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Abstract

Background: PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at
protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion
channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been
developed based on domain and peptide sequence information. Since domain structure is known to influence
binding specificity, we hypothesized that structural information could be used to predict new interactions
compared to sequence-based predictors.

Results: We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using
a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was
estimated using extensive cross validation testing. We used the structure-based predictor to scan the human
proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-
peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the
sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain
sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain
biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the
structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic
metabolism and suggest new interactions for other processes including wound healing and Wnt signalling.

Conclusions: We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan
C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ
mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on
training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ
domain biology and predict novel PDZ domain function. Users may access our structure-based and previous
sequence-based predictors at http://webservice.baderlab.org/domains/POW.
Background
PSD95/DlgA/Zo-1 (PDZ) domains are modular peptide
recognition domains that are generally found in eukaryotic
signalling pathways, often in scaffolding proteins that are
responsible for regulating protein complex assembly and
localization to specialized sites in the cell, especially at
membranes [1]. Their importance in higher organisms is
highlighted by their increasing abundance from yeast to
human (with only 2 in yeast and over 250 encoded in the
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human genome) and association with diseases such as
cystic fibrosis and schizophrenia, and pathogens, such
as human papillomavirus [2-4]. PDZ domains fold into a
globular structure consisting of six β strands and two α
helices (Figure 1) and often bind their targets through
the recognition of hydrophobic C-termini. Canonical
interactions occur between the target peptide side chains
and a hydrophobic binding pocket formed between do-
main β2 strand and α2 helix, though other binding modes
are known. The binding specificity of PDZ domains has
been categorized into two main classes, where class I
domains prefer to bind C-terminal motifs X[S/T]XΦ and
class II domains prefer to bind XΦXΦ (where X is any
amino acid and Φ is a hydrophobe) [5]. More recent
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Figure 1 3D structure of a bound PDZ domain. The PDZ domain
folds into a structure consisting of six β strands and two α helices.
Canonical interactions occur through C-terminal target side chain
interactions and the hydrophobic domain binding pocket formed
between domain strand β2 and helix α2. The ten core domain
binding sites are highlighted in blue and the bound peptide
(RRETQV) is in orange. PDB:2OQS (NMR first model) [74].
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studies have found that the PDZ domain can be specific
up to seven residues [6,7].
Recent high throughput experiments have resulted in

the availability of large data sets of PDZ domain-peptide
interactions [7,8]. As a result, several computational
methods have been developed to predict PDZ domain-
peptide interactions using sequence-based information
only [8-12]. Previously, we developed a sequence-based
predictor to scan proteomes of multiple organisms for
binders of PDZ domains [10]. Although this predictor
is more accurate and precise at proteome scanning
compared to previous sequence-based predictors, like
others, it performs better on sequences similar to those
in the training set. It is known that structure features
within the domain binding pocket play important roles
in determining binding specificity [13-15]. Since domain
structure features capture different information about
binding compared to sequence features, we hypothesized
that training with such features would result in a predictor
that is complementary to the sequence-based predictor.
In particular, such a predictor would be less dependent
on sequence similarity and would predict additional
interactions not predicted by the sequence-based pre-
dictor. This would expand the coverage of PDZ domain
C-terminal peptide interactions that can currently be
predicted by sequence-based predictors alone.
Structure-based predictors have been developed to more

generally predict protein-protein interactions. For instance,
Hue et al., used a support vector machine (SVM) to pre-
dict PPIs using a structure kernel [16]. Methods utilizing
structure information to more specifically predict PPIs
mediated by peptide recognition domains have also been
developed. Sanchez et al., used an empirical force field
to calculate structure-based energy functions for human
SH2 domain interactions [17]. Fernandez-Ballester et al.,
constructed position weight matrices of all possible SH3-
ligand complexes in yeast using homology modelling [18].
Smith et al., used protein backbone sampling to predict
binding specificity for 85 human PDZ domains [19].
Kaufmann et al., developed an optimized energy func-
tion to predict the binding specificity of PDZ domain-
peptide interactions for 12 PDZ domains [20].
In this paper, we present a structure-based predictor

for PDZ domain-peptide interactions that can be used
for proteome scanning. Our predictor uses a variety of
different structure features that are known to play roles
in protein structure stability and facilitating PPIs. Through
leave 12% of domain out cross validation, we showed that
the structure-based predictor depends less on training–
testing domain sequence similarity compared to our
previous sequence-based predictor. Based on human
proteome scanning results, we also show that the structure-
based predictions correspond to known experimentally
determined PDZ domain-peptide interactions and known
PPIs involving PDZ domain containing proteins. A sub-
stantial number of the structure-based predictions cor-
respond to known PPIs not previously predicted by the
sequence-based predictor (48% increase), confirming that
the structure-based predictor finds different interactions
than the sequence-based predictor. Using predictions from
both methods, we created a functional map using all
predicted human PDZ mediated PPIs and identify xeno-
biotic metabolism as a novel biological process enriched
in PDZ interactors.
Finally, we developed a website called POW! PDZ

domain-peptide interaction prediction website (http://
webservice.baderlab.org/domains/POW), which enables
users to run our sequence-based and structure-based
predictors online in human, mouse, fly and worm.

Methods
Domain binding site definition
A number of positions in the PDZ domain that are in
close contact with the peptide are important for binding
[7,8]. Following previous work, we defined the binding
site using ten domain positions (core positions) that are
in close contact with the peptide ligand (< 4.5 angstroms)
across nine PDZ domain structures. In total, 218 out of
267 human PDZ domains could be used because they
didn’t have gaps in their binding sites based on a PDZ
family multiple sequence alignment (8 structures), and
we could obtain structures and compute features for
them (41 structures). For mouse, fly and worm, respect-
ively, 178 of 237, 85 of 117 and 64 of 81 known PDZ
domains were supported with 11, 14 and 7 of the remaining
domains containing gaps. All PDZ domains were defined
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by HMMER 3.0 [21] against UniProt defined PDZ
proteins as of Apr 2012. Overall, the structure-based
predictor supports the majority of PDZ domains (i.e.
82%, 74%, 73% and 79% of known PDZ domains) for
human, mouse, fly and worm, respectively.
Although previous studies used a binding site definition

of 16 domain positions (a superset of the ten we use), these
positions were identified from only a single PDZ domain-
peptide complex structure [9,10] and many domains con-
tain gaps using this larger 16-position binding site defin-
ition (based on a multiple sequence alignment with other
PDZ domains). A comparison of cross validation perform-
ance (see section on Predictor Performance Evaluation)
using ten versus 16 binding site positions showed that the
ten positions were adequate for achieving good predictor
performance (see Additional file 1: Table S1).

