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Cancer is a set of complex pathologies that has been recognized as a major public health
problem worldwide for decades. A myriad of therapeutic strategies is indeed available.
However, the wide variability in tumor physiology, response to therapy, added to multi-
drug resistance poses enormous challenges in clinical oncology. The last years have
witnessed a fast-paced development of novel experimental and translational approaches
to therapeutics, that supplemented with computational and theoretical advances are
opening promising avenues to cope with cancer defiances. At the core of these advances,
there is a strong conceptual shift from gene-centric emphasis on driver mutations in
specific oncogenes and tumor suppressors—let us call that the silver bullet approach to
cancer therapeutics—to a systemic, semi-mechanistic approach based on pathway
perturbations and global molecular and physiological regulatory patterns—we will call
this the shrapnel approach. The silver bullet approach is still the best one to follow when
clonal mutations in driver genes are present in the patient, and when there are targeted
therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is
not the common case. The wide molecular variability in the mutational level often is
reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-
known hallmarks of cancer. In such cases “shrapnel gunshots” may become more
effective than “silver bullets”. Here, we will briefly present both approaches and will
abound on the discussion on the state of the art of pathway-based therapeutic designs
from a translational bioinformatics and computational oncology perspective. Further
development of these approaches depends on building collaborative, multidisciplinary
teams to resort to the expertise of clinical oncologists, oncological surgeons, and
molecular oncologists, but also of cancer cell biologists and pharmacologists, as well
as bioinformaticians, computational biologists and data scientists. These teams will be
capable of engaging on a cycle of analyzing high-throughput experiments, mining
databases, researching on clinical data, validating the findings, and improving clinical
outcomes for the benefits of the oncological patients.

Keywords: pathway-based methods, drug repurposing, translational bioinformatics, computational
oncology, PharmaOncology
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INTRODUCTION

Drug development is perhaps one of the most complex and
challenging endeavors in biomedical science. Aside from the
already daunting complexities behind pharmacological drug
designs, there are also enormous difficulties derived from clinical,
regulatory, intellectual property and commercial issues. Such a
challenging environment has caused drug development to be a
really slow and uncertain process. In the search for alternatives to
treat the patients suffering fromdiseases such as cancer, researchers
and clinicians have turned the attention to drug repurposing
strategies. There are several advantages in the use of repositioning
schemes for already existing validated, toxicologically safe and—no
less-important—regulated pharmaceuticals to treat neoplasms.
This is, however, a route not devoid of its own challenges and
caveats. To cope with molecular heterogeneity (in particular
mutational variances) a shift has recently made to resort to
pathway-centered strategies that are aimed to approach the
endeavor of drug repurposing armed with semi-mechanistic
understanding of the mechanisms of action of the repurposed
drugs on its new applications.

A number of successful approaches in this regard rely on the
integration of methods from translational bioinformatics to face
cancer data analysis with a clinician’s perspective in mind;
computational intelligence to diminish biases both individual
and methodological and systems biology to think in terms of
processes and organisms aside from molecular cues. Only by
effectively combining such theoretical approaches with improved
clinical diagnostics and out of the box thinking, we will be able to
live up to the promise of personalized oncology. Such endeavors
will be particularly relevant for the treatment of tumors with
scarce therapeutic options and those prone to develop resistance
to therapy.

The rest of this work will be organized as follows: the following
section will discuss the essentials of pathway-based drug
repurposing methods. In particular, we will elaborate on how
these methods are situated in relation to de novo drug designs,
and what is the role played by advances in pharmaceutical
informatics and personalized medicine. We will further describe
the commonalities and differences of pathway-based repurposing
and mutation centered approaches, by contrasting the strengths
and limitations of both strategies. The following section is a
discussion of recent advances in the field, including novel
computational tools, a growing emphasis on the impact of these
strategies in the clinical outcomes and the role of artificial
intelligence and machine learning in drug repurposing
approaches in cancer. We will also discuss on the development of
novel omic approaches to probe tumors, the important role of drug
delivery and precision drug targeting for repurposing, and recent
advances in functional proteomics relevant to drug repositioning.
Finally, some brief concluding remarks are outlined.

We will now pay attention to the importance of drug
repurposing schemes as compared to de novo drug design, as this
will guide the rest of our discussionof pathway-based approaches to
anti-cancer therapy.
Frontiers in Oncology | www.frontiersin.org 2
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Drug Repurposing Versus De Novo Design
Developing new anti-cancer drugs is of course a very important
endeavor in itself. However, its timeline and route-maps are often
very slow and costly. It is thus desirable that, in parallel with the
synthesis and design of new anti-cancer compounds and their
therapeutic combinations, we also consider strategies for the
repurposing of the large number of already approved drugs (both
anti-cancer andnon-anti-cancer labelled) thatmay target knownor
soon-to-be-discover cancer players. Drug-repurposing has been
considered as a good cost-effective strategy in order to widen-out
the catalog of therapeutic options in oncology. A strategy that, in
addition to be better suited to tackle better with molecular
heterogeneity, is cheaper and faster to escalate to preclinical,
clinical and tier studies stages, even up to clinical trials (1). In the
case of approved drugs with known pharmacological interactions
thismay even pave the way to the development of tailor-made drug
cocktails basedonpathway-foundedpersonalizedmedicine studies.

The latter point gains relevance in the light of a large body of
evidence on the fact that combination therapies may lead to more
powerful and effective results. In particular for the treatment of late-
stage neoplastic tumors than single or sequential drugs
combinations, given the large inter and intratumoral population
heterogeneity (2, 3).

Of course, this is not to say that individualized, tailor-made
polypharmacy therapy is free of caveats. Of notable relevance is the
obvious fact that repurposing schemes did not follow the
development and testing procedures that the pharmaceutical
industry often impose on their new products, regarding dosage,
tissue specificity and so on, and the fact that repurposed drugs were
not designed with multi-therapy in mind (4).

