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ABSTRACT
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for 
the disease COVID-19 that has decimated the health and economy of our planet. The virus causes 
the disease not only in people but also in companion and wild animals. People with diabetes are 
at risk of the disease. As yet we do not know why the virus has been highly successful in causing 
the pandemic within 3 months of its first report. The structural proteins of SARS include mem-
brane glycoprotein (M), envelope protein (E), nucleocapsid protein (N), and the spike protein (S). 

Methods: The structure and function of the most abundant structural protein of SARS-CoV-2, 
the membrane (M) glycoprotein, is not fully understood. Using in silico analyses we determined 
the structure and potential function of the M protein. 

Results: The M protein of SARS-CoV-2 is 98.6% similar to the M protein of bat SARS-CoV, main-
tains 98.2% homology with pangolin SARS-CoV, and has 90% homology with the M protein of 
SARS-CoV; whereas, the similarity is only 38% with the M protein of MERS-CoV. In silico anal-
yses showed that the M protein of SARS-CoV-2 has a triple helix bundle, forms a single 3-trans-
membrane domain, and is homologous to the prokaryotic sugar transport protein SemiSWEET. 
SemiSWEETs are related to the PQ-loop family whose members function as cargo receptors in 
vesicle transport, mediate movement of basic amino acids across lysosomal membranes, and are 
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also involved in phospholipase flippase function. 

Conclusions: The advantage and role of the M protein having a sugar transporter-like structure 
is not clearly understood. The M protein of SARS-CoV-2 interacts with S, E, and N protein. The 
S protein of the virus is glycosylated. It could be hypothesized that the sugar transporter-like 
structure of the M protein influences glycosylation of the S protein. Endocytosis is critical for the 
internalization and maturation of RNA viruses, including SARS-CoV-2. Sucrose is involved in 
endosome and lysosome maturation and may also induce autophagy, pathways that help in the 
entry of the virus. Overall, it could be hypothesized that the SemiSWEET sugar transporter-like 
structure of the M protein may be involved in multiple functions that may aid in the rapid prolif-
eration, replication, and immune evasion of the SARS-CoV-2 virus. Biological experiments would 
validate the presence and function of the SemiSWEET sugar transporter.  

Key words: SARS-CoV-2, COVID-19, Coronavirus, Virus, Sugar transporter, SemiSWEET, Mem-
brane glycoprotein, Pandemic.

INTRODUCTION
The coronavirus disease 2019 (COVID-19) is currently responsible for the pandemic that has 
decimated the health and economy of every country. COVID-19 is regarded as a respiratory 
disease that manifests with fever, cough, shortness of breath or difficulty breathing, chills, mus-
cle pain, headache, sore throat, and loss of taste and smell. Other symptoms include diarrhea, 
nausea, and vomiting [1, 2]. Many patients with the COVID-19 are asymptomatic but are able 
to transmit the virus to others [3, 4]. The prolonged pandemic has resulted in social distancing, 
travel restrictions, decreased trade, high unemployment, commodity price decline, and financial 
stress that has impacted the global economy. COVID-19 disease is caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the betacoronavirus genus [5]. 
The disease has resulted in a mortality of 0.5% to 8.0%. Several factors influenced the death rate in 
people with COVID-19. Age, health, and behavior of the population impacted the death rate due 
to COVID-19. Old people, people with underlying diseases such as diabetes, lung diseases (due 
to smoking), liver disease, cardiovascular disease, and obesity are more prone to death due to 
COVID-19. As yet, there are no effective drugs available for treatment of the disease nor vaccines 
available commercially to protect against the virus. 

The major structural proteins of SARS-CoV-2 are spike (S), membrane (M), envelope (E), and 
the nucleocapsid (N) proteins [6, 7]. The spike protein of SARS-CoV-2 uses the host angioten-
sin-converting enzyme 2 (ACE2) as the entry receptor [8]. Hence, the research community has an 
interest in studying the spike protein for drug and vaccine development. Amraie et al [9] recently 
reported that the C-type lectin receptors CD209L/L-SIGN and CD209/DSIGN serve as alterna-
tive receptors for SARS-CoV-2 entry into human cells. The C-type lectin domain could function 
as a calcium-dependent glycan-recognition domain.