Domain structure data
The initial set of PDZ domain structures consists of one
NMR and 17 X-ray structures for human collected from
the Protein Data Bank (PDB) [22] with corresponding
interaction data from phage display or protein micro-
array experiments [7,8]. Five NMR structures were
collected from the PDB for mouse. For NMR structures,
only the first model was used. Homology models were
used to increase the number of structures available for
domain structure feature encoding. In total, 11 human
and 54 mouse PDZ domain models were modelled by
SWISS-MODEL [23] (downloaded Feb-Sep 2011) through
the Protein Model Portal, which is a website providing
access to structure models generated by different pro-
tein structure resources [24].
The quality of the homology models was estimated by

computing the number of identical residues between the
target and template sequence (i.e. template sequence iden-
tity). It has been shown that target-template sequence
identity is positively correlated with model quality. In
particular, state-of-the-art algorithms can always build
high quality models (RMSD < 2 Å) if the target-template
sequence identity is higher than 35-40%. Furthermore,
there is no significant variation in model quality for
targets with sequence similarity between 40-70%. If the
similarity is 35%, there is no correlation [25,26]. All
training models have greater than 50% sequence simi-
larity to their template structure (average 90%). At this
threshold, models are expected to have the correct fold
with most inaccuracies arising from structural variation in
templates and incorrect reconstruction of loops [25,26].
We also computed the QMEAN score which is a scoring
function measuring multiple geometrical aspects of pro-
tein structure including torsion angle potential, secondary
structure-specific interaction potentials and solvation ex-
posure potential [27]. This score ranges from zero to one
with scores closer to one indicating more reliable models.
The minimum QMEAN score for our training models is
0.520 (average 0.836). Please see Additional file 2: Table S1
for details on all training domains.

Domain-peptide interaction data
PDZ domain-peptide interactions were collected from
published high throughput phage display and protein
microarray experiments for human and mouse, respect-
ively [7,8]. Since the phage display data consisted of only
positive interactions (of which many could be non-
genomic, meaning not similar to any genomic peptide),
we used an established protocol to filter the interactions
to enrich for genomic interactions and to generate arti-
ficial negative interactions [10]. Briefly, this protocol
involves creating a position weight matrix for a given
training domain using its experimentally determined
binders (positives) and then using the matrix to scan a
pool of C-terminal peptides (last 5 positions) for low
scoring binders (negatives). We adopted a minor modi-
fication of this procedure to allow for the inclusion of
additional class II type PDZ domains to increase cover-
age of the PDZ family – the minimum number of gen-
omic peptides required for inclusion was relaxed from
ten to four. Only domains with both positive and nega-
tive interaction data were used for predictor training.

Domain structure feature encoding
Structure features across the entire PDZ domain struc-
ture were computed and values corresponding to the ten
core binding site positions were extracted from the lar-
ger list of features computed for all domain positions.
Four types of structure features (detailed below) involved
in protein folding and stability were computed to de-
scribe the PDZ domain structure (Figure 1). Three-
dimensional geometric descriptors were investigated but
were not included because they resulted in inferior cross
validation performance (see Additional file 1: Figure S1).
In total, the PDZ domain structure as defined by the
core positions was represented by a vector of length 240
features. Each value in the feature vector was scaled to
lie between zero and one. Details regarding software
parameters used to compute the following structure
features are available in Additional file 1, section A.

Solvent accessibility, hydrogen bonding and positive phi
angle properties
The first feature type consists of five values describing
protein structure and were computed using the JOY web
server [28]. Solvent accessibility indicates whether the
protein surface in the area at the given core residue pos-
ition is available to interact with ligands. Therefore, the
first value indicates whether a given residue is solvent
accessible or inaccessible. Patterns of hydrogen bonding
are important in forming protein secondary and tertiary
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structure and are known to be important for canonical
C-terminal peptide binding to the PDZ domain. The next
three values indicate if there is a residue side chain hydro-
gen bonded to a main chain amide, carbonyl or another
side chain. Finally, since positive main chain phi angles
may restrict what types of residues may be accommodated
at a given position, the last value indicates if the residue has
a positive phi angle. These binary features (i.e. absence is 0,
presence is 1) were computed for each core residue pos-
ition resulting in a binary vector of length 50 (5 features x
10 core positions).

Solvent accessible area
The second feature type is a single value indicating how
much surface (i.e. area) for a core residue is available for
binding to a ligand residue. This feature was computed
using the SURFV software [29] for each residue resulting
in a numeric vector of length 10 (1 feature x 10 core
positions).

Electrostatic potential and hydrophobicity
Protein-protein interactions are facilitated by the elec-
trostatic and hydrophobic complementarity of molecular
surfaces. Therefore, the third and fourth feature types
describe the electrostatic potential and hydrophobicity
along the surface of the domain. At each core residue
position, nine values were sampled from the surface
resulting in a total of 90 electrostatic and 90 hydropho-
bicity values (9 features x 10 core positions). These
features were generated by the VASCo software [30].

Peptide sequence feature encoding
Peptides were encoded using a sparse binary vector en-
coding, as described in previous work [10]. Briefly, each
residue in a peptide of length five was represented using
a binary vector of length 20 with each bit corresponding
to an amino acid type. The vectors were concatenated to
form the final feature vector of length 100.

