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Abstract

Human mobility, both short and long term, are important considerations in the study of

numerous systems. Economic and technological advances have led to a more interconnec-

ted global community, further increasing the need for considerations of human mobility.

While data on human mobility are better recorded in many developed countries, availability

of such data remains limited in many low- and middle-income countries around the world,

particularly at the fine temporal and spatial scales required by many applications. In this

study, we used 5-year census-based internal migration microdata for 32 departments in

Colombia (i.e., Admin-1 level) to develop a novel spatial interaction modeling approach for

estimating migration, at a finer spatial scale, among the 1,122 municipalities in the country

(i.e., Admin-2 level). Our modeling approach addresses a significant lack of migration data

at administrative unit levels finer than those at which migration data are typically recorded.

Due to the widespread availability of census-based migration microdata at the Admin-1

level, our modeling approach opens up for the possibilities of modeling migration patterns at

Admin-2 and Admin-3 levels across many other countries where such data are currently

lacking.

Introduction

Human mobility, both short- and long-term, are increasingly recognized as important drivers

for many processes of societal importance including demographics, economics, regional devel-

opment, and epidemiology. Human migration, along with births and deaths, determine popu-

lation dynamics at both national and sub-national scales [1]. Macro- and micro-level

economic studies have identified migration as a driver of labor flow [2], while human move-

ment, along with movement of goods and ideas, has driven economic integration and develop-

ment across regions [3,4]. Urban and regional development plans seek to meet growing

demands for infrastructure and services with the aim of accommodating the movement of

people and goods to new expansion regions [5]. Furthermore, as people move from place to

place, they carry a multitude of infectious agents with them, enhancing the potential for

increased disease transmission and enabling diseases to spread into new regions [6,7].
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Human mobility has been modeled using a variety of data sources including census [8,9],

road and air transport network [10,11], and mobile phone data [12,13]. Currently, large differ-

ences exist among countries regarding the availability of input data for modeling and better

understanding human mobility across multiple temporal and spatial scales. Indeed, while

there is an abundance of such data in high-income countries, they are either not available or

difficult to access in many low- and middle-income settings. Census-based migration data,

representing reliable proxies of the relative strength of short-term human mobility across mul-

tiple temporal scales [7,14], are often only available at rather coarse spatial scales. As a result,

they are inappropriate for many applications, including modeling infectious disease dynamics,

which require understanding of human mobility at much finer spatial scales. For example, the

spread of Zika in Colombia shows much greater heterogeneity at the municipal level than at

the departmental level [15,16] and thus understanding human mobility and the relative

strength of connectivity at the department level in this setting is less than ideal for modeling

Zika and other disease pathogen movements [17]. In this context, to enable the use of migra-

tion data available at a coarser spatial scale than the one matching the needs of the system of

interest, inferential tools must be used to predict migration at finer spatial scales that can be

used for better (i) understanding infectious disease dynamics, in relation to population move-

ment, and (ii) supporting their control and elimination planning.

While migration may take place for a variety of reasons, it can be broadly generalized that

people migrate seeking to maximize profits while minimizing costs [18]. Multiple studies have

broken down the cost-benefit considerations of the push and pull factors into socio-demo-

graphic [19], socio-political [20], economic [21], geographic [22,23], and climatic and environ-

mental factors [19,24]. Human migration has been modeled as a function of these factors with

varying complexities mostly using intervening opportunity models [25,26], agent-based mod-

els [27,28], radiation models [29,30], and gravity models [31,32]. In particular, gravity-based

spatial interaction models have been widely used in studying the flow of trades [33,34], labor

[35,36], road traffic [37], communications [38], infections [39–41], and indeed human migra-

tion [8,42]. As it applies to human migration, the gravity model’s basic structure assumes that

migration is proportional to the population size at the origin and destination, and inversely

proportional to the distance between these two locations [43]. The basic form of gravity model

with all exponents set to 1 has been widely used and subsequently extended to account for

additional push and pull factors, including geographic, socio-demographic, economic, and

environmental characteristics of the origins and destinations [19]. These advanced spatial

interaction models have contributed greatly to better understand the absolute and relative

importance of locations’ characteristics as measures of attractiveness and repulsiveness beyond

their population size and distance [8,44]. These factors were chosen because it was demon-

strated that they alone are able to explain most of the variance in gravity models of internal

migration flows [8]. In particular, contiguity expected to have a positive impact on migration

[8,19], proportion of urban population, tiny and major administrative units, and regional

equivalent of the gross domestic product, which can all be considered proxy for economic

opportunities, having different impacts on migration depending on their value at origin and

destination [8,44].