The most abundant structural protein of coronaviruses is the M glycoprotein; it spans the mem-
brane bilayer, leaving a short NH2-terminal domain outside the virus and a long COOH termi-
nus (cytoplasmic domain) inside the virion [10]. The M protein can bind to all other structural 
proteins. Binding with M protein helps to stabilize N proteins and promotes completion of viral 
assembly by stabilizing the N protein-RNA complex, inside the internal virion [11]. As the M pro-
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tein cooperates with the S protein, mutations may influence host cell attachment and entry of the 
viruses [12]. The S protein of the virus is glycosylated and this modification may aid in immune 
evasion [13, 14]. However, it is not known how the S protein is glycosylated. The function of the 
M protein is also not fully understood. 

Sugars Will Eventually be Exported Transporters (SWEETs) and SemiSWEETs are sugar trans-
porters in eukaryotes and prokaryotes, respectively. SWEET proteins were first identified in 
plants as a novel family of sugar transporters that mediates the translocation of sugars across cell 
membranes [15-18]. Sugar transporters are essential for the maintenance of blood glucose levels 
in animals, nectar production, phloem loading, seed and pollen development in plants, and also 
in pathogen nutrition [15, 18]. Engineering of SWEET mutants using genomic editing tools has 
been shown to mediate resistance to pathogens [19].

In eukaryotes, SWEET can discriminate and transport the uptake of mono and disaccharides 
across the plasma membrane by allowing solutes to permeate across biological membranes fol-
lowing a concentration gradient [15, 19, 20]. Eukaryotic SWEETs are composed of 7 transmem-
brane helices (TMHs) that contain a pair of 3 transmembrane repeats, which are connected by 
an additional helix, while SemiSWEETs, the homologues of SWEETs in prokaryotes, contain 3 
TMHs [16, 21]. The human genome contains only 1 SWEET gene and may be involved in glucose 
transport [15].

The prokaryotic SemiSWEETs may be involved in the metabolism and transport of sugar synthe-
sis. The SemiSWEETs of prokaryotes are more diverse than SWEETs in plants; they seldom have 
homologues sharing >50% identity [17]. The limited number of SemiSWEET homologues suggest 
that they are not as important as the SWEETs in eukaryotes [17]. 

The function and role of the M proteins of the SARS-CoV-2 during host infection is not clearly 
understood. Here, we report that the M proteins of SARS-CoV-2 are structurally similar to Semi-
SWEET sugar transport proteins of prokaryotes based on in silico analyses. 

Materials and Methods
SARS-CoV-2 protein structure
The structural protein sequences of the SARS-CoV-2 were downloaded from the Pubmed 
(https://www.ncbi.nlm.nih.gov/pubmed) protein database. The structural proteins include Mem-
brane protein (Accession No. QJA17755), Envelope protein (Accession No. QJA17754), Spike 
protein (Accession No. QHR63290), and Nucleocapsid protein (Accession No. QJC20758). 

Protein modeling
Three-dimensional (3-D) structures of proteins provide valuable insights into their function on a 
molecular level and inform a broad spectrum of applications in life science research. A detailed 
description of the interactions of proteins and the overall quaternary structure is essential for a 
comprehensive understanding of biological systems, how protein complexes and networks op-
erate, and how they could be modulated. SWISS-MODEL is a server that is used for 3-D struc-
ture prediction. SWISS-MODEL is the first fully automated protein homology modeling server 
and is updated continuously [22]. In our study, homology modeling was constructed using the 
SWISS-MODEL server (http://swissmodel.expasy.org/) and the iterative threading assembly 
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refinement (I-TASSER) (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) with default settings. 
The M protein sequence of SARS-CoV-2 was entered in FASTA format. 

Residue-based diagrams of proteins, also called snake diagrams or protein plots, are 2-D repre-
sentations of a protein sequence that contain information about properties such as secondary 
structure [23]. To determine a snake diagram model of a protein we used Protter (http://wlab.
ethz.ch/protter). Protter is an interactive and customizable web-based application that enables the 
integration and visualization of both annotated and predicted protein sequence features together 
with experimental proteomic evidence for peptides and posttranslational modifications onto the 
transmembrane topology of a protein. It allows users to choose from numerous annotation sourc-
es, integrate their own proteomics data files, select the best-suited peptides for targeted quantita-
tive proteomics applications, and export publication-quality illustrations [24].