Aside from these fundamental limitations there are other
challenges to systematic approaches to drug repurposing for anti-
cancer therapy. There are also defiances of a methodological and
multi-disciplinary nature: the rational design of multi-drug
repurposing schemes is a daunting task requiring the collaboration
of clinical oncologists and cancer biologists with computational
biologists, bioinformaticians and even experts in artificial
intelligence, to name but a few disciplines. In this regard, oncologist
and pharmaceutical officers need to adapt current practices to benefit
from the input of professionals trained to manage the enormous
wealth of information on chemical, pharmacological and genomic
databases. Also, the use of biomedical informatics specialists to
analyze electronic health records of the patients subjected to certain
treatments. Let us consider some of these instances in more detail.

Pharmaceutical Chemo-Informatics
in Cancer Therapy
One relevant application of high level computational analysis is the
use of data mining and computational intelligence for drug chemo-
informatics, or pharmo-informatics. Particularly relevant for
repurposing schemes is off-target analysis. The vast majority of
drugs and other compounds used in pharmacological therapy have
a large number of off-target effects (OTEs), i.e., additional targets or
January 2021 | Volume 10 | Article 605680
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mechanisms aside from themain (intended) therapeuticmechanism
of action (MoA). OTEs are often the actual basis of a large number of
drug repurposing strategies. Due to combinatorially large “search
spaces”, consequence of the systemic nature of MoAs, looking at
OTEs is an endeavor that is difficult (and extremely slow) to perform
byhumans alone.Computationally assisted interrogationsof the very
large datasets currently available on drugs, its targets and its MoAs,
allow for a sped-up process—often by narrowing down the available
options—allowing the clinician to select from a handful alternatives
and not from among thousands of them (5, 6).

Additional computer-aided methods of drug-repurposing
include the hybrid use of knowledge discovery in databases
(KDD) and molecular profiling/modelization to search for novel
drug-target interactions. The use of machine learning and other
computational and statistical intelligence techniques to screen the
hugemolecular catalogues, searching for drug-target interactions is
gaining a lot of attention.BycombiningKDDandmachine learning
with high-throughput in vitro assay screening (HTS) it has been
possible to devise efficient therapeutic strategies to treat
multifactorial diseases such as cancer, largely outperforming
single-drug approaches (7).

Interestingly, not only mono-therapeutic drug target interactions
need to be considered in these designs. The relevant issues of molecular
and phenotypic heterogeneity in cancer tumors need to be taken into
account to reach clinically-worthy anti-cancer therapeutic interventions,
such as the case of targeted immunotherapy (8). Immunotherapy has
gained a lot of attention recently. However, although a number of
patients respond quite successfully, a large fraction does not share such
benefits. This is very likely associated with the fact that there are
important effects linked to the immunosuppressive nature of the
particular tumor microenvironments. In such situations, it may be
advisable to resort to personalized designs centered on the
individually-perturbed metabolic and signaling pathways. The recent
work by Li and collaborators considered howmetabolic circuits are able
to regulate intrinsic tumor-suppressing immunity pathways. A relevant
number of these interactions havemade their way onto the clinical trial
stage (see, Table 1 in 8). Systematic repurposing of immunomodulatory
drugs like thalidomide, lenalidomide and pomalidomide has been
validated and supported by comprehensive assessment studies (e.g.,
QSAR) of computationally predicted biomarkers in patient-diverse
cohorts (9).

The clinical oncology community remains skeptical, since the
pharmacological efficacy of such treatments is still quite
heterogeneous (10). One avenue to overcome skepticism (and to
level up such variability) is the inclusion of immunotherapeutic
drugs in polypharmacological designs. This strategy has been
deeply discussed by Shen and collaborators, regarding the use of
thalidomideas a drug to increasedelivery and therapeutic efficacyof
cis-platin (11). Thalidomide and its derivative compounds,
however, are still subject of scrutiny (both as mono-drugs and in
combination therapy) due to a series of reports of adverse side
effects, including neurotoxicity (12) and teratogenic events (13).

Patient-Centric Drug Repurposing
Aside from molecular mechanisms and off-target effects, drug-
repurposing schemes face additional demands related to individual
heterogeneity. These challenges startwith the availability of optimal
Frontiers in Oncology | www.frontiersin.org 3
diagnostic tools that consider factors helping to stratify such
heterogeneous response to therapy. This is yet another instance in
which computationally-assisted methodologies (CAMs) and AI
may prove useful (14–17). Aside from CAMs/AI, modelization
approaches based on systems biology frameworks would permit
improved phenotyping and prognostics, leading to better-suited
drug repurposing strategies (18, 19). Computational studies,
relying on patient-wise genomic information, are becoming an
invaluable tool to study the influence of genetic alterations in
tumor progression and cell survival. This information, in turn, is
fundamental to unveil tumor-specific weaknesses pointing out to
clues for the development of optimal constrained sets of targeted
therapeutic interventions, including drug repurposing designs
(20–22).

Drug repurposing schemes extend far beyond designing drug
lists or drug-cocktails. Additional consideration has to be given to
making proper regimes available to the patient (1, 23). The first one
of such considerations deals with the establishment of appropriate
dosage to achieve anti-cancer pharmacological activity, which in
general may be quite different from the dosage intended for the
original use of the repurposed drugs. Computational tools have
been actually developed to solve this issue (24–26). There are other
non-technical (or better, not biological) issues to take into account.
One of them is related to intellectual property, in particular on how
to deal with patent and licensing issues, both in the case of generic
and proprietary treatments. There are also economic challenges to
be overcome, taking into account that cancer-related clinical trials
are often more expensive, need longer follow-ups and are very
prone to failure than those of non-cancer drugs. Pharmaceutical
companies may find the endeavor of conducting repurposing trials
to be financially unworthy. Those latter issues, although relevant,
areout of the scope of the presentwork andhencewill not be further
discussed, the interested reader may refer, for instance to (5) and
references therein.Comingback to thedrug-repurposingmolecular
studies issue, we will further discuss some aspects of translational
bioinformatics strategies to improve the design of personalized,
pathway-based anticancer drug repurposing schemes.Wewill start
by consideringmutation-targeted therapy as this was the beginning
of anti-cancer treatments beyond the use of broad cytotoxic agents.

