)* 0.31 (0.14, 0.66)* 0.26 (0.17, 0.41)** 22.1% 16.7% 5.4%

2 0.24 (0.10, 0.54)* 0.23 (0.10, 0.52)* 0.22 (0.14, 0.36)** 6.3% 3.2% 3.1%

AR Aggressive Regimen; C: Confidence Interval; HR: Hazard Ratio; *p-value: < 0.05; **p-value: < 0.0001
Model 1: Univariate
Model 2: Multivariable: receipt of an aggressive regimen, age, sex, alcohol abuse/dependence, baseline comorbidities, severe clinical status, XDR-TB [used
covariates found significant in previous studies for which no data were missing as to not introduce imputation or missing data problems]
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model in other MDR-TB cohorts. While this approach
may be used as a sensitivity analysis to predict the
long-term effect of MDR-treatment, the most accurate
treatment effect estimates can be obtained from follow-
ing patients after their initial treatment outcome.
Improved accuracy of effect estimates is essential to

guide MDR-TB treatment recommendations.
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