Sequence alignment
Multiple sequence alignments (MSAs) are essential in most bioinformatics analyses that involve 
comparing homologous sequences [25]. ClustalW2 is a server for MSA that is also used for 
phylogenetic tree analysis. Multiple sequence alignments between the M protein of SARS-CoV-2 
and the M proteins of SARS-CoV, bat SARS-CoV, pangolin SARS-CoV, and MERS-CoV, as well 
as SemiSWEET sequences from different microorganisms, were performed using the ClustalW2 
server (http:/www.ebi.ac.uk/tools/msa/clustalW2/). 

RESULTS
The S protein of SARS-CoV-2 binds to ACE2 receptors of the host for cell entry and may be a key 
target for drugs and vaccines. Hence, the S protein of SARS-CoV-2 virus is well characterized. The 
SARS-CoV-2 is one of the most successful viruses as it caused a pandemic within just 3 months 
of its first reported occurrence in Wuhan, China. As yet, we do not know why the virus has been 
successful in inducing a pandemic leading to millions of infections and thousands of deaths. 

Three-dimensional protein structures provide valuable insights into the molecular basis of protein 
function [26]. Using in silico techniques the structure and potential function of the M protein of 
the SARS-CoV-2 virus was elucidated.

The structural protein sequence of the membrane protein (M) of SARS-CoV-2 is shown in Fig-
ure 1. The FASTA sequence of the M protein was entered into the SWISS-MODEL server and 
I-TASSER. Based on the sequence, the structure of the molecule was predicted as the bidirection-

Figure 1. The protein sequence of the M glycoprotein of SARS-CoV-2. The sequence was downloaded 
from the NCBI protein database.
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al sugar transporter SWEET2b. The ribbon representation model of the M protein as predicted 
using I-TASSER is shown in Figure 2. 

The sugar transporter SWEETs of eukaryotes are generally composed of 7 transmembrane helices. 
Modeling proteins using residue-based diagrams (snake diagrams) helps us to understand their 
function. Hence, we used Protter to model the M protein. 

The M glycoprotein is the most abundant envelope protein of SARS-CoV-2. In silico analyses of 
the M protein of SARS-CoV-2 using Protter demonstrated that it has a triple- helix bundle, and 
forms a single 3-transmembrane domain. In addition, the M glycoprotein has a short amino 
terminal domain outside the viral envelope and a long carboxy-terminal domain inside the viral 
envelope (Figure 3A). The SWISS-MODEL predicted the M glycoprotein as SWEET2b. However, 
the M protein only has 3 transmembrane helices, not the 6 or 7 transmembrane helices which are 
observed in the SWEET sugar transporters of eukaryotes. Hence, the M glycoprotein structure of 
SARS-CoV-2 may be considered as SemiSWEET. To confirm accuracy of the study, we also mod-
eled the E, N, and S proteins of SARS-CoV-2. The modeling showed that the E protein has a short 
outer amino terminal domain, a single helix, and a long inner carboxy-terminal domain (Figure 
3B). The N protein had its entire structure inside the viral envelope (Figure 3C). Whereas, the S 
protein had the majority of its structure outside the viral envelope and a short carboxy-terminal 
domain inside the viral envelope (Figure 3D).  

ClustalW2 was used to determine homology between M proteins of different coronaviruses. 
SARS-CoV-2 M protein has a sequence similarity of 98.6% with the M protein of bat SARS-CoV, 
98.2% homology with the pangolin SARS-CoV, 89.14% similarity with the M protein of SARS-
CoV and a sequence similarity of 38.36% with the M protein of MERS-CoV (Figures 4A-D). The 
MERS-CoV M protein had more homology with the sugar transporter SWEET (Table 1). 