Support vector machine
We used the support vector machine (SVM) binary ma-
chine learning method for our predictor [31,32]. Given
interaction training data (x1,y1),. . .,(xm,ym) where m is
the number of samples, xi is a feature vector for domain
di and peptide pi and y is a class label such that yi = {−1,
+1}[33], the SVM assigns a class label of +1 if a given
interaction feature vector encodes a positive interaction
or −1 otherwise. The decision function is evaluated to
assign the binary label:

f xð Þ ¼ sgn w:xþ bð Þ

where sgn(0) = +1, otherwise −1. The weight vector w and
bias term b describe a maximum margin hyperplane (w,b)
that separates positive and negative training examples. For
such a hyperplane:

w ¼
Xm

i¼1

αiyixi

where the αi’s are positive real numbers that maximize the
following objective function:

Xm

i¼1

αi � 1
2

Xm

i;j¼1

αiαjyiyjK xi; xj
� �

subject to the constraints 0≤αi≤C for all i ¼ 1; . . . ;m;

and
Xm

i¼1

αiyi ¼ 0

where K(xi,xj) can be thought of as describing the similar-
ity between two feature vectors, and C is a cost parameter
that penalizes training errors. We used the radial basis
function (RBF) kernel, defined as:

K xi; xj
� � ¼ e�γ xi�xjk k2

A grid search was used to find locally optimal values
for γ and C [34]. Instead of explicitly balancing the posi-
tive and negative training examples, weighted costs were
used according to C+ = (n+/n-) C-, where n+ is the num-
ber of positive training interactions and n- is the number
of negative training interactions. The LibSVM software
library was used to build the SVM [35].

Semi supervised negative training set expansion
An initial predictor was built using the data for 88 PDZ
domains described above. A preliminary assessment of the
predictor’s proteome scanning performance was performed
by scanning the human proteome (defined by genome
assembly Ensembl:37.64) for each domain in the training
set. This initial predictor returned a large number of hits
(1000 or more) for over half of the domains with an aver-
age number of predictions returned per domain of over
2000 (see Additional file 1: Figure S2, left boxplot). Since
previous phage display experiments detected fewer than
a hundred binders per domain among billions of ran-
dom peptides, the majority of these initial predictions
are likely false positives. We surmised that the initial
negative training data did not adequately cover the nega-
tive proteomic interaction space. Therefore, we used a
semi supervised learning approach similar to a method
previously used to expand negative training data sets when
there are no negatives initially available [36]. This predictor
was used to scan the human proteome for interactors of
training domains as we did for the initial predictor. We
found that adding negatives reduced the number of hits
returned per domain. The final predictor was trained using
a total of 942 positive and 1843 negative interactions in-
volving 83 PDZ domains and 872 peptides (Table 1). When



Table 1 Summary of the training data

Domain Interactions

Organism Source # Pos # Neg # Pos # Neg

Mouse Protein microarray 58 53 527 1026

Mouse SVM Negatives - 24 - 210

Human Phage Display 25 - 415 -

Human PWM Negatives - 25 - 407

Human SVM Negatives - 20 - 200

Totals 83 - 942 1843
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scanning the human proteome again, the final predictor
predicted 1000 or more hits for only five out of 83 training
domains (approximately 6% of training domains). The
average number of predictions per domain returned by
the final predictor was approximately 400 (see Additional
file 1: Figure S2, right boxplot). Please see Additional file 1,
section E for more details.

Predictor performance evaluation
We carried out multiple cross validation strategies to
provide an estimate of predictor performance. First we
performed ten fold cross validation which involves
partitioning the training data into ten randomly selected
interaction sets, independently holding out each set for
testing against a predictor trained using the remainder
of the data, and computing average performance across
all ten runs. Following previous prediction methods and
to better compare our results with previous work, we
held out 12% of the domains (to estimate performance
dependence on specific sets of domains), 8% of the
peptides (to estimate predictor performance depend-
ence on specific sets of peptides) and both 12% of the
domains and 8% of the peptides (to estimate predictor
performance dependence on specific sets of domains
and peptides) and tested on the rest, again repeating this
ten times [9]. In general, the training domain features
are more similar to each other (average 0.85 using
normalized dot product similarity), compared to the
peptide features (average 0.13). Thus, we also performed
leave 12% of domains out cross validation with training
set filtering based on domain sequence similarity and
compared the performance of the structure-based pre-
dictor to our previously published sequence-based pre-
dictor. This involved holding out all data for 12% of
domains for testing and training with only remaining
domains and their interactions that had sequence simi-
larity less than a given threshold to all testing domains.
We computed the following statistics to measure pre-

dictor performance:

� Sensitivity or Recall: TP/(TP + FN)
� Specificity: TN/(TN + FP)
� Precision: TP/(TP + FP)
where TP is the number of true positives, FP is the
number of false positives, TN is the number of true
negatives, FP is the number of false positives. The over-
all performance was summarized by computing the area
under the receiver operating characteristic (ROC) curves
and Precision/Recall (PR) curves [37,38].

Functional enrichment analysis
A gene function enrichment analysis was performed on
the predicted sequence-based and structure-based gene
targets using Gene Ontology (GO) biological process
terms [39]. The BiNGO (Biological Network Gene Ontol-
ogy tool) software library [40] was used to determine
the enriched terms. The hypergeometric test was used
to compute a p-value assessing the GO term enrichment
for a given set of predicted genes. Multiple testing correction
was performed using the Benjamini and Hochberg False
Discovery Rate (FDR) correction. GO v1.2 (downloaded
Dec 7, 2011) and human GO annotations (downloaded
Dec 7, 2011) were used. Only gene-sets with between
five and 300 genes were used from the GO ontology
(defined by the GMT file dated Dec 6, 2011 and available
at http://www.baderlab.org/Data/StructurePDZProteome
Scanning). A list of enriched terms (p-value < 0.05 and
FDR < 0.1) with more than one gene interactor and
associated with more than two domains were retained.
To better interpret the structure-based and sequence-
based enrichment results, we created an enrichment
map, a network-based visual representation of enriched
terms that groups similar terms and eases identification
of functional themes. We used the Enrichment Map
Cytoscape plugin software to create the enrichment map
[41,42], using the parameters p-value < 0.05, FDR Q
value < 0.1 and “Jaccard + overlap similarity” cutoff = 0.517.