Mutation-Specific Therapies as an
Approach to Personalized Medicine in
Cancer: Pros and Cons of Silver Bullets
Since the discovery of the first cancer-associated mutations and
oncogenes, one central goal of anti-cancer therapy was that of
looking for cancer-causingmutations (in particular tumor-drivers),
to later resort to a tailor-armed approach to themolecular structure
of silver-bullets, i.e., drugs able target tumors on an extremely
specific fashion, while having no significant effects on non-tumor
cells, often by targeting tumor-specific mutations.

In Figure 1A, we present a schematic workflow for mutation
profiling design of personalized anti-cancer drug repurposing.
High-precision DNA sequencing is used to find a tumor specific
mutation in a patient’s genome. If this mutation is annotated in a
“cancer-panel”, the clinician will gain knowledge that may allow
(specially if such a mutation is absent in the germline genome or in
the healthy tissue) the search of a targeted therapy. Therapeutic
January 2021 | Volume 10 | Article 605680
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alternatives may include monoclonal antibodies able to recognize
the effect of themutation at the protein level (27–29), composing an
antibody-drug conjugate complex (30–33) or synthesizing a small
molecule drug (34, 35). Armedwith this knowledge, it is possible to
look up into pharmacological databases, finding related drugs,
along with off-targets and side effects (36–43). Those drugs are
the long-sought silver bullets.

Unfortunately, with a few exceptional cases of highly penetrant
mutations; most cancer patients have not benefited from these
approaches (44, 45). Due to tumor mutational heterogeneity, most
cancer mutations are rare, subclonal, often not causal and hence
poorly annotated. The sequencing of more and more tumors, in
combination with strong efforts to annotate the new variants may
change this over time.However, thingsarenot changing fast.A large
scale study on the benefits of genome-driven oncology, the
MOSCATO study (46, 47) concluded that purely genomic
Frontiers in Oncology | www.frontiersin.org 4
searches for cancer therapy are able to improve clinical outcomes
in theminority of patientswhoundergomolecular screening. These
results have diminished the emphasis on mutation-centered drug
designs (48, 49). Mutational heterogeneity is fundamental to
understand the challenges of mutation-centric studies. In recent
times, mutational tumor variability has been unveiled at an
unprecedented scale (50). Furthermore, pharmacologically-
induced mutation is known to increase the malignancy and
therapeutic-resistance (51).

The mutation frequency of well-known driver genes in
metastatic breast cancer, for instance, has increased as a
consequence of previous pharmacological treatment (52, 53).
In this regard, the APOBEC family of APO enzymes, for
instance, is known to be relevant for mutational heterogeneity
(54, 55). These facts have led the pharmaco-oncology and clinical
oncology experts to look up for alternative ways to face cancer
A

B

FIGURE 1 | Mutation-specific and pathway-centric approaches to drug re-purposing. Panel (A) exemplifies a simplified workflow for drug repurposing based on
tumor mutation profiling, Panel (B) shows one possible pipeline for drug repurposing based on pathway activities as proxied by gene expression analysis.
January 2021 | Volume 10 | Article 605680
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therapeutics and drug repurposing. One of these avenues that is
gaining a lot of momentum recently is that of pathway-
based designs.

Combining Pathway Analysis, Network
Approaches, and Data Mining: the
Shrapnel Approach
Alternatives to mutation-based therapeutic design exist and are
becoming relevant. This is the case of studies based on functional
pathway analyses based on gene expression profiling. One of
these approaches combines pathway enrichment (56), pathway
crosstalk (57) with the so-called pathway deregulation analysis
(58) and network strategies (59) including probabilistic modeling
and knowledge discovery in databases (60).

Figure 1B presents a simplified view of a pathway-based drug-
repurposing workflow. Since it is known that gene expression,
although quite heterogeneous, is better aimed at capturing
functional similarities at the pathway level than mutational
profiling. Such methods are transcriptome-based designs instead
of a genome-based. The workflow starts by taking a tumor-biopsy
sample from one patient. mRNA is extracted and purified from the
sample. Then gene expression levels of the sample are measured
either by RNA-Sequencing or by other technologies such as
expression arrays, or a Luminex panel (7).

The rationale behind such pathway based methods has to do
with a systems biology view on how to cope with the emergence
of complex phenotypes (say tumors and tumor responses to
therapy) from a myriad of (sometimes unknown) biomolecular
interactions, metabolic reactions and signaling events. In the
cases when the emergence of the phenotype is largely determined
by one (or a handful) mutation events, genomic-variant centered
approaches have proven quite efficient. However, more often
than not, the emergence of the tumorigenic and tumor response
to drug phenotypes is due to the interplay of a number (perhaps
large) of mutually intertwined biological processes. Pathway
based approaches to drug repurposing are intended to deal
with such cases.

The gene expression sample profile is analyzed in the context of
this large data corpus (sometimes by clustering or subtyping it), the
next step consists in database mining from pathway databases such
as KEGG (61), Reactome (62, 63), and Pathway Commons (64).
One may either look up for a specific set of pathways (metabolic or
immune system, for instance) or consider all currently annotated
pathways. Once the set of pathways has been selected, it is possible
to interrogate the databases looking for pathway-targeting drugs,
this is molecules targeting key genes in the deregulated pathways.

Pathway deregulation metrics will allow for further filtering via
joint analysis of pathway deregulation, differential gene expression,
drug-target interactions, off-target, and side effects databases such
as PharmGKB (65, 66), DrugBank (67), the Therapeutic Target
Database, TTD (68) and others. Once these steps have been
followed, we end up with a list of suggested therapies mapping
the abnormal pathways linked to cancer in the different patients.
These prioritized lists are the starting point of the work of the
clinical oncologists and pharmaco-oncologists, as such, they are
intended asmere tools, which, however useful, complement but do
not replace the expertise of the clinical oncologist.
Frontiers in Oncology | www.frontiersin.org 5
Thisworkflowbelongs to amore general family of pathway-based
methods for individualized anticancer drug repurposing. As is
known, biological functions are often represented as an interaction
network of molecules within the cells. Such interactions are often
captured in semi-mechanistic terms as pathways to try to capture the
plethora of higher order biological functions (61). As we have said,
often pathway-based strategies are founded on gene expression and
othermolecular profiling studies. Let us review some general ideas in
this regard.