The SemiSWEET sugar transporters of prokaryotes are more diverse than the SWEET counter-
parts in plants. In the prokaryotes the SemiSWEET seldom share identity. We used ClustalW2 
to determine sequence homology of the sugar transporters of multiple microorganisms. The 

Figure 2. Predicted M protein structure of SARS-CoV-2 (ribbon diagram) using the software I-TASSER.
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sequence of SemiSWEET of the M glycoprotein of SARS-CoV-2 had a similarity of 26% with 
the SemiSWEET of Rhizobiales and 20% with Streptococcus pneumoniae demonstrating that the 
SemiSWEET of the SARS-CoV-2 may be highly conserved (Figures 5A, B). 

DISCUSSION
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is spreading at an alarming 
rate and has resulted in an unprecedented health emergency all over the world [27]. The rapid 
spread of SARS-CoV-2 justifies the global effort to identify effective preventive strategies and 
optimal medical management [28]. 

As yet there are no effective vaccines to protect against COVID-19 nor effective approved drugs 
to treat patients with the disease. The development of antivirals is an urgent priority to combat 
the disease [27]. In the absence of effective and safe vaccines or antivirals to control the disease, 
strategies for mitigating the burden of the pandemic are focused on non-pharmaceutical inter-
ventions, such as social-distancing, contact-tracing, quarantine, isolation, and the use of face 
masks in public [29]. 

SARS-CoV-2 membrane protein (M)

 

Figure 3. Membrane topology of proteins (snake diagrams) determined using Protter. (A) The membrane 
(M) glycoprotein of SARS-CoV-2 has a triple helix bundle and formed a single 3-transmembrane domain. 
(B) Snake diagram of envelope (E) protein, (C) nucleocapsid (N) protein, and (D) spike protein (S). 
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The primary route of transmission of COVID-19 is likely via respiratory droplets and is known 
to be transmissible from pre-symptomatic and asymptomatic individuals [30]. Infected people 
spread viral particles during talking, breathing, coughing, or sneezing. Such viral particles are 
known to be encapsulated in globs of mucus, saliva, and water, and the fate/behavior of globs in 
the environment depends on the size of the globs [31]. Studies show that SARS-CoV-2 can be de-
tected in the air and remain viable 3 hours after aerosolization. The weight of combined evidence 
supports airborne precautions for the occupational health and safety of health workers treating 
patients with COVID-19 [32].

It has been shown that wearing a mask reduces the contact transmissibility by reducing transmis-
sion of infected droplets in both laboratory and clinical contexts. Public mask- wearing is most 
effective at reducing the spread of the virus when compliance is high. The decreased transmissi-
bility could substantially reduce the death toll and economic impact while the cost of the inter-
vention is low [30]. The community-wide benefits are likely to be greatest when face masks are 

SARS-CoV-2 envelope protein (E)

 

 

Figure 3B.
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SARS-CoV-2 spike protein (S)

Figure 3D.

SARS-CoV-2 nucleocapsid protein (N)

 

Figure 3C.
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Figure 4. Protein sequences were aligned using ClustalW. Comparison of protein sequence of the M 
protein of SARS-COV-2 with (A) M protein of Bat SARS-CoV, (B) M protein of pangolin SARS-CoV, (C) 
M protein of SARS-CoV, and (D) MERS-CoV.

Table 1. Homology of the M protein of SARS-CoV-2 with the M protein of other coronaviruses 
and the sugar transporter SWEET

Membrane Protein Membrane protein identity 
(with SARS-CoV-2)

Bidirectional sugar transporter 
SWEET identity

SARS-CoV-2 100 14.3
Bat SARS-CoV 98.64 14.3
Pangolin SARS-CoV 98.2 14.3
SARS-CoV 89.14 14.3
MERS-CoV 38.36 20.0
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Figure 4B. 

 

Figure 4C.
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Figure 4D. 

 

Figure 5. Protein sequences were aligned using ClustalW. (A) Comparison of protein sequence of the 
M protein of SARS-COV-2 with SemiSWEET sugar transporter of Rhizobiales. (B) Comparison of 
protein sequence of the M protein of SARS-COV-2 with SemiSWEET sugar transporter of Streptococcus 
pneumoniae.
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used in conjunction with other non-pharmaceutical practices such as social-distancing, and when 
adoption is nearly universal (nation-wide) and compliance is high [33]. Chu et al [34] support 
physical distancing of 1 meter or more and hypothesized that contact tracing could reduce the 
disease transmission. 