In this study, we developed a novel spatial interaction modeling approach for Colombia

using previously identified economic, socio-demographic and geographic factors including

the regional equivalent of the gross domestic product, relative and absolute population size

values, proportion of urban population, geographic contiguity of locations, and distance

between locations. We used data collected at the admin-1 level (department) to fit a model

that (a) estimates migration at the admin-2 level (municipality) and (b) aggregates those

estimates back to Admin-1 level to calculate likelihood for selecting the best performing
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model. We also used migration data collected at intermediate level that includes data for

geographic units ranging from single municipalities to multi-departments, with a subset of

the data (single municipality) used to validate our model (please refer to Data and Method

section for details). We used a logistic regression model with coefficients estimated using

Markov Chain Monte Carlo (MCMC), a Bayesian approach to statistical inference. Our

modeling approach (i) addresses the current lack of migration data either not collected or

not available at a sufficiently fine spatial scale, with potential application in many countries,

and (ii) further provides a novel framework for using coarse migration data to predict

migration at finer spatial scales.

Data and methods

Migration data

We extracted census-based internal migration data for Colombia from the most recent census

microdata available through the online Integrated Public Use Microdata Series-International

(IPUMSI) database [45]. These data are based on a 10-percent sample of the whole 2005 census

and contain information about the department of residence of the respondents both in the

census year and five years prior to the census. The data served as a proxy for the number of

migrants to and from all Colombian departments (n = 33), while data pertaining to two

among them (i.e., Vaupes and Guainı́a) were combined in the census year, yielding in 32

source and destination geographic units.

The IPUMSI data also included migration data for 533 census units, which represent single

municipalities and groups of contiguous municipalities with population above 20,000 in 1993.

(https://international.ipums.org/international-action/sample_details/country/co#co2005a).

Since the groups of municipalities that were used to identify the place of origin do not spatially

match those used to identify the place of destination, we merged together some of the contigu-

ous groups of municipalities and aggregate the associated migration information, to make the

two sets of geographic regions similar. This resulted in 276 uniquely identifiable and tempo-

rally consistent census units, of which 147 were single municipality and 129 were multi-

municipality units. This also meant 5% of all migration routes between the 276 locations (i.e.

origin and destination pairs) were within the same department, representing intra-departmen-

tal migration flows.

Population data

We used the Gridded Population of the World (GPWv4) population count dataset [46] refer-

ring to the year 2005 and having a spatial resolution of 30 arc-seconds (approximately 1km at

the equator). We extracted the population figures for the 32 departments and 1,122 municipal-

ities in Colombia using the corresponding departmental and municipal administrative bound-

ary shapefiles obtained from the National Geographical Information System of Colombia [47].

We also used the 2000/2001 MODIS 500 m Global Urban Extent dataset [48], having a resolu-

tion of 15 arc seconds (approximately 500 m at the equator), to estimate the proportion of

urban population in each department, multi-municipality unit, and municipality.

Economic data

To account for socioeconomic differences between administrative units with potential effect

on human migration flows, we used the G-Econ (4.0) dataset (Nordhaus, 2006), that provides

gridded Purchasing Power Parity (PPP) adjusted Gross Cell Product (GCP) for 2005, with a

resolution of 1-degree (~ 111 km at the equator). To express the gridded PPP values on a per
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capita basis, we divided them by the corresponding gridded population; with the latter derived

from the 2005 Gridded population count dataset [49]. We chose this gridded population data

as it was originally used to calculate the 2005 gridded PPP values (Nordhaus, 2006). Grid cells

with missing GCP values were imputed with the mean of the surrounding eight grid cell val-

ues. Once we obtained a complete layer at one-degree resolution, we resampled the layer, with-

out smoothing, to a resolution of 2.5 arc-minutes (~5km), and extracted average values at

department, multi-municipality unit, and municipality levels.

Geographic data

QGIS software [50] was used to calculate Euclidean distances among population-weighted

centroids of each department, multi-municipality unit and municipality. This was done after

projecting the corresponding shapefiles to a customized projected coordinate system to mini-

mize linear distortion within the study area. To record the contiguity between each spatial unit

in the three groups listed above, we generated a binary variable with a value of 1 if two units

share a boundary and of 0 otherwise.