Gene Expression and Other Means of Molecular
Profiling
One important challenge for the development of personalized drug
repurposing approaches of anticancer therapy is molecular and
phenotypic heterogeneity of the tumors. To tackle such variability,
large scale databases like The Cancer Genome Atlas—Genomic
Data Commons— (69–72) and others (73, 74), allow for analyses
helpful to discern the commonalities and differences in gene
expression features and associate them with the phenotypes and
survival in thousands of cancer patients. Such systematic, data-
driven studies, in turn, opened-up the possibility to create dynamic
maps of tumor features and vulnerabilities by classes. Using these
maps such as the CMAP led to the discovery of vulnerability
biomarkers to guide clinical interventions (75).

Computational biology and AI studies of these huge omic
databases along with clinical, data driven translational applications,
are significantly improving patient-specific diagnostics and
prognostics (76, 77). These, in turn, paved the way to enhanced
designs to cancer therapeutics (78). Such large computational
endeavors have also increased the success of targeted assays to
determine the efficacy of competing therapies such as
chemotherapy and hormone-guided designs (79) or the effects of
combinatorial immune therapies (8).

Pathway Activity Profiling
Moving on from gene expression profiling to actual biological
function is a daunting, unfinished task. However, a common
approximation is given by analyzing which molecular pathways
are deregulated, i.e., their activity functions in abnormal ways.
Perhaps, the optimal experimental way to do this would be by
resorting to massive phospho-proteomic and metabolomic
experiments. However, technical and logistic challenges for
accuracy and reproducibility of current proteomic technologies
have discouraged further studies along these lines for the present
moment.Hence, gene expressionprofilinghasbecome the standard
proxy used in large cohort studies of oncogenic pathway activity.

From Deregulated Pathways to Repurposed Drugs
After analyzing the individual repertoire of dysfunctional pathways
(as proxied by the expression of key genes within them), it has been
possible to devise pathway-centric approximations to drug
repurposing. Let us discuss some remarkable cases. The case of
breast neoplasms with challenging phenotypes is quite illustrative.
A recent study led to the identification of nine breast tumor
subtypes (instead of the usual 4 or 5 considered in the PAM50
classification). One of these subtypes, that went unobserved until
this study, comprising about 7% of the cases (on a cohort of around
January 2021 | Volume 10 | Article 605680
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2000 tumors and 144 controls) resulted deregulated for 38 PKA
pathways (80).

The importance of this finding for the therapeutic options to
treat these tumors lies in the fact that despite being many protein
kinase-driven pathways of great phenotypic impact, most of these
pathways are all inducible by a singlemolecule: PRKACBwhich is a
druggable gene. PRKACB is a target for Staurosporine, a p-
glycoprotein/abcb1 inhibitor. Staurosporine induces cell death in
(Luminal A-associated) MCF7 human breast cancer cells (81), and
is known to also disrupt HUNK, a cell cycle-associated kinase in
Her2+ tumors (82). In this way, Staurosporine is able to treat two
different breast cancer subtypes (luminal and Her2+) by disparate
yet relatedmechanisms that inhibit proliferationviaPKApathways.
The same large scale study identified 9 EGFR-related pathways
which can be targeted by FDA-approved drugs such as Anlotinib
(83, 84). Anlotinib main use in cancer was already established to
treat aggressively, drug-resistant tumors such as glioblastoma (85);
Poziotinib (86–88). Other available EGFR-targeting molecules
include Dacomitinib (89) and cationic polyamidoamine
dendrimers (90).

Due to the binding nature of EGFR control, EGFR-modulation
can also be attained by using glucocorticoids (91). However,
hormone-mediated mechanisms of action are often less specific
than other EGFRmodulators mentioned, so cautionmust be taken
(92, 93). We must notice that EGFR-centered therapies have
resulted to be less effective than initially expected due to kinase
repertoire heterogeneity. However, EGFR-targeting may result
useful in combination therapy, for instance, to increase
chemosensitivity in triple negative breast tumors. The mechanism
proposed for this enhanced chemoselectivity is via reprogramming
apoptotic signaling networks (94). The variability in response to
EGFR-targeting is useful to introduce additional issues to be
considered in the design of repurposing strategies. Two quite
relevant among these issues are the effects of active pathway
crosstalk and the role of secondary targets, in particular in
relation to pharmacological resistance.

Coping With Pharmacological
Resistance: The Role of Pathway
Crosstalk and Secondary Targets
Afinal, yet extremely relevant, issue tobeconsidered in thedesignof
pathway-based, individualized cancer therapy is the fact that the
clinical efficacy of a drug goes well beyond the (static) molecular
portrait given by the action of the drug on the pathway or pathways
under consideration. The dynamic nature of drug activity depends
on its effect, at the level of systemic, even organismal perturbations.
Such phenomena occur within a densely interconnected signal
transduction andmetabolic network (95, 96). Given this, one must
consider the MoA not only within the single instance of the
prioritized pathways, but also in the context of all other biological
phenomena occurring on their close surroundings (i.e., in the
pathways’ network neighborhood). The phenomenon of pathway
crosstalk, for instance, it is known to exert important effects on the
onset and progression of pharmacological resistance (57, 97). Of
course, pathway crosstalk has gone beyond network connectivity
since, as stated, it is a highly dynamic process. For the cases inwhich
one is able to anticipate crosstalk phenomena that may result
Frontiers in Oncology | www.frontiersin.org 6
relevant to pharmacological efficacy this must be considered in
the initial design. At least dosage and coadjuvant therapies to
prevent or diminish its effects must be analyzed in advance
(98–100).

To date, a number of bioinformatic and computational biology
resources have been developed to cope with the issue of pathway
crosstalk in the context of drug repurposing (101–103). A recently
proposed strategy is the use of crosstalk inhibition studies (104–
107). However, other approaches include the evaluation of drug
synergism (108–111), as well as cohort studies to evaluate and
categorize crosstalk induced resistance (57, 112–114).