Understanding the biochemical events of the coronavirus replication cycle may provide a number 
of attractive targets for drug development [27]. Current strategies involve developing drug and 
vaccine candidates against the spike (S) protein of the virus. The rationale being that neutralizing 
antibodies against the S protein prevent uptake of the virus via the human ACE2 receptor [35]. 
The S proteins are highly glycosylated making them targets for carbohydrate-binding agents such 
as lectins. Liu et al [36] showed that the lectin FRIL (Flt3 receptor-interacting lectin), isolated 
from the hyacinth bean (Lablab purpureus), has anti-SARS-CoV-2 activity. FRIL binds preferen-
tially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on 
their envelopes. FRIL could effectively neutralize SARS-CoV-2, preventing viral protein produc-
tion and cytopathic effect in host cells. These data suggest a potential application of FRIL for the 
prevention and/or treatment of COVID-19 [36]. Identifying drug targets that blunt the activity of 
the virus may lead to effective treatments for COVID-19. 

Viruses are non-living entities, without any organelles and devoid of their own metabolism, 
though they have the capability to dramatically modify the host cellular metabolism upon en-
try. Viruses upregulate consumption of glucose and converge on similar metabolic pathways for 
anabolism [37]. Virus-induced metabolism may provide free nucleotides for rapid viral genome 
replication, increased amino acid production for rapid virion assembly, and high amounts of ATP 
for the high energy costs of genome replication and packaging. The mechanism for increased 
glucose uptake by the virus is still not clearly understood.

 

Figure 5B. 
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Glucose is the energy source of cells and tissues. Cellular uptake of glucose is a fundamental pro-
cess for metabolism, growth, and homeostasis. Glucose is a polar molecule that does not readily 
diffuse across the hydrophobic plasma membrane of cells. Glucose molecules are transported 
through the glucose transporters that include GLUTs, the sodium-driven glucose symporters 
SGLTs, STP, and SWEETs [38]. SWEETs are seen in plants and animals. SWEET induction by 
plant pathogens leads to secretion of sucrose that is used by these microorganisms for nutrition/
reproduction [39].

The bacterial ancestors of SWEET, known as SemiSWEET are the smallest of the sugar trans-
porters and assemble into dimers [21, 40, 41]. In fact, eukaryotic SWEETs consist of 2 Semi-
SWEET-like units fused via an inversion linker transmembrane helix [17]. The diverse gene 
neighbors of SemiSWEETs suggest that SemiSWEETs may transport diverse substrates and play 
several physiological roles in different organisms [17]. The SWEETs and their bacterial homo-
logues, SemiSWEETs, are related to the PQ-loop family, characterized by highly conserved pro-
line and glutamine residues (PQ-loop motif) [41]. The PQ-loop family exhibits diverse activities; 
they function as cargo receptors in vesicle transport, mediate movement of basic amino acids 
across lysosomal membranes, and are also involved in phospholipase flippase function [42-44]. 
As yet, there are no reports of sugar transporters in viruses. 

It is not known how SARS-CoV-2 has been successful in spreading all over the world within 3 
months of its first reported occurrence in Wuhan, China. Identifying the mechanisms of how 
viruses alter cellular metabolism and where in the virus life cycle these metabolic changes are 
necessary will provide an understanding of virus replication needs and potentially provide cellu-
lar targets for inhibition of these viruses. In this paper using in silico data analysis we demonstrate 
that the structure of the membrane (M) glycoprotein of SARS-CoV-2 resembles the SemiSWEET 
sugar transporter of the prokaryotes. 

Clues to the viral metabolism can be understood from the patient population at risk of infection. 
It is known that people with diabetes are more prone to COVID-19 disease [45]. Recent reports 
indicate that the SARS-CoV-2 induces diabetes in non-diabetic people [46]. A large case study of 
COVID-19 patients reported that those with diabetes had a 3-fold higher mortality rate than did 
those without diabetes (7.3% vs 2.3%) [47].