Results
The structure-based predictor achieves high cross
validation results
To estimate the generality of the predictor, we ran
multiple cross validation tests and plotted the ROC and
PR curves to summarize the performance. The predictor
achieves high ROC and PR area under the curve (AUC)
scores compared to random performance AUCs over all
cross validation strategies. In particular the ten fold cross
validation ROC and PR AUCs were 0.96 and 0.936, re-
spectively (random ROC AUC 0.5, PR AUC 0.253). The
leave 8% of peptides out cross validation ROC and PR
AUCs were 0.935 and 0.909 respectively (random ROC
AUC 0.5, PR AUC 0.358). The leave 12% of domains and
8% of peptides out cross validation out ROC and PR
AUCs were 0.927 and 0.886 respectively (random ROC
AUC 0.5, PR AUC 0.347). Finally, slightly lower AUCs
were obtained for the leave 12% of domains out cross
validations, which achieved 0.872 and 0.785 respectively
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(random ROC AUC 0.5, PR AUC 0.33) (Figure 2). Like
our previously published sequence-based predictor, the
cross validation results were lower for strategies that
involved leaving sets of domains out. A one-tailed t-test
showed that the mean AUC scores were significantly
higher for the structure-based predictor compared to
those of the sequence-based predictor (p-value < 0.025)
(Table 2). Blind testing results on a small number of
genomic mouse, worm and fly interactions suggest that
the predictor is able to correctly predict interactions in
different organisms. However since these data sets are
small, additional data is required to verify this. Please
see Additional file 1, section H for blind testing results.

The structure-based predictor is less dependent on
training–testing domain sequence similarity
In previous work, we showed that the performance of
the sequence-based predictor depends on how similar in
binding site sequence a given testing domain is to its
nearest training domain. In particular, as the domain
binding site sequence similarity decreases so does the
predictor’s average performance until it is comparable to
that of a naïve nearest neighbour sequence predictor [10].
To more rigorously compare structure-based and sequence-
based predictor performance as training–testing domain
sequence similarity varies, we performed a leave 12% of
domains out cross validation with domain sequence
similarity-based training set filtering for each predictor.
For each fold, 12% of domains and their interactions were
held out, and of the remaining domains, only those and
their corresponding interactions were retained for training
if the domain sequence similarity was less than a given
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Figure 2 Predictor performance estimation using cross validation. Pre
domains out (blue), leave 8% of peptides out (green), leave 12% of domain
threshold for all testing domains. All training sets had
no more than 500 interactions. Ten folds were executed
and repeated ten times for a total of 100 runs. For each
run, the ROC and PR AUCs were computed and plotted as
box plots according to the similarity threshold (Figure 3).
A one-tailed t-test showed that the mean ROC and PR
AUC scores were significantly higher for the structure-
based predictor when training–testing domain sequence
similarity is < 0.7 (p-value < 0.029). These results show
that on average, the structure-based predictor is less
dependent on training–testing domain sequence similarity
compared to the sequence-based predictor at lower simi-
larity thresholds.

Structure-based predictions are validated by known PDZ
domain-peptide interactions
We used the predictor to scan the human C-terminal prote-
ome (defined by genome assembly Ensembl:GRCh37.64)
[43] for binders of 45 PDZ domains with known interactions
in PDZBase that we could obtain structures and compute
features for. For each domain, this involved scanning 43827
unique C-termini of length five (including splice variants).
Structures for these domains were obtained from the PDB
or were homology modelled and are at least 35% sequence
similar (average over 80%) to their template structures.
The minimum QMEAN score for these models is 0.36
(average 0.78). Please see Additional file 2: Table S3 for
more details.
The structure-based predictor has a true positive rate

(TPR) of 0.36 and precision of 0.0033 and correctly
predicted interactions for 22 of the 45 domains. For these
domains approximately 73% of known PDZ domain-
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision Recall

RECALL

P
R

E
C

IS
IO

N

0.936 10 Fold
0.785 Domain
0.909 Peptide
0.886 Domain+Peptide

dictor performance measured using ten fold (red), leave 12% of
s and 8% of peptides out (black) cross validation.



Table 2 Structure-based predictor achieves better cross validation results than the sequence-based predictor (p-value < 0.025)

ROC PR

Structure Sequence Structure Sequence

10 Fold
(95% CI)

0.96 0.939 0.936 0.896
(0.957 ~ 0.962) (0.936 ~ 0.941) (0.932 ~ 0.940) (0.890 ~ 0.900)

Domain
(95% CI)

0.872 0.851 0.785 0.764
(0.860 ~0.882) (0.839 ~ 0.862) (0.765 ~ 0.805) (0.747 ~ 0.779)

Peptide
(95% CI)

0.935 0.893 0.909 0.838
(0.929 ~ 0.941) (0.883 ~ 0.902) (0.898 ~ 0.918) (0.825 ~ 0.850)

Domain + Peptide
(95% CI)

0.927 0.87 0.886 0.794
(0.919 ~ 0.934) (0.862 ~ 0.877) (0.875 ~ 0.896) (0.783 ~ 0.804)
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peptide interactions in PDZBase, an independent data
source not used for training, were predicted (see Additional
file 2: Table S4). The sequence-based predictor had a higher
TPR of 0.46 and correctly predicted interactions for 28
out of 45 domains. For these domains, 65% of known PDZ
interactions were predicted and the precision was 0.0024.
Although the sequence-based predictor has a higher TPR
than the structure-based predictor, its precision and cover-
age of known PDZ domains is lower. This is likely because
the sequence-based predictor predicts on average more
interactions per domains than the structure-based pre-
dictor (average 426.89 and 239.71 per domain respect-
ively). The low precision for both predictors is due to the
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Figure 3 Predictor performance dependence on training–testing dom
was performed with domains retained for training in each fold if their sequ
This was performed for structure-based (blue) and sequence-based predict
and displayed in box plots according to training–testing domain sequence
using a one-tailed t-test, the mean structure-based predictor ROC and PR A
scores when training–testing domain sequence similarity is < 0.7 (p-value <
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data set and 126 negative interactions from the second
data set, which resulted in an FPR of 0.145 and 0.0,
respectively. The sequence-based predictor had a FPR
of 0.09 and 0.0, and made predictions for 421 and 128
negative interactions for the first and second data sets,
respectively. Compared to our structure-based and
sequence-based predictors, the Chen sequence-based
predictor has a much higher FPR of 0.482 and 0.256 for
the first and second data sets, respectively [44] (see
Additional file 2: Table S5).
Many structure-based predictions correspond to known
PDZ domain containing protein-protein interactions
To determine how many structure-based predicted
interactions correspond to known PPIs, we scanned the
human proteome to predict interactions for 218 human
PDZ domains with known PPIs (that we could obtain
structures and compute structure features for). Known
PPIs were retrieved from iRefIndex [33], which is a
database integrating interactions from different databases
including BIND [45], BioGRID [46], CORUM [47], DIP
[48], HPRD [49], IntAct [50] and MINT [51]. In total, 61
XRAY and nine NMR structures (only the first models
used) were obtained from the PDB and 148 homology
models were created. All models had a template sequence
similarity of at least 22% (average 72%) and QMEAN score
of at least 0.36 (average 0.78) Please see Additional file 2:
Table S3 for more details.
In total, 88 domains had predicted interactions that