Aside from pathway crosstalk phenomena, in which the activity
of several interconnected pathways is cross-regulated, there is also
the issue of secondary molecular (and/or functional) targets. A
secondary target of a drug has been defined as any target (a gene,
protein, metabolite, etc.) whose associated MoA or downstream
effects are not in line with the intended therapeutic mechanisms
(115–117). Secondary target studies have been carried out for a long
time. However, the availability of comprehensive database
resources for high throughput assessment of secondary targets is
relatively recent (118, 119).

Among the more relevant resources in the context of anti-cancer
therapeutics,we canmention, for instance, the onemaintainedby the
COSMIC consortium drug resistance database (CCDRD) (https://
cancer.sanger.ac.uk/cosmic/drug_resistance (120, 121). CCDRD is
indeed a quite comprehensive catalog of drug resistance events in
cancer that is, however, limited in that it only considers somatic
mutations. As we have already discussed, somatic-mutation therapy
provides only a narrow window for therapeutic advances limited by
the mutational heterogeneity of the tumors. Other approaches,
although based on less comprehensive resources are also being
considered (122). An outstanding example of its applications is the
case of pembrolizumab (Keytruda) which is an immune checkpoint
inhibitor drug. After looking up for secondary targets of
pembrolizumab, Dang and coworkers found that some of them
actually provide synergistic therapeutic effects (123).
DISCUSSION

Recent Advances
Aside from the established computational frameworks for
oncological drug repurposing already discussed, there is also a
series of nascent, promising strategies that may complement them.
Machine learning (ML) studies, for instance, areprovidingmeansof
discovery relying more on the increasing abundance of omic and
clinical data than on a deep knowledge of cancer biology (which is
the case for most of the approaches already presented). The recent
work of Issa and collaborators (124) summarizes well recent ML
applications. Of noteworthy attention is the fact that some
computational learning algorithms are already being applied
beyond genomic and transcriptomic data. The role machine
learning (Random forests, support vector machines, LASSO
optimization) for ligand-based and docking studies (125, 126) for
instance, has already resulted in therapeutic advances for the
patients (127, 128). Feature selection techniques applied to the
characteristicsof the targets and thedrugs, haveallowedadvances in
January 2021 | Volume 10 | Article 605680
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the so-called proteochemometrics, which aims to optimize the
metabolic efficacy of drugs, something that must not be
overlooked, in particular when facing polypharmaceutical
designs (129).

Machine learning algorithms in cell phenotyping are also
starting to gain attention as a route to the design of anti-cancer
drugs (130) and repurposing strategies (131). Machine learning in
transcriptomic data has been extensively used in recent years, as
already discussed. An application that stands out, having revealed
the efficacy of a very commonover the counter drug (cimetidine, an
already off-patent approved anti-ulcer drug with favorable safety
profile) to be repurposed to treat lung adenocarcinoma was
presented and validated years ago by Sirota and coworkers (132)
and its results have been successfully replicated by an independent
group (133). The work by Sirota and collaborators exemplifies well
one way in which the translational bioinformatics approach should
proceed. Startingwithhigh throughput, highly curated information
from the CMAP (6), they applied machine learning tools (at that
time in the state of the art), discoverednovel dysregulatedpathways,
in lung adenocarcinoma, find key genes involved, look up for FDA
approved targets. Validated their findings in cell lines and mouse
xenografts and make their data and codes available to allow for
replication studies. After this, they started clinical trials tomake the
treatment available to the patients. If one were to summarize the
‘ideal’ workflow of translational bioinformatics, the work by Sirota
and collaborators may be a very good example (132).

Two nascent applications of ML to drug repurposing in
cancer are the use of computational learning in electronic
health records (EHR) databases (134, 135) and in immune
profiles (17, 136). Both are promising for different reasons: On
the one hand, EHR databases may provide massive access to data
at a relatively low cost, enabling hypothesis generation to be
tested in molecular/omic studies. On the other hand, immune
‘fingerprinting’ has shown to be somehow less heterogeneous at
the individual level than genomic/transcriptomic profiling while
at the same time being highly individual-specific.

The emergence of database resources for repurposing such as
RepurposeDB (137) is alsoworthnoticing. Particularly relevant is the
fact that computational learning approaches and KDD over such
databases have revealed that, aside from purely pharmacological and
biochemical features, there are also epidemiological factors
influencing the effectiveness of a repurposed drug. Scanning the
feature selection spaces allows for innovative treatments within the
spectrum of repurposed drugs. Such is the case of the DrugPredict
algorithm(138)which, basedonmolecular andepidemiological data,
have been used to repurpose the non-steroidal anti-inflammatory
drug Indomethacin for the treatment of chemo-resistant ovarian
cancer. Since it has been demonstrated that induced robust cell death
in primary patient-derived platinum-sensitive and platinum-
resistant ovarian cancer cells.

Computational intelligence techniques combined with systems
(particularly network) biology studies constitute relevant lines of
research to comprehensivelymap the interactions pertinent to drug
repurposing. The work of the group of Dragici in this regard is
worth mentioning (139). This group developed an open source
bioinformatic drug repurposing tool called DrugDiseaseNet
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(https://github.com/azampvd/DrugDiseaseNet). With this tool,
the team has managed to reproduce the results of several
noteworthy repurposing studies, most notable, the one by (132).

Also, using machine learning combined with network
approaches, Tan and collaborators were able to analyze the
comprehensive Library of Integrated Network Cell Signatures
(LINCS) database (140) to uncover specific druggable targets in
glioblastoma (48).

The Impact on Clinical Outcomes
Ultimately, the success or not of drug repurposing schemes—as
in every other therapeutic intervention—must be measured in
relation to their impact on clinical outcomes. Of course, there are
numerous reports, including data from pre-clinical assays,
clinical trials, and observational studies supporting the anti-
cancer efficacy of a wide range of repurposed drugs (141).
Indeed, one main advantage of repositioned drugs is the fact
that, often there are extensive data on pharmacokinetic
properties and toxicity available.