Fitting a novel spatial interaction model

Given that the migration data extracted from the IPUMSI database are based only on a 10

percent sample of the whole census, we used a logistic regression to model the proportion of

people migrating between departments during the 5-year timespan (i.e., 2000–2005). For

ease of interpretation, we transformed the data to account for proportion of people who

moved from department I (source) to department J (destination), while the IPUMSI data

referred to the number of people in department J who moved from department I over the

five year time frame. The model we used to estimate migration at finer spatial scale

(Admin-2) based on observations at coarser scale (Admin-1) follows a binomial model as

described as follows:

YIJebinomialðNI; PIJÞ ð1Þ

PIJ ¼
SiSjNivij
SiSjNi

ð2Þ

logitðvijÞ ¼ b0 þ b1dij þ b2Ni þ b3Nj þ S
n
k¼4
bkXk ð3Þ

where YIJ is the observed number of people who migrated from department I to J, NI is the

population in department I, PIJ is the estimated proportion of people in department I who

migrated to department J based on aggregated municipality level migration estimates.

Our model selection approach, which we termed as fine-scale approach, involved an

aggregation step described in Eq (2), where we convert model estimated migration at a

finer spatial scale (Admin-2) into proportions at a coarser spatial scale (Admin-1) (Fig 1).

Accordingly, we first predicted vij, the proportion of migrants from each municipality i in

the department I to each municipality j in department J, using Eq (3), where β0,. . .,βn are

regression coefficients, dij is the distance between the municipalities of origin i and desti-

nation j, Ni and Nj represent the total population at the origin and destination municipali-

ties respectively, and Xk are the covariates used in the model. Second, we estimated PIJ, the

proportion of people in department I who migrated to department J, using Eq (2), where

Ni is the population in each municipality i in the department I.
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Likelihood function

Our selection of the best model relies on the quantity that we calculate to compare goodness of

fit for each model, in our case the likelihood, i.e. the probability of the model given the

observed data–expressed in log scale for computational convenience. Because our final goal

was to predict municipality level migration proportions, we aggregated the migration

Fig 1. Flowchart of the Bayesian model selection process under the fine-scale model approach. The input stages are shown in yellow,

and the processing stages are shown in orange, while the output stages are in green.

https://doi.org/10.1371/journal.pone.0232702.g001
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proportions to their respective departments of origin I and destination J, which we refer to as

PIJ. To enable fitting the aggregated proportion PIJ at the department level, we defined the log-

likelihood of the model coefficients as:

LL ¼
X

I

X

J

MIJ ln lnðPIJÞ þ ðNI � MIJÞlnð1 � PIJÞ þ K ð4Þ

for I 6¼ J, whereMIJ is the census-based number of people in department I who moved to

department J, NI is the population size at the source department I, and a constant

K ¼ ln lnðNI!Þ � ln lnðMIJ!Þ � lnððNJ � MIJÞ!Þ.

Coefficient estimation

We used the Bayesian Tools package in R [51] to estimate coefficients based on the Markov

Chain Monte Carlo (MCMC) Bayesian approach implemented according to the Metropolis-

Hastings algorithm [52,53]. Parameters estimated in the models (i.e., coefficients of the logistic

regression models) include distance between origin and destination, population at the origin

and destination, and additional covariates included using a stepwise forward model selection

approach (Table 1). Prior to fitting the model, we scaled all continuous explanatory variables

to obtain a mean of 0 and standard deviation of 0.5. Categorical binary variables were trans-

formed to have a mean of 0 and a range of 1 [54]. This process helped stabilize parameter esti-

mates for some of the large-value variables (e.g., population and distances) and resulted in

model coefficients that could be compared across variables. For each coefficient, we assumed a

Cauchy prior distribution centered at 0 with a scale parameter value of 2.5, except for the inter-

cept, which was set to have a scale parameter value of 10. This assumes that extremely large

coefficients (greater than 5 in logistic regression for centered variables) are highly unlikely

[54].

Table 1. List of normalized covariates used in selecting our migration model and their corresponding

distributions.