corresponded to known PPIs, with an average of greater
than 21% of known PPIs being correctly predicted per
domain. The number of PPIs successfully predicted per
domain was significant (p-value < 0.05, Fisher’s exact
test) for all but ten domains. A caveat of this result is
that PDZ domain containing proteins may contain
multiple PDZ domains and other domains, so it is not
possible to uniquely assign a PPI to a PDZ domain.
This could result in erroneous false negative or true
positive statistics for the above tests. However, the
results still serve as an estimate of predictor perform-
ance and show that the predictor is able to predict
many known human PPIs.
The structure-based predictor is complementary to the
sequence-based predictor
We next compared the structure-based predictor’s prote-
ome scanning predictions to the ones obtained using our
previously published sequence-based predictor [10]. In
total, the results for 221 domains where both predictors
were able to make predictions were compared. A total of
172 out of 925 known PPIs were predicted by both
methods, 116 were unique to the sequence predictor and
56 were unique to the structure-based predictor (Figure 4).
Thus the sequence and structure-based predictors both
predict unique known PPIs and are complementary.
To better understand how unique predictions are

made, we compared the results in more detail. The
unique structure based predictions arise for different
reasons. Some domains (43 domains) are more challen-
ging for the sequence-based predictor, which returns a
low number of hits per domain (ten or less) with none
corresponding to known PPIs (see Additional file 2:
Table S8) (e.g. APBA1-1, CNKSR2-1, IL16-1, IL16-3). The
structure predictor fares better for nine of these domains
(ARHGEF11-1, IL16-1, IL16-3, MPDZ-12, MPP6-1,
PDZD2-3, PDZD2-5, RAPGEF6-1, SCRIB-3) and is able
to predict many more hits per domain (on average ap-
proximately 510 hits) with on average approximately
three known hits per domain. On the other hand, the
structure-based predictor has difficulty predicting hits
for 19 domains (e.g. DLG5-3, MPDZ-6, MPDZ-8), of
which four are better predicted by the sequence-based
predictor (MLLT4-1, MPDZ-8, MPP3-1, PDZD2-2; aver-
age 383 hits) with on average one known PPI hit per
domain. In another scenario, two domains may have
identical binding sites at the sequence level (e.g. DLG1-1
and DLG2-1), but be different at the structure level. The
sequence-based predictor cannot distinguish between the
two domains in this case, even though the domains may
actually bind different proteins. While the structure-
based predictor uses features corresponding to ten core
positions, these features are computed by considering
the entire domain structure. Therefore, even if two domains
have the same binding site residues, the resulting features
will be different if their whole domain structures are differ-
ent. The structure-based predictor’s ability to distinguish
between domains with highly similar binding site sequences
helps explain why it is able to predict more unique
interactions than the sequence-based predictor. Overall,
these results demonstrate situations where the structure-
based predictor can be used to make predictions for
domains that otherwise could not be easily predicted by
the sequence-based predictor and thus shows that both
methods are complementary.

Structure-based predicted binding specificities
recapitulate experimental binding specificities
Since validation data is limited, we more generally assessed
the results of proteome scanning by comparing predicted
binding specificities to those known from phage display.
We constructed position weight matrices to summarize the
domain’s amino acid binding preference at each position
in the ligand, using all predicted interacting peptides
from C-terminal proteome scanning. Sequence logos
were then used to visually represent the binding specificities.
In total, 26 domains could be compared (i.e. they had
less than four genomic peptides from phage display
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experiments), covering known PDZ domain binding classes
I and II (see Additional file 1: Figure S3). For 14 domains,
the structure-based predicted binding specificity is more
similar to the phage display determined binding specificity
than the sequence-based predicted binding specificity, and
better recapitulates the preference of residues at specific
positions. For example, the structure-based method better
predicts the preference for hydrophobic residue Val at pos-
ition 0 for ERBB2IP-1, for hydrophilic residues such as Gly
or Thr at position −2 for DVL2-1 and for polar residues at
position −4 and a Thr or Ser at position −1 for TIAM2-1
(position numbering counted backwards from the zero C-
terminal position) (Figure 5). Three domains, APBA3-1,
TJP1-3 and TJP2-3, had both structure-based and
sequence-based predicted binding specificity similarities
much lower than the average (less than 0.5). This seems to
be caused by poor representation of these domains in the
training set (Figure 5). More validation data should be
used to more reliably compare the binding specificities
for these domains in the future. Furthermore, since
phage display experiments select optimal binders and
cellular interactions may not be optimal (e.g. to aid inter-
action regulation), we expect some differences between
phage display and proteome scanning-based profiles. In
general, the similarity between the structure-based predicted
and experimentally determined binding specificities is high
(0.636).