However, drug repositioning may require further validation on
novel side effects—due, for instance, to different dosage—and other
considerations for which clinical trialsmust be run. The outcome of
such studies varies widely. For instance, repurposing of raloxifen (a
mineral density enhancer), was validated as an anti-breast cancer
therapy in a multicentric study in 180 hospitals in 25 countries and
become ultimately FDA-approved as a coadjuvant in breast cancer
therapy. Digoxin (a cardiac glycoside) on the other hand, even if
quite promising in the experimental stage, bring no survival benefit
when compared to conventional platinum-based therapy, and also
had significant toxicity and pharmacological interactions (141).
That was also the case for the repurposing of Latrepirdine,
Ceftriaxone and Topiramate (142). All three drugs were
extremely promissory on experimental pre-clinical tests and were
relatively well evaluated regarding toxicity and side effects, even at
anti-tumor doses, but fail to deliver at the clinical outcome test.

Interestingly, translational bioinformatic approaches have been
advanced for the evaluation of clinical outcomes in relation to drug
repurposing (143).Byperformingcomputational literaturemining in
databases such as ClinicalTrials.gov and others, it has been posible to
pre-evaluate clinical outcomes and focusing repurposing trials on
possible red alerts. Aside from positive clinical outcomes, datamining
for adverse events, side effects, and drug-drug interactions, is making
possible to sped-up clinical trials for repurposing drugs by
standardizing, cataloguing, and processing annotated vocabularies
(143, 144). However, standardize, large scale clinical outcome data is
not easily available. One alternative that has been proposed (142) is
that of online, self-reported patient data (145). This approach has
several advantages such as faster data collection, reduced costs, and
enhanced patient-engagement, but is still facing challenges related to
privacy and systematic curation.

Aside from database reporting and archiving, recent efforts
have been made in the use of artificial intelligence (AI) and
machine learning for the large scale analysis of clinical outcomes
(146). An interesting resource in this regard is the Clinical
Outcome Search Space (COSS), an AI platform for drug
repurposing (147). In spite of these advances, not all the
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experts agree on the actual efficacy of drug repurposing
regarding clinical outcomes.

Tran and Prasad (148), for instance, recall that observational
studies alone, may be extremely biased by selection and that this
may affect some of the drug repurposing strategies, hence many of
the repurposing clinical trials are doomed by design. In order to
prevent such biases, randomized controlled trials in large,
heterogeneous populations, evaluating oncological outcomes, even
at the adjuvant level are needed. Such was the case, for instance for
the repurposing of metformin as a neo-adjuvant therapy. As of
2020, there are 132 completed, 85 under recruitment, and 32
finishing clinical trials for metformin as an anticancer drug as
reported in the ClinicalTrials.govwebsite (149). In spite of the large
samplesize of studies such as theTAXOMET, the STAMPEDE, and
the METEOR, and the fact that the drug has been discussed for
oncological use for some years, there is no consensus on the real
significance regarding clinical outcomes. A striking contrast with
thishasbeen the relative successof statinsas antineoplastic agents to
treat lung cancers (150). However, the very fact that we face such
enormous differences in clinical outcomes for repurposeddrugs call
for optimized means to evaluate a priori when a repurposing
candidate drug is worth to enter clinical trial stages.

The Role of Artificial Intelligence and
Machine Learning in Drug Repurposing:
Challenges and Opportunities
Aswe have alreadymentioned, one possible avenue of improvement
of drug-repurposing analytics is the use of computational intelligence
and machine learning approaches. Such views and methods are
particularly relevant to try to cope with the enormous challenges in
interpreting the vast amounts of heterogeneous experimental and
clinical data often present in drug repurposing studies in cancer. The
challenge to make sense of the data has been approached in several
ways. One of such methodologies is baseline regularization (BR).
Kuang and collaborators introduce BR (151) to analyze EHR data,
including drug-prescriptions, physical, and biochemical
measurements (lab tests, anthropometrics, etc.). BR make use of
statistical relationships to account for changes in the patient’s
indicators correlating with the use and dosage of certain drugs of
interest. These relationships are then used to identify, assess, or
validate drug repurposing candidates.

Deep learning methods such as Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), Support
Vector Machines (SVM), and Naive Bayesian analysis (NB), as
well as Natural Language Processing (NLP), have also been used
to find patterns, useful to predict pharmacological effects, from
transcriptomic, genomic, EHR, and bibliographic data (124). A
DNN method, for instance, was introduced in a study analyzing
perturbation experiments from 678 drugs across several cell lines
from the LINCS project (152). ML and DNN have also been used
for rational drug discovery, moving on from classic measures
such as Quantitative Structure-Activity Relationships (QSAR) to
high-throughput, event-based studies for the identification of
novel and repurposed drugs (153, 154).

Aside from trying to tackle the complexities of data interpretation
in experimental and pre-clinical data,ML approaches have been also
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developed for the inference and prediction of drug response patterns
(155). To do so, MoA data, as well as genomic and transcriptomic
databases are being complemented with novel experimental
techniques such as those based on single cell assays (these
techniques and their use in drug repurposing may be discussed in
the next subsection). Computational intelligence techniques are
being applied on tandem, all along the drug repurposing and
development strategies, in the so-called end-to-end (E2E)
applications (156). However, powerful these approaches are, we
have good reasons to be cautious, even skeptical of them, and as is
the case with all clinically-inclined interventions, wait until their
effectiveness is proven in controlled, randomized clinical trials.