Variable

name

Description

DISTij Distance between the population-weighted centroids of the origin and the destination

municipalities (in km)

POPi Population of origin municipality

POPj Population of destination municipality

GECONi Average per-capita gross cell product of origin municipality

GECONj Average per-capita gross cell product of destination municipality

TINYi = 1 if population of origin municipality < 10th percentile; 0 otherwise

TINYj = 1 if population of destination municipality < 10th percentile; 0 otherwise

URBANPROPi Proportion of urban population in the origin municipality

URBANPROPj Proportion of urban population in the destination municipality

PERCi Percentile of the origin population among all municipalities

PERCj Percentile of the destination population among all municipalities

MAJCENi = 1 if population of origin municipality > 90th percentile; 0 otherwise

MAJCENj = 1 if population of destination municipality > 90th percentile; 0 otherwise

CONTij = 1 if the origin and destination municipalities share common borders; = 0 otherwise

https://doi.org/10.1371/journal.pone.0232702.t001
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Model selection

We used a stepwise forward selection to identify the best predictive model with the lowest

Deviance Information Criterion (DIC), starting with the basic gravity model, which accounts

only for distance between origin and destination, and their population. For each candidate

model, we ran the MCMC procedure five times, each from different initial conditions, which

enabled us to assess convergence of the parameter values and calculate the DIC more robustly.

Accordingly, each chain was run for 1.5 x 105 steps, with the first half constituting the burn-in

that we excluded from our posterior distribution. Our posterior distribution was then gener-

ated from the remaining MCMC samples by thinning every 10 steps in each chain. All parame-

ter initializations and proposals were done using the Bayesian Tools package in R [51], while

convergence of parameter assessed using the Gelman-Rubin diagnostic [55].

We tested three different spatial interaction modeling approaches: (1) the fine-scale model

at the municipality level fitted to observed data available at department level, with migration

proportions predicted at the municipality level (Fig 1), (2) a broad-scale model at the depart-

ment level fitted to observed data available at the department level, with proportions predicted

at the same level, and (3) an intermediate-scale model (i.e., based on the 147 municipalities

and 129 multi-municipality units) fitted to observed data available at the same intermediate

level, with proportions predicted at the intermediate level (Fig 2).

Model validation

To validate our fine-scale model results obtained in the absence of observed municipality level

migration data, we used the observed data available at the intermediate level, based on 276 cen-

sus units including 147 single municipalities and 129 multi-municipalities extracted from the

2005 census (Fig 1B). We used the best model selected at the municipality level (i.e., fine-scale

model) to predict migration proportions at the municipality level, converted them to munici-

pality level migration flows and aggregate the latter to the corresponding intermediate level,

and finally compared the resulting estimated intermediate level migration flows to the corre-

sponding observed flows derived from the 2005 census. To compare the intermediate level

migration flows with those we would expect based on the broad-scale model, we assumed that

migration proportions predicted at the department level can be uniformly disaggregated

within each department and thus assigned the same proportion to all single municipalities and

multi-municipalities located within each department.

Results

Fine-scale model

Our best fine-scale model, selected using the forward-selection had all covariates related to the

destination significantly associated with migration, except for percentile of population

(PERCj) and the economic status (GECONj) (Table 2). Urban proportion (URBANPROPi) and

economic status (GECONi) were the only origin-related covariates with a significant contribu-

tion towards migration (p-value <0.001), along with the origin’s population size (Table 1). All

coefficients in the best model showed convergence in our diagnosis based on the Gelman-

Rubin diagnostic [55], all having potential scale reduction factor of approximately 1.0 (S1 Fig).

The best fine-scale model showed that distance between origin and destination was the most

important covariate with the highest negative effect, with a coefficient value of -2.47 (95% CI:

-2.49 − -2.45) (Table 3). Contiguity (CONTij) and the destination’s status of being a major pop-

ulation center (MAJCENj) had the second and third largest positive contributions towards

migration, having coefficients of 2.16 (95% CI: 2.12−2.19) and 1.54 (95% CI: 1.48 − 1.6),
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respectively. Urban proportion at destination and origin were also important, with coefficient

of 0.76 (95% CI: 0.75 − 0.77) and -0.68 (95% CI: -0.71 − -0.65) respectively, suggesting mostly-

urban municipalities as preferential destinations and mostly-rural municipalities as sources of

migrants. Not only being a mostly rural municipality but representing a tiny population center

as well was associated with generating migrants, with a coefficient of -0.76 (95% CI: -0.83−
-0.7). Population sizes had mixed effects on migration, with the origin population (POPi)