Diabetes is a risk factor and is also prevalent in patients infected with other coronaviruses, includ-
ing SARS-CoV [48] and Middle East Respiratory Syndrome coronavirus (MERS-CoV) [49, 50]. It 
has been demonstrated that SARS coronavirus enters pancreatic islets and damages islets causing 
acute diabetes [48]. As people with diabetes have high glucose, the environment may favor prolif-
eration of viruses. MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and modeling of the struc-
ture of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition 
to ACE2. The protein DPP4 is a ubiquitous membrane-bound aminopeptidase that circulates 
in plasma; it is multifunctional with roles in nutrition, metabolism, and immune and endocrine 
systems. DPP4 activity differentially regulates glucose homeostasis and inflammation via its en-
zymatic activity and nonenzymatic immunomodulatory effects. DPP4 inhibitors, or gliptins are 
approved for the treatment of type 2 diabetes mellitus [51]. Rhee et al [52] reported that DPP-4 
inhibitor is significantly associated with a better clinical outcome of patients with COVID-19.

A virus uses multiple mechanisms for the uptake of glucose. Human cytomegalovirus (HCMV), 
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a herpesvirus, induces the sugar transporter, GLUT4 to increase glucose uptake during infec-
tion [53]. Whereas, transmissible gastroenteritis virus (TGEV), a coronavirus, induces multiple 
sugar transporters EGFR, SGLT1, and GLUT2 for glucose uptake [54]. Rhinoviruses (RVs) are 
responsible for the majority of upper airway infections, and they enhance the expression of the 
PI3K-regulated glucose transporter GLUT1; glucose deprivation from medium and via glycolysis 
inhibition by 2-deoxyglucose impairs viral replication [55]. 

Sucrose is used for energy metabolism by cells. In addition, sucrose is used for endosome and 
lysosome maturation, autophagosomes, and also to induce autophagy [56, 57]. Coronaviruses, in-
cluding SARS and SARS-CoV-2 use endosomes for cellular entry, and they are known to manipu-
late autophagosomes and autolysosomes for viral dissemination in the cell [58, 59]. 

The membrane (M) glycoprotein is the most abundant envelope protein of coronaviruses [60]. In 
silico analysis demonstrated that M protein of SARS-CoV-2 is 98.6% similar to the M protein of 
bat SARS-CoV, maintains 98.2% homology with pangolin SARS-CoV, and 90% homology with 
the M protein of SARS-CoV; whereas, the similarity is only 38% with the M protein of MERS-
CoV. Thus, the M protein of SARS-CoV-2 resembles the M protein of bat and pangolin SARS-
CoV to a greater extent than MERS-CoV. A recent paper by Zhang et al [61] reported that at 
the genomic level SARS-CoV- 2 is 96.2% homologous to bat SARS-CoV (RaTG13) and 91.02% 
homologous to pangolin SARS-Co-V. 

In silico analysis showed that the M protein of SARS-CoV-2 resembles the sugar transporter, 
SWEET. Upon analysis, it was observed that other coronaviruses including SARS-CoV, bat SARS-
CoV, pangolin SARS-CoV, and MERS-CoV have M proteins homologous to the sugar transporter 
SWEET. Further analysis by residue-based structure demonstrated that the protein has the char-
acteristic structure of SemiSWEET, the sugar transporter of prokaryotes. To our knowledge this 
is the first report of the presence of a sugar transporter-like structure in a virus membrane. It is 
known that the prokaryotes have diverse sugar transporters. In our analysis, the SARS-CoV-2 
sequence of SemiSWEET has no homology to other prokaryotes. 

Generally, the enveloped viruses, including SARS-CoV-2, use a 2-step procedure to release their 
genetic material into the cell: 1) They bind to specific surface receptors of the target cell mem-
brane, and 2) they fuse the viral and cell membranes. This second step may occur at the cell 
surface or after internalization of the virus particle by endocytosis [62]. Currently, it is not known 
how the M proteins of the virus are fused to the host cell membrane. If the M proteins are fused 
to the host cell membrane, they could theoretically function as a sugar transporter.