Predicted binding specificities are supported by known
structural determinants of PDZ domain binding specificity
As noted above, there are many cases where the
structure-based predicted binding specificity is closer to
the experimental binding specificity than the sequence-
based predicted binding specificity. For some examples,
the structure-based predicted binding specificity better
predicts the experimental binding specificity at certain
positions (e.g. MLLT4-1, TJP1-1 and DVL2-1). To exam-
ine if this is caused by specific structural features used
by the structure-based predictor, we searched the litera-
ture to find known structure determinants influencing
these specific amino acid preferences and compared
them to our results. For MLLT4-1, the structure-based
predictions indicate a preference for a hydrophilic Thr
residue at position −2. The preference for a hydrophilic
Thr residue at position −2 is explained by the findings
of Chen et al. [15]. Their work showed that the Thr
preference at position −2 is due to its interaction with Gln
at position α2-1 of the domain, which forms a hydrophilic
binding site pocket at position −2. This preference is
reflected in the structure-based predicted binding specifi-
city, whereas a completely different preference for a
hydrophobic Ile residue at this position is predicted by the
sequence-based predictor (Figure 5). The domain TJP1-1
is another example where the predicted structure and
sequence-based binding specificities are very different
(Figure 5). Appleton et al., showed that this domain has a
bi-specific preference for Trp or Tyr at position −1 [13].
The Trp preference is accommodated through main
chain interactions with β2 and β3 strands, while the Tyr
preference is accomplished through hydrogen bonding
with Asp at position β3-5 of the domain. The bi-specific
preference for a Trp or Tyr at position −1 is reflected in
the structure-based binding specificity, while only a
preference for Tyr is indicated in the sequence-based
binding specificity. Finally, the predicted binding specificities
for domain DVL2-1 are very different (Figure 5). Zhang
et al. found that the −2 binding site of the domain actually
accommodates a Gly-Tyr pair [52]. The preference for a
Gly at position −2 is reflected in the predicted structure-
based binding specificity whereas there is no obvious
preference in the predicted sequence-based binding speci-
ficity. Since the binding specificities for these examples are
determined by specific domain structure features, this
helps explain why the structure-based predictor can better
predict their binding preferences than the sequence-based
predictor.

A functional map of PDZ domain biology highlights PDZ
involvement in a variety of biological processes
To identify gene functions better predicted by sequence
or structure-based methods, we performed GO-based
gene function enrichment analysis on all predicted hits.
The results were visualized using an enrichment map,
which groups related gene function terms to ease identifi-
cation of functional themes (Figure 6). Enrichment results
from both sequence and structure-based predictions were
plotted on the same map to ease identification of overlap-
ping or unique themes, with sequence-based enrichment
scores corresponding to node centre colour and structure-
based scores corresponding to node border colour. For
example, a number of themes are enriched in hits from
both methods, such as ‘photoreceptor cell maintenance’,
‘hippo signalling’ and ‘cell junction assembly’ (i.e. node
centre and border are red). Other themes are only enriched
in sequence-based (i.e. border is grey, node centre is red) or
structure-based predictions (i.e. border is red, node centre
is grey). For example, ‘neuron projection morphogenesis’,
‘regulation of cytokinesis’, and ‘innate immune response
signalling’ themes contain terms only enriched in structure-
based predictions, while ‘actin movement’, ‘membrane
fusion’ and ‘nuclear transport’ are enriched only in
sequence-based predictions.
We also compared the themes from our predictions to

those from 1249 known PDZ mediated PPIs in the
iRefIndex database[53]. Some themes were enriched only
in known interactions (e.g. ‘DNA damage checkpoint’,
‘negative regulation of angiogenesis’), however many
known themes were covered by our predictors (e.g. ‘cell



# Phage Display Predicted Logo
(Sequence)

Predicted Logo
(Structure)

Sim
(Sequence)

Sim
(Structure)

1 0.4 0.5

2 0.561 0.584

3 0.619 0.692

4 0.604 0.523

5 0.47 0.736

6 0.516 0.569

7 0.537 0.454

8 0.421 0.378

Figure 5 Comparison of predicted and phage display determined binding specificities. A comparison of phage display determined and
predicted PDZ domain binding specificities for the last five terminal binding positions visualized as sequence logos. The binding specificity similarity
between two domains was computed using the normalized Euclidean distance between their corresponding position weight matrices (see Additional
file 1, equation 1). Non-genomic phage display peptides were removed from the set of binders for each domain. Only domains with four or more
peptides after this filter were used to create sequence logos describing the domain’s binding specificity. Based on a previously established protocol, a
peptide was considered to be genomic if the last four residues could be found in a proteomic tail, otherwise it was considered to be non genomic
[10]. Numbers in bold indicate which similarity (sequence or structure) is higher (i.e. which predicted logo is closer to the experimental logo).
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junction assembly’, ‘ion homeostasis’, ‘neural development’).
We identified the theme ‘xenobiotic metabolic process’
(enriched in both sequence-based and structure-based
predictions) to be novel as it did not correspond to any
themes seen in the known interaction network and did
not have any PDZ interactions reported in the literature
(based on a manual search). For this theme, both
predictors predicted PDZ domain interaction with
enzymes that are important for catalyzing foreign
compounds in the xenobiotic metabolism pathway. For
example the sequence-based predictor predicted the do-
main DVL1L1-1 to interact with cytochrome P450
(HGNC:CYP19A1) and dimethylaniline monooxygenase
(HGNC:FMO1) [54,55], FRMPD4-1 to interact with
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Figure 6 A functional map of PDZ domain biology. An enrichment analysis of the GO biological process terms associated with the predicted
gene interactors for each of the domains from structure-based and sequence-based human proteome scanning was performed. The results were
visualized as a network where the nodes represent gene-sets. The colour of the node border represents the number of domains that the gene-
set was seen enriched for, among the structure-based predictions. The colour of the node centre represents number of domains that the gene-
set was seen enriched for, among the sequence-based predictions. Edges represent the overlap between two connected gene-sets with the
thickness corresponding to the number of genes overlapping. The complete enrichment map can be downloaded for interactive viewing in
Cytoscape from http://www.baderlab.org/Data/StructurePDZProteomeScanning.
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various glutathione S-transferases (e.g. HGNC:GSTA1,
GSTA2, GSTA3), MAST4-1 to interact with prostaglandin
G/H synthase (HGNC:PTGS1). The domains SDCBP-1,
SDCBP2-1 were predicted by the structure-based pre-
dictor to interact with bisphosphate nucleotidase (HGNC:
BPNT1). The domains CAR14-1, CNKRS2-1, CNKRS3-1,
SNX27-1, WHRN2-1 and the domains DLG4-2, GRIP1-1,
MAGI2-6, MPDZ-1, TJP2-3 and TJP3-3 were predicted
by the sequence-based and structure-based predictors
respectively to interact with various sulfotransferases
(e.g. HGNC:SULT1C2, SULT4A1, SULT1B1, SULT1E1,
SULT1A1, SULT1A2, SULT1A4) (Figure 7 and Additional
file 2: Tables S9-10).
In some cases, although the themes were also enriched