Novel Omic Approaches: Single-Cell
Sequencing, Structural Genomics,
Epigenomics
Technical advances in relation to drug repurposing tools not only
consist in the development of computational and bioinfomatic tools
to analyze existing experimental data types. Some functional features
of biological relevance for drug repurposing are indeed being able to
probe only be the use of novel experimental ways to measure
biological activity (157). We can mention, for instance, the rapidly
developing field of single cell sequencing. Single cell biology has been
envisioned as a means to comprehend intra-tumor heterogeneity
with greater precision, and with this gained knowledge being able to
overcome the diagnostic and therapeutic challenges often posed by
such enormous cell-to-cell tumor variability (158). One outstanding
example of such tumor heterogeneity is glioblastoma multiforme
(GBM). One important component of the essential intractability of
advanced stage glioblastoma multiforme is precisely cell-to-cell
variability, even within the so-called glioma-imitating cell
population. To analyze therapeutic challenges in glioblastoma,
Niklasson and coworkers analyzed single cell sorted RNASeq
libraries derived from biopsy-captured GBM samples (159) to
evaluate mesenchymal states connected to therapy resistance via
immunomodulatory mechanisms.

To study c-MET inhibitors and their potential role in overcoming
drug resistance, Firuzi and collaborators studied spheroid models of
pancreatic and stellate cells (160). Single cell proteomic assays
confirmed previous sequencing findings regarding the relative effects
of repurposed drugs tivantinib, PHA-665752 and crizontinib. Single
cellRNASEqand single cell shotgunproteomicshave alsobeenused in
combination to discern the role of cancer associated fibroblasts in
chemoresistance inesophageal adenocarcinoma (161). This study
shows that phosphodiesterase 5 inhibitors are able to regulate the
activated fibroblasts phenotypes in the benign disease and are
promising drugs to enhance response to chemotherapy. Multiscale
modeling, including the role that single cell models of ErbB receptor-
mediatedRas-MAPKandPI3K/AKTsignaling, hasbeenused to study
the response to a drug-reposition treatment in prostate
adenocarcinoma (162). There single cell sequencing assay data was
used to account for subclonal heterogeneity. To evaluate ATRi/BD98
inhibition incell cycledefects inducedbyATRinhibitors incancercells,
single cell sequencing and single cell gel electrophoresis (COMET)
were used by Chory and coworkers (163). These single cell assays
allowed the researchers to characterize theMoAof the ATR inhibitors
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via inhibition of ATP-dependent chromatin remodeling complexes
SWI/SNF.

Aside from single-cell assays, advances in techniques to probe
on structural abnormalities in the genome such as microsatellite
instabilities, gene fusions and chromotripsis have revealed clues
to the design and repurposing of anticancer drugs. In a recent
analysis on the use of gene variants and networks for drug
repurposing in colorectal cancer, Irhan and collaborators (164)
discussed how to use colorectal cancer biomarkers, such as
microsatellite instabilities (MSI), for the repurposing of
PIK3CA modulators. Finding molecules such as copanlisib,
either alone or in combination with nivolumab as promissory
drugs. On a similar line of thought, Fong and To (165) presented
the use of immune checkpoint inhibitors as effective therapies for
colorectal cancer patients with MSI or mismatch repair variants.
This has led to the FDA approval of pembrolizumab (Keytruda)
combined with nivolumab as PD-1 inhibitors and of ipilimumab
as a CLT4-inhibitors in those tumors. In connection to anti-
breast cancer therapies, pembrolizumab has also been approved
for metastatic tumors with marked MSI. Such is also the case of
coadjuvant theory with aspirin and Celecoxib as (anti-PD-1
antibody) for advanced stage breast cancer (166, 167). MSI has
also been a factor to consider for the repurposing of co-adjuvant
drugs to treat advanced stage melanoma (Indoximod), metastatic
non-small cell lung cancer (Metformin), in both cases to enhance
pembrolizumab activity.

Another set of structural variants of interest for anti-cancer drug
repurposing is that of gene fusions. Perhaps the paradigmatic case is
that of acute myeloid leukemia (AML) (168). The case of
niclosamide is relevant since it targets some relatively common
gene fusions (or their associated chimeric proteins), aside from
targeting relevant transcription factors such as CREB, STAT3 and
NF-kB. Chromosomal aberrations and gene fusions in intimal
sarcoma have also helped to identify potential therapeutic targets
(169). In particular, the PDE4NIP/NOTCH2 and the MRPS30/
ARD2 fusion positive tumors have been identified as druggable
targets. In colon cancer, KCTD12/CDK1 fusion positive tumors
have been shown to become vulnerable to vemurafenib via a
coadjuvant treatment with adefovir dipivoxil (170). This allows
the repurposing of the BRAF V600E inhibitor vemurafenib from
melanoma to colon cancer therapy.

Epigenomic markers—most notably methylation patterns—
have also unveiled avenues for drug repurposing (171). Some of
these were found via KsRepo a methylation-based drug
repurposing method for acute myeloid leukemia (172) that has
allowed to reposition four drugs: alitretinoin, cytarabine,
panabinostat, and progesterone for AML. Methylation profiles
(in particular, m6A DNA/RNA methylation) have been proven
to be relevant to the action of repurposed drugs such as afatinib
in non-small cell lung cancer (173). DNA methylation profiles
also have been useful as a tool to find out novel and repurposed
therapeutic targets in bladder cancer (174).

In particular, a novel useof 5-azacytidine a nucleoside analogue
and decitabine that may function as a DNA methyltransferase
inhibitor, have been found to re-activate tumor suppressor genes,
inhibiting tumor cell growth and increasing apoptosis in bladder
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cancer cells. These results remain consistent from in vitro assays all
along to clinical trials.

Drug Delivery Mechanisms
and Chemo-Resistance
A relevant and often overlooked challenge in drug repurposing—
in particular when the repositioned drug was originally a non-
oncological one—is the issue of drug delivery efficacy and its
relationship with proper drug targeting and chemo-resistance.
One example of how to overcome these challenges is the reduction
of chemo-resistance via coadjuvant therapy with mebendazole
(175). Aside from coadjuvant therapy, perhaps the best solution to
optimize drug delivery to the tumors is via advancing delivery
technologies (176, 177). Lei and coworkers, for instance, discussed
the use of nanomedicine such as nanoparticle albumin-bound
paclitaxel (nab-PTX), abraxane, or a liposomal formulation of
irinotecan as effective improvements of anti-cancer drug delivery
for pancreatic ductal adenocarcinoma (177).