Fig 2. Schematic of the three spatial interaction modeling approaches and subsequent validation. In the first

approach (fine-scale), model coefficients are estimated at the municipality level (n = 1122) (C) and used to estimate

municipality level migrations, which are subsequently aggregated to the corresponding departments of origin and

destination. The estimated department level flows are then used to calculate likelihood (select the best model) based on

the observed migrations at the department level (n = 32) (A). In the second approach (broad-scale), model coefficients

are estimated at the department level (n = 32) (D) yielding in predicted migration proportions which are used to

calculate the likelihood based on observed department level migrations (A). In the third approach (intermediate-scale),

model coefficients are estimated at the intermediate level (n = 276) (E), migration proportions are predicted at the

intermediate level, and likelihood calculated based on observed intermediate level migrations (n = 276, including 147

single municipality units) (B). To validate our fine-scale model estimates, we used a subset of the intermediate level

observation (B) that only includes migrations to and from single-municipality units. Bold lines represent observed

data, while deemed lines represent estimates corresponding to each approach namely: fine-scale (red), broad-scale

(green) and intermediate (blue).

https://doi.org/10.1371/journal.pone.0232702.g002

Table 2. Iterative model selection based on Deviance Information Criterion (DIC) using forward step-wise inclu-

sion for fine-scale models, with a single variable added at each iteration.

Model Explanatory variables DIC

Iteration 1 DISTij, POPj, POPi 112926.5

Iteration 2 DISTij, POPj, POPi, URBANPROPj 109357.0

Iteration 3 DISTij, POPj, POPi, URBANPROPj, URBANPROPi 104652.7

Iteration 4 DISTij, POPj, POPi, URBANPROPj, URBANPROPi, MAJCENj 10107.87

Iteration 5 DISTij, POPj, POPi, URBANPROPj, URBANPROPi, MAJCENj, CONTij 98642.46

Iteration 6 DISTij, POPj, POPi, URBANPROPj, URBANPROPi, MAJCENj, CONTij, GECONi 96959.43

Iteration 7 DISTij, POPj, POPi, URBANPROPj, URBANPROPi, MAJCENj. CONTij, GECONi, TINYj 56363.93

https://doi.org/10.1371/journal.pone.0232702.t002
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showing a positive effect with a coefficient of 0.16 (95% CI: 0.15 − 0.17) and the destination pop-

ulation (POPj) showing a negative effect with a coefficient value of -0.124 (95% CI: -0.126 −
-0.122) (Fig 3, in red). Our results of significant effect of both distance and contiguity between

origin and destination and the opposing effects of urban proportion at origin and destination,

as well as the effect of poor economic activities at the origin, suggest that urban economic cen-

ters are more likely to attract migrants from close, rural municipalities with low economic activ-

ity. Selected covariates and coefficient values for the best models under the broad-scale and the

intermediate-scale approaches are shown in Supporting Information (S3 and S4 Tables).

Model comparison across spatial scales

To further examine differences with respect to determinants of migration across spatial scales,

we used the structure of the best-fit fine-scale model to (a) fit a model based on the broad-scale

approach and (b) fit a model based on the intermediate-scale approach. Our results show that

the models based on the broad- and intermediate-scale approaches, while having few similari-

ties in terms of magnitude and sign of the coefficients, have several differences compared to

the fine-scale model. For instance, there were differences between the fine-scale and broad-

scale models in the magnitudes and signs of the coefficients for POPi, POPj, URBANPROPi,
MAJCENj and GECONi, and in the magnitudes of the coefficients for DISTij and CONTij (Fig

3). In contrast, while there were large differences between the fine-scale and intermediate-scale

models in the magnitude of coefficients for DISTij, CONTij, URBANPROPi, URBANPROPj
and POPi, they only showed a sign difference in the coefficients for TINYj and GECONi. These

results suggest that while migration at the three spatial levels exhibit different characteristics,

as expected, the fine-scale migration patterns are relatively more similar to those at the inter-

mediate scale and less similar to those at the broad scale.

Overall, fine-scale model covariates that showed more similarity when applied to the inter-

mediate-scale than to the broad-scale modeling approach included (a) factors that, according

to our model, encouraged emigration such as contiguity between the origin and destination,

origin’s higher population size, lower urban proportion and poorer economic status, and (b)

factors that encouraged immigration such as the destination’s low population size, and being a

major population center. Distance between origin and destination and urban proportion at

destination were the only two fine-scale factors that showed more similarity when applied to

the broad-scale than with the intermediate-scale modeling approach, suggesting that distance

and urbanization are more robust to differences in scale than the other variables.

Table 3. Coefficients of the best fine-scale model.