in the iRefIndex map, only limited information about PDZ
domain involvement in the associated process was found
in the literature. These themes represent opportunities for
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factor receptors (e.g. HGNC:PDGFRA [58], TGFBR1 [59],
HGF [60]), plasma membrane calcium-transporting
ATPases (e.g. HGNC:ATP2B1, ATP2B2, ATP2B3, ATP2B4
[61]), calcium-activated potassium channels (e.g. HGNC:
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tem proteins such as chemokines (e.g. HGNC:CXCR1,
CXCR2, CCL19 [65]), tumour necrosis factors (e.g.
HGNC:TNFAIP6, TNF [66]) and inhibitor of nuclear
factor kappa-β kinase (HGNC:IKBKB) [66]) (Additional
file 2: Tables S9-10).
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Finally, our predictions also suggested additional inter-
actions for well studied processes that are known to in-
volve PDZ domains. For ‘Wnt signalling’, both predictors
predicted known interactions between the domain MAGI3-2
and frizzled-4 and 7 as well as domains DLG4-1,2 and
frizzled-1,2,4 and 7 [67]. However, several other PDZ
domains were also predicted to interact with frizzled
family members. Some examples include AHNAK2-1,
CAR14-1, CNKSR2-1 (structure-based) and MPDZ-13,
PDZRN4-1, SYNJ2BP-1 (sequence-based) which are all
predicted to interact with one or more frizzled family
members (HGNC:FZD1, FZD2, FZD4, FZD7, FZD10).
Interactions which may negatively regulate Wnt signal-
ling were also predicted and involve F-box-like proteins
(HGNC:TBL1X, TBL1XR1) [68] and human colorectal
mutant cancer protein (HGNC:MCC) [69] (Additional
file 2: Tables S9-10).
Many functional themes we identify consist of multiple

different enriched terms containing multiple proteins,
predicted to interact with several PDZ domains. These
patterns involve many proteins and are unlikely to occur
by chance. Thus, our functional analysis provides add-
itional validation of our prediction methods and highlights
novel PDZ interactors involved in a variety of biological
processes.

Discussion
We have presented a structure-based predictor of PDZ
domain-peptide interactions that can be used to scan
C-terminal proteomes to predict PDZ domain mediated
PPIs. Our predictor utilizes domain structure features
derived from the whole domain, focusing on a core
peptide-binding site defined by ten highly conserved amino
acid positions. Combined with our use of experimentally
determined and computationally generated training
negative interactions, our predictor achieves high cross
validation results and is expected to generalize well to
unseen interactions in practice. Compared to our previ-
ous sequence-based predictor, the structure-based pre-
dictor is less dependent on training–testing domain
sequence similarity and predicts many new validated
interactions in human. As a result, the structure-based
predictor is complementary to the sequence-based pre-
dictor and both should be used to identify candidates
for further biological experiments and to expand our
knowledge of PDZ domain mediated PPIs.
An important technical result of our work is our use

of computationally generated negatives to supplement
training and reduce over-prediction. We showed that the
negative interactions in current experimental data sets
do not adequately cover the negative proteome space
resulting in a predictor that returns many hits that are likely
false positives. While this problem is more apparent for the
structure-based predictor, it also affects our sequence-based
predictor, as there are several domains where sequence-
based proteome scanning predicts thousands of hits, and
likely affects other sequence-based predictors [10]. Since
additional experimentally determined negatives for training
are limited, using computationally generated negatives
is required. While PWMs can be used to computation-
ally generate such negatives as previously shown [10],
such methods do not model dependencies between lig-
and positions and depend on a user or naively defined
cutoff to discriminate between positives and negatives.
Here, we use a semi supervised learning approach utilizing
an SVM to generate additional negatives, since SVMs can
better address the limitations faced by PWMs. As a result,
the proteome scanning performance was improved by
reducing the number of false positive hits that would
otherwise be returned. As this problem is not unique to
the structure-based predictor, training with additional
negatives is likely to benefit other predictors as well.
Comparing proteome scanning hits to known PPIs,

there is only a moderate overlap in hits predicted by
both the structure-based and sequence-based predictor.
While this suggests that the predictors are complemen-
tary and thus should both be used, there are cases when
using either the structure-based or sequence-based pre-
dictor to find interactors may be more appropriate. For
example, when the training–testing domain sequence
similarity is < 0.7, the structure-based predictor may be
more useful, since its performance is less dependent on
sequence similarity at lower similarity levels. In fact, when
the sequence similarity is very low the sequence-based
predictor may fail to return any predictions. For other
domains, a reliable structure may not be obtained or mod-
elled, or the required structure features cannot be success-
fully generated. In this case, the sequence-based predictor
may be the only predictor that can be used. However, for
the majority of cases, both predictors should be used to
find as many hits as possible for a given domain.
Although PDZ domains can recognize motifs internal to

a protein, most data is available for domain-C-terminal
binding, thus our predictors have been trained using
this data and are best suited for the prediction of such
interactions. Although other similar methods exist that
are also available on the web, they can only predict that
a protein containing a PDZ domain interacts with another
protein [70] or are best suited for interactions between
PDZ domains and specific types of proteins (e.g. mem-
brane proteins) [71]. Thus, we expect our website will be
useful to biologists in helping to further map the many
processes mediated by PDZ domains.
While the current structure-based predictor performs