The use of exosomes has been extensively studied recently, in
particular since they may play a role, not only in drug delivery, but
also in regulatingautocrine andparacrine signalingpathwayswhich
may regulate drug responses (178). Extracellular vesicles have also
been used to navigate through the tumor microenvironment in
glioblastoma. Such vesicles have resulted useful to deliver drugs,
even through the blood-brain barrier (179). Caution, however, mut
be taken since these vesicles have also biological roles such as the
promotion of angiogenesis, immune suppression and facilitating
recurrence, all of them pro-tumor effects. Hence, a lot of research
efforts must be devoted to develop effective drug delivery
mechanisms that enhance drug-targeting and reduce chemo-
resistance in relation to anti-cancer repurposed therapy.

Emerging Proteome-Based Studies
Wehavementioned thatmost high-throughput pathway activity and
drug MoA studies are based on either sequencing known genomic
targets ornovelmutationsormeasuringgene expressionbyRNASeq,
microarrays, or Luminex-type assays. However, quite recently
proteomic-wise techniques are enhancing our capacities to probe
cellular activity at the (functional) proteome and phospho-proteome
level. One of such techniques is isobaric labeling mass spectrometry
(8). This technique has allowed to identify and dose-stratify the
binding of the drug staurosphorine to 228 cellular kinases on a single
experiment. Proteomic and phosphoproteomic analyses have also
allowed to reveal mechanisms of activation of NEK2 and AURKA
kinases in cancer (180), thus allowing the use of drugs targeting such
kinases in six different cancer types within the Clinical Proteomic
TumorAnalysisConsortium(CPTAC):Breast cancer, clear cell renal
carcinoma, colon cancer, lung adenocarcinoma, ovarian cancer, and
uterine corpus endometrial carcinoma.

Advances in the experimental tools to study cancer proteome-
wise, have also called for the development of new methodological,
computational, and analytical techniques, useful in drug repurposing
strategies. As an example, Saei and collaborators developed a
comprehensive chemical proteomics profiling approach for target
deconvolution of a redox active drug auranofin (originally and anti-
rheumatic called Ridaura) as an anti-cancer drug auranofin was
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found to target genes such as TXNRD1,NFKB2, andCHORDC1, all
of them known to be involved in the perturbation of oxidoreductase
pathways in cancer (181). Bioinformatic platforms for the predictive
analytics of drug-protein-disease data are in turn, being developed.
Such is the case of rb”cando.py”, a bioinformatic platform to analyze
changes in proteome profiles related to drug perturbation. This
method has been applied successfully to analyze repurposing of
ribavririn and a novel compound LMK-235 in breast cancer and
AML. The results have been validated in in vivo experiments and are
being considered to enter a clinical phase in the near future (182).
Thesearebut ahandfulof examples that, however,makeus anticipate
further, near-future developments, in the high-throughput study of
phenomena of interest for systematic drug repositioning strategies to
treat cancer.

Concluding Remarks
Drug repurposing in cancer is a quite complex endeavor. In order to
cope with all the complexities and subtleties involved, there is a need
for collaborative, multidisciplinary teams, including clinical
oncologists and oncological surgeons, molecular oncologists, cancer
cell biologists and pharmacologists but also bioinformaticians,
computational biologists and data scientists. One emergent and
quite successful avenue of research and intervention, is that of
basing repurposing strategies on functional, semi-mechanistic basis
as the one supplied by pathway-based analysis. This comes as no
surprise, since the ultimate goal of pharmacological interventions is
the modulation of functional traits and processes both at the
functional and physiological levels. Hence pathway-based studies
provide a close proxy as to these functional processes that make us
hypothesize that findings based on these may prove to be more
effective in terms of providing effective anticancer therapy.

The present review discusses recent advances in the application
of computational molecular biology and bioinformatic approaches
Frontiers in Oncology | www.frontiersin.org 10
using high throughput omic data, mining of extensive, well-
annotated databases and a cycle of experimental and clinical
validation, to face some of the more evident challenges for anti-
cancerdrug repurposing.Thefield isflourishing so this review isnot
meant to be comprehensive but rather to serve as an introductory
journey into a wide and fascinating research topic.
AUTHOR CONTRIBUTIONS

EH-L devised the project, established the outline, and made the
figures. EH-L and MM-G performed literature surveys and
revisions. EH-L and MM-G wrote the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by the Consejo Nacional de Ciencia y
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article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
January 2021 | Volume 10 | Article 605680

https://doi.org/10.1038/s41397-019-0110-4
https://doi.org/10.3390/cells9081850
https://doi.org/10.3390/cells9081850
https://doi.org/10.3390/cancers11091284
https://doi.org/10.1016/j.jconrel.2020.09.002
https://doi.org/10.1124/jpet.118.255786
https://doi.org/10.1016/j.drup.2019.07.003
https://doi.org/10.1016/j.drup.2019.07.003
https://doi.org/10.1038/s41388-020-1308-2
https://doi.org/10.3390/biom10020237
https://doi.org/10.1016/j.redox.2020.101491
https://doi.org/10.1101/845545
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics
	Introduction
	Pathway-Based Drug Repurposing
	Drug Repurposing Versus De Novo Design
	Pharmaceutical Chemo-Informatics in Cancer Therapy
	Patient-Centric Drug Repurposing
	Mutation-Specific Therapies as an Approach to Personalized Medicine in Cancer: Pros and Cons of Silver Bullets
	Combining Pathway Analysis, Network Approaches, and Data Mining: the Shrapnel Approach
	Gene Expression and Other Means of Molecular Profiling
	Pathway Activity Profiling
	From Deregulated Pathways to Repurposed Drugs

	Coping With Pharmacological Resistance: The Role of Pathway Crosstalk and Secondary Targets

	Discussion
	Recent Advances
	The Impact on Clinical Outcomes
	The Role of Artificial Intelligence and Machine Learning in Drug Repurposing: Challenges and Opportunities
	Novel Omic Approaches: Single-Cell Sequencing, Structural Genomics, Epigenomics
	Drug Delivery Mechanisms and Chemo-Resistance
	Emerging Proteome-Based Studies
	Concluding Remarks

	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