Covariate Median 95% CI� R-hat

Distance between origin and destination DISTij -2.472 [-2.495, -2.451] 1.000

Population of origin POPi 0.16 [0.152, 0.168] 1.000

Population of destination POPj -0.124 [-0.126, -0.122] 1.000

Contiguity of origin and destination CONTi 2.157 [2.121, 2.194] 1.000

Urban proportion of origin URBANPROPi -0.681 [-0.715, -0.648] 1.000

Urban proportion of destination URBANPROPj 0.76 [0.747, 0.772] 1.000

Population of destination <10th percentile TINYj -0.763 [-0.83, -0.696] 1.000

Population of destination > 90th percentile MAJCENj 1.54 [1.48, 1.601] 1.000

Average per-capita gross cell product of origin GECONi -0.305 [-0.328, -0.283] 1.000

Intercept -7.51 [-7.53, -7.487] 1.000

� Credible Intervals (CI) obtained from the 2.5% and 97.5% quantiles of each parameter’s distribution.

https://doi.org/10.1371/journal.pone.0232702.t003
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Comparison of estimated municipality level migration flows based on the

fine-scale and broad-scale model

Our estimated migration flows between any pair of municipalities, based on the fine-scale

model, were aggregated to the department level and compared to the observed department

Fig 3. Posterior distribution of coefficients selected based on the best fine-scale model (red) compared to

parameter values we would get when fitting using the broad-scale modeling approach while covariates are

restricted to those selected in the best fine-scale model (red); and compared to parameter values we would get

when fitting using the intermediate-scale modeling approach while covariates are restricted to those selected in

the best fine-scale (blue). All coefficients were significant at least at the 0.05 level.

https://doi.org/10.1371/journal.pone.0232702.g003
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level migration flows derived from the 2005 census. This resulted in a Pearson’s correlation

coefficient of 0.84, as compared to 0.88 based on the results of the broad-scale model. These

results demonstrate a good fit, comparable to those we would get based on the best broad-scale

model (Fig 4), especially for routes with high observed migrations (Fig 5).

We further compared the estimated migration flows aggregated to the department level to

the corresponding observed flows to all possible destinations. Our results showed a good fit

when compared to the observed migration flows, especially for departments characterized by

relatively higher incoming flows (Fig 6A–6C). For departments characterized by relatively

lower incoming flows, our results seem to overestimate migration (Fig 6D).

Our municipality level migration flow estimates, based on the fine-scale model, show a pat-

tern of migration into major municipalities in Colombia including Bogota, Cali, and Medellin.

However, there are also other significant migration routes to other relatively smaller munici-

palities in departments with relatively higher economic activity, such as Pereira in the depart-

ment of Risaralda, or regional economic centers, such as Neiva in the department of Huila,

Cucuta in the department of North Santander, and Monteria in the department of Cordoba

(Fig 7A and 7B). These results further demonstrate the importance of urban centers and the

economic opportunities they present as the main pull factors driving migrations at the munici-

pality level. Note that similar patterns were observed at the department level, with those

including major urban municipalities and representing economically strong departments

attracting the largest share of migrants across Colombia (Fig 5A and 5B).

Validation of the fine-scale model using intermediate level migration flows

Observed intermediate level migration flows, pertaining to 276 census units (please refer to

Data and Methods section), were compared to estimated migration flows obtained by

Fig 4. Estimated versus observed migration flows (in log scale) between each pair of departments with estimated flows (A) based on the results of the fine-scale

model, aggregated to the department level, and (B) based on the results of the broad-scale model.

https://doi.org/10.1371/journal.pone.0232702.g004
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aggregating the fine-scale model estimates as well as disaggregating the broad-scale model esti-

mates. The estimates of the intermediate level model (Fig 8A) showed better fit in comparison

to the dis-aggregated estimates (Fig 8B) and aggregated estimates (Fig 8C), as unlike the inter-

mediate-scale estimates, the latter (broad-scale and fine-scale model estimates) are not

informed by the observed data. In addition, the dis-aggregation of broad-scale model estimates

(used in Fig 8B) which we used to show the remaining option in the absence of intermediate

level data, is less optimal since it assigns equal probabilities to all geographic units within a sin-

gle department.

Our fine-scale model resulted in a better fit than the broad-scale model in estimating mobil-

ity at the intermediate level, with the latter particularly overestimating mobility (Fig 8B). Fur-

ther analysis of municipality level flows pertaining to the 147 single-municipalities units in the

intermediate level data (Fig 8D) also show reasonably good fit, especially considering that sin-

gle-municipality units are biased towards large population centers. In addition, analysis of the

residuals in all comparisons of model versus observation data revealed that the fine-scale

model provides a better fit (based on correlation) comparable to those obtained by fitting the

intermediate-level data (Fig 8E–8H).