An advantage of the virus having a sugar transporter in its membrane is that it may influence en-
ergy metabolism. How the virus utilizes sugar molecules is unknown. The SARS-CoV-2 virus may 
use sugar for multiple purposes. The S protein is highly glycosylated. It could be hypothesized that 
the sugar transporter-like structure of the M protein influences glycosylation of the S protein. In 
addition, it could be hypothesized that the sugar transporter-like structure of the virus membrane 
may influence sucrose entry into the endosome, lysosome, or autophagosome that are manipu-
lated by the virus, thereby aiding the virus release into cells. Thus, the presence of a SemiSWEET 
glucose transporter in the M protein of the virus may be an efficient mechanism that may induce 
rapid viral proliferation and immune evasion. 
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In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play 
important roles during the infection cycle, ranging from entry to successful intracellular replica-
tion and host immune evasion [63]. Toxoplasma gondii is an intracellular bacteria that transitions 
from acute infection to a chronic infective state in its intermediate host via encystation, which 
enables the parasite to evade immune detection and clearance. The tissue cyst perimeter is highly 
and specifically decorated with glycan modifications that are influenced by Toxoplasma nucleo-
tide-sugar transporter (TgNST1). Toxoplasma strains deficient for the TgNST1 gene (Δnst1) form 
cyst-like structures in vitro but no longer interact with lectins, as these strains are deficient in the 
transport and use of sugars for the biosynthesis of cyst-wall structures. The study demonstrated 
the role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts [64]. 

People with diabetes are at risk of COVID-19 infection which may be due to the high prolifera-
tion of the virus because of unmetabolized glucose. A characteristic of some COVID-19 patients 
is coagulopathy [65]. Anticoagulant therapy with low molecular weight heparin led to a better 
prognosis in severely ill COVID‐19 patients who were associated with high mortality [66]. Plate-
lets, produced by the megakaryocytes of the bone marrow are responsible for blood clotting. Glu-
cose is taken up by the platelets, mediated through the glucose transporters GLUT1 and GLUT3. 
Lack of glucose transporters in the platelets reduces platelet counts and increases clearance of 
platelets [67]. Normal glucose levels reduce platelet activation; whereas, hyperglycemia increases 
platelet glucose metabolism thereby contributing to increased platelet activation and thrombosis 
in animal models of diabetes [68].

Lungs in some COVID -19 patients are not effectively oxygenating the blood (hypoxia), but these 
patients feel alert and healthy and hardly gasp for breath. Glucose transport is acutely stimulated 
by hypoxic conditions, and the response is mediated by enhanced function of the facilitative 
glucose transporters GLUT [69, 70]. Prolonged exposure to hypoxia results in enhanced tran-
scription of the GLUT1 glucose transporter gene, with little or no effect on transcription of other 
GLUT genes [69]. 

Several pulmonary disorders are associated with a decrease in alveolar oxygen tension, and alveo-
lar epithelial cells (AEC) exhibit different adaptive mechanisms to cope with oxygen deprivation. 
Under hypoxia, because of inhibition of oxidative phosphorylation, adenosine triphosphate sup-
ply is dependent on the ability of cells to increase anaerobic glycolysis. Hypoxia induces stim-
ulation of Na-independent glucose transport and an increase in 2-deoxyglucose uptake; it also 
induces the glucose transporter, GLUT1 at both protein and mRNA levels [71]. HIF-1α regulates 
the activity of glucose transporters, GLUT, that are responsible for glucose uptake. Hypoxia-in-
ducible factors (HIFs) are oxygen-sensitive transcription factors that allow adaptation to hypoxic 
environments [72]. HIF-1α reduces acute lung injury by optimizing carbohydrate metabolism in 
the alveolar epithelium [73].

An early characteristic of COVID-19 patients is loss of smell. The glucose receptors are expressed 
in taste receptor cells [74]. Glucose receptors are expressed in the olfactory bulb and changes to 
the expression of the receptors may influence olfaction [75]. Whereas, Villar et al [76] demon-
strated that glucose removal and the inhibition of glycolysis or oxidative phosphorylation inhibits 
odor detection.

The data described in this paper are based on in silico analyses; homology models and similarities 

https://www.paijournal.com/index.php/paijournal


www.PaiJournal.com

Pathogens and Immunity - Vol 5, No 1 357

with plant and bacterial glucose transporters are not adequate to assign a role of the M protein 
of the virus to specific host comorbidities such as diabetes. Further biological experiments are 
required to validate the presence and function of the virus membrane sugar transporter. 
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