well, other domain structure related features should be
considered in the future. For example, it is known that
the structural flexibility of the PDZ domain binding
pocket can contribute to the domain’s ability to bind
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specific ligands [15,52]. Recently, a model of PDZ domain
backbone flexibility was used to successfully predict do-
main binding specificity, but for a subset of human PDZ
domains [19]. Thus, domain backbone flexibility features
should be considered as they may help to improve pre-
dictor performance. Another structure related feature,
which should also be considered, is binding pocket geom-
etry and shape. Although we explored the use of 3D-
Zernike descriptors [72], we found that their use did not
benefit our predictor. However, there are other shape
descriptors such as real spherical harmonic coefficients
that could be investigated that may improve predictor
performance [73]. Although we have built an entirely
structure-based predictor, additional features including
sequence features can be combined to build a single
predictor that utilizes all available types of information.
Finally, since the predictor predicts in vitro interactions,
incorporating contextual information such as co-expression
and protein location will help to build a more physiolo-
gically relevant map of PDZ domain mediated protein-
protein interactions.
Conclusions
We have presented a structure-based predictor of PDZ
domain-peptide interactions using domain structure and
peptide sequence information. Our predictor achieves
high cross validation results and finds many interactions
corresponding to known PDZ mediated PPIs not previ-
ously found by our sequence-based predictor. Using both
predictors we defined a functional map of PDZ domain
biology and identified novel PDZ interactors involved in a
variety of biological processes. As a result, our predictions
will help expand the coverage of current PDZ mediated
PPI networks and provide new insight into the molecular
mechanisms underlying a variety of biological processes.
Availability and Requirements
For web-based proteome scanning:
Project name: POW! PDZ domain-peptide interaction
prediction website
Project home page: http://webservice.baderlab.org/
domains/POW/
Operating systems: Platform independent (web-based)
License: None
For proteome scanning software:
Project name: PDZ Structure-based Proteome Scanning
Project home page: http://baderlab.org/Data/Structure
PDZProteomeScanning
Operating systems: Platform independent
Programming language: Java 1.5
License: Source code is freely available under the GNU
Lesser Public General License (LPGL)
Additional files

Additional file 1: Supplementary Information.

Additional file 2: Table S1. Training domain structure information.
In total, 83 PDZ domains were used for training. Domain structures were
obtained from the PDB or homology modelled through the Protein
Model Portal. For NMR structures, only the first model was used. All
homology models were generated by SWISS-MODEL and have greater
than 50% sequence similarity to their template structure (average 90%).
Model quality is estimated using template sequence ID (percentage of
residues between target and template sequences that are identical) and
QMEAN score (a scoring function that measures multiple geometrical
aspects of protein structure, ranging from 0 to 1 with higher values
indicating more reliable models). Table S2. Blind test domain structure
information. Blind testing was performed using interaction data from
mouse, worm and fly protein microarray experiments. In total, 13 mouse
orphan, 7 worm and 6 fly PDZ domains were used. Homology models
were generated by SWISS-MODEL. All models have at least 40%
sequence identity to their template structures. An NMR structure was
available for one fly domain and the first model was used. The average
template sequence similarity was 0.92, 0.61 and 0.61 for mouse, worm
and fly domains, respectively. One mouse domain (CHAPSYN-110-1) was
removed from the test set because its performance was consistently
poor for both predictors. Model quality is estimated using template
sequence ID (percentage of residues between target and template
sequences that are identical) and QMEAN score (a scoring function that
measures multiple geometrical aspects of protein structure, ranging from
0 to 1 with higher values indicating more reliable models). Table S3.
Human proteome scanning domain structure information. Proteome
scanning was performed for 218 human PDZ domains, which have
known interactions in iRefIndex. In total, 61 X-ray and nine NMR
structures (only the first models used) were obtained from the PDB and
148 homology models were created (template sequence similarity
minimum 22%, average 72%). Model quality is estimated using template
sequence ID (percentage of residues between target and template
sequences that are identical) and QMEAN score (a scoring function that
measures multiple geometrical aspects of protein structure, ranging from
0 to 1 with higher values indicating more reliable models). Table S4.
Validation of structure-based predictions against known human
PDZ domain-peptide interactions. Proteome scanning predictions for
45 human PDZ domains were validated against known PDZ domain-
peptide interactions in PDZBase. Several statistics were calculated
including: # Positives, # TP (total number of true positives), # Predicted
Structure (number of predictions predicted only by the structure-based
predictor). # Predicted Sequence (number of predictions predicted only
by the sequence-based predictor), # Predicted Both (number of
predictions predicted by both), # TP Structure (number of true positives
predicted by the structure-based predictor only), # TP Sequence (number
of true positives predicted by the sequence-based predictor only), # TP
Both (number of true positives predicted by both). Table S5. Validation
of structure-based predictions against known negative PDZ
domain-peptide interactions for human. a. Negatives involving
peptides with PDZ binding motifs. Proteome scanning predictions for
74 human PDZ domains were validated against experimentally
determined negative interactions involving peptides with PDZ binding
motifs (found from the literature) for a total of 410 interactions. b.
Negatives involving peptides with non binding PDZ motifs.
Proteome scanning predictions for 24 human PDZ domains were
validated against known negative interactions involving mutated
peptides with non-binding PDZ motifs (found from the literature) for a
total of 126 interactions. Table S6. Validation of structure-based
predictions against known experimentally determined PDZ domain-
peptide interactions for worm. Proteome scanning was performed for
six worm PDZ domains with interactions from protein microarray
experiments. Several statistics were calculated including the ones from
Table S4 as well as the following: # Negatives, # FP Structure (number of
false positives predicted by the structure-based predictor only), # FP
Sequence (number of false positives predicted by the sequence-based
predictor only), # FP Both (number of false positives predicted by both).
Table S7. Validation of structure-based predictions against known
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experimentally determined PDZ domain-peptide interactions for fly.
Proteome scanning was performed for seven fly PDZ domains with
interactions from protein microarray experiments. Several statistics were
calculated (see Table S6 caption). Table S8. Validation of structure-
based predictions against known protein-protein interactions.
Proteome scanning results for 221 human PDZ domains with both
structure-based and sequence-based predictions were validated against
known human PPIs in iRefIndex. A prediction is considered to be a true
positive if the domain involved is found in a known PPI where one of
the proteins contains the domain. See Table S4 caption for details about
the calculated statistics. Table S9. Structure-based predicted PDZ
domain interactors for according to functional theme. These tables
contain domains, their sequence-based predicted interactors and the
enriched functional theme (i.e. clusters in the Enrichment Map). Table
S10. Sequence-based predicted PDZ domain interactors according
to functional theme. These tables contain domains, their structure-
based predicted interactors and the enriched functional theme
(i.e. clusters in the Enrichment Map).
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