Discussion

In this study, we have assessed the factors that drive migration patterns within Colombia and

proposed a novel spatial interaction modeling approach to predict migration at a finer spatial

scale than the one at which migration data are either recorded or made available. Our spatial

interaction model is unconstrained both at the origin and destination sides (i.e. not normal-

ized over the total inflows/outflows to/from each location), and thus could potentially result in

over predictions. At the same time, our novel approach provides a much-needed flexibility to

potentially predict the total inflows/outflows to/from each location at any scale, as opposed to

being constrained by observed total inflows and outflows at a fixed spatial scale[56–58]. This

would enable predict migration at a finer scale than the one at which migration data are

Fig 5. Observed (A) and estimated (B and C) migration flows between eight selected departments having the highest observed migration flows either as

destination or origin. Estimated flows are (B) based on the results of the fine-scale model, aggregated to the department level, and (C) based on the results of the

broad-scale model. Centroid points are weighted by the spatial distribution of population within each department.

https://doi.org/10.1371/journal.pone.0232702.g005

PLOS ONE Modeling human migration across spatial scales in Colombia

PLOS ONE | https://doi.org/10.1371/journal.pone.0232702 May 7, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0232702.g005
https://doi.org/10.1371/journal.pone.0232702


generally available. Our approach also assumes that observed migration patterns are relatively

stable and not influenced by large unobserved events.

Our estimated department level migration flows based on the fine-scale model (i.e., based

on estimated municipality level migration flows aggregated to the department level) demon-

strated a good agreement with the observed department level migration flows extracted from

the 2005 census (Figs 4–6). At the municipality level, our results provided estimated migration

flows among the 1,122 municipalities in Colombia with 18% of migrations happening within

the same department. Validation of these estimates using observed intermediate level migra-

tion flows (based on 276 census units including 147 single municipality units) demonstrated

that our estimates are robust and comparable to those that would be obtained by fitting

directly to the intermediate level data (rather than holding them out for validation).

Fig 6. Predicted versus observed migration flows (sorted by magnitude) in eight departments characterized by (A & B) high, (C & D) medium, (E & F) low,

and (G & H) very low incoming migration flows. The shaded violin plots show the 95% confidence interval based on the joint posterior sample parameters,

while the black dots represent the observed flows. The four categories were selected based on the maximum number of migrants each department would

receive based on our estimates, with each of the four departments selected randomly from each quartile.

https://doi.org/10.1371/journal.pone.0232702.g006
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Comparison of our model at the department, intermediate, and municipality levels revealed

differences between the corresponding broad-scale, intermediate-scale and fine-scale model

fits. Distance between origin and destination was confirmed to be the most significant mediat-

ing driver of migration, i.e. those that facilitate and consolidate migration [20], while its coeffi-

cient values varied significantly across scales (Fig 3). The magnitude of distance’s effect on

migration in our fine-scale model is consistent with findings from other countries across the

world based on a classic gravity model with comparable population sizes and distances [57].

However, while increasing from broad-scale to intermediate-scale, consistently with those

findings from other countries, the effect of distance became lower at the fine-scale. This seems

to be due to the larger effects of other factors, including contiguity between origin and destina-

tion and the urban/rural status of the latter, with both the broad-scale and intermediate-scale

models offsetting such effects by penalizing remote destinations.

At the municipality level, the effect of population size in the best fine-scale model showed

large population leading to more emigration and less immigration. This was reinforced by the

positive effect on migration of the destination being among the lowest tenth percentile in pop-

ulation. At the same time, our best fine-scale model showed increased migration towards desti-

nations that are in the top 90th percentile of population, which we labeled major population

centers, in addition to strong positive and moderate negative effects of urban proportions at

the destination and origin, respectively. These results suggest that, except for very few major

population centers, population movement is strongly characterized by movement from rural

to urban administrative units [59] and weakly by movement from higher to lower populated

administrative units; with the latter possibly as a result of model structure trying to offset the

Fig 7. Estimated migration flows (A) between each pair of municipalities with lines going in both directions, (B) between municipalities that have

the 20 highest migration flows and have distances of more than 100 km from each other, and (C) between municipalities that have the 10 highest

migration flows and are within 100 km from Bogota. Centroid points are weighted by the spatial distribution of population in each municipality.

https://doi.org/10.1371/journal.pone.0232702.g007
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effect of other covariates with stronger effects. Our results constitute an important deviation

from the basic assumption of the gravity model, which in its original form assumes larger pop-

ulation, both at origins and destinations, leading to larger movements in both directions [43].

Regarding the effect of economic status, our best fine-scale model seems to show that

migration in Colombia is driven by economic depression at origins, but not necessarily by eco-

nomic attractiveness at destinations, suggesting a propensity to migrate as a result of depriva-

tion at origins and perceived economic opportunities at destinations [60]. Van Hear et al.

(2018) suggested a categorization of drivers of migration into predisposing, proximate, precip-

itating, and mediating [20]. Our best fine-scale model includes predisposing drivers such as

high and low level of urbanization at the destination and origin, respectively, proximate drivers

such as lack of economic opportunities and population pressure at the origin, and mediating

drivers such as distance and contiguity between origin and destination.

Our modeling approach is not without limitations. Because aggregated municipality level

estimates were compared to observed department level data [60], which do not include intra-

department migration, the modeling approach may have poorly captured internal migration

within departments which affect about six percent of all routes. The fact that administrative

units at different levels are formed arbitrarily, both in terms of geographic size (which affects

distances) and population (affecting many of the covariates we used), our models may have

biases arising from such effect (also known as Modifiable Area Unit Problem). This problem

might have contributed to discrepancies between municipality-level, intermediate-level and

Fig 8. Estimated versus observed migration flows (in log scale) between each pair of intermediate level census units, with estimates based (A) on the

intermediate-scale model using the intermediate level migration data, (B) on the broad-scale model by assigning the predicted department level migration

proportions to the corresponding single municipalities and multi-municipalities, (C) on the fine-scale model by aggregating the estimated municipality level

migration flows to the corresponding intermediate level census units, and (D) on the fine-scale model as in C, but considering only single-municipalities. Red

lines represent the identity line, while E through H show histograms of the residuals (in log scale) for the corresponding plots in A-D.

https://doi.org/10.1371/journal.pone.0232702.g008
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department-level estimates and observed data. Note that the intermediate level migration data

are made up of single municipalities and groups of contiguous municipalities, which, when

comparing results, may create potential biases depending on how each group was formed.

Although migration represents a form of long-term human mobility, it has been widely

demonstrated that migration data can serve as reliable proxy for the relative strength of

human connectivity across multiple temporal and spatial scales [7,14]. Similarly, it has been

suggested that international migration provides added effect of enhancing shorter-term occu-

pational mobility [61]. Human mobility is an important factor in the study of several social,

economic, political and biological systems that operate at various temporal and spatial scales.

In particular, global health has been under a growing threat due to rapid spread of infectious

diseases at continental scales. The expansion of chikungunya since 2013 and the recent inva-

sion by the Zika virus in the Americas, for instance, have caused significant human suffering

and economic losses in multiple countries across the region [62,63]. The spread of infectious

diseases is often compounded by the multitude of ways infected individuals travel, both locally

and internationally, opening opportunities for the disease to spread [44,64]. Coupled with the

ecology of several infectious diseases, often characterized by significant heterogeneity at fine

spatial scales [15,16], the need for estimating human mobility at fine spatial scales is well recog-

nized. This study represents a first contribution toward addressing the current lack of fine-

scale migration and human mobility data in Colombia for supporting the research in the

spread of infectious disease and beyond. Furthermore, the spatial interactive modeling

approach we used can be applied in many other countries across Africa, Asia and Latin Amer-

ica and the Caribbean, characterized by similar socio-economic conditions.

Conclusions

Our model indicated that distance and contiguity are the most significant variables driving

migration at all scales, while their values could vary depending on the scale being considered.

At the same time our results also showed that the coefficients of other variables differ either in

their direction (origin and destination population, origin’s urban proportion) or their signifi-

cance (destination’s per capita gross cell product and the quality of being a major population

center) at different scales. The strong influence of distance, contiguity and the quality of being

a major population center at the municipality level mean that individuals tend to migrate to

nearby municipalities, especially to those destinations with large population size. Given that

migration flows can be used as reliable proxy for short term connectivity, those locations with

higher migrant flows (either as origin or destination) are also the ones characterized by higher

level of mobility of humans. Our model estimates enable the use migration data to infer migra-

tion at higher spatial details in locations such as Colombia where these data are lacking, and

further enables the use of those estimates to infer human mobility essential for other systems

including modeling the spread of infectious diseases.
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