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Abstract

Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs
and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as
pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing
severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on
sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and
hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to
probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order
to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed
structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction
energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders
for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’
binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand
interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1,
SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based
approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme
flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing
enzymes.
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Introduction

Drug metabolizing enzymes (DMEs) play a key role in the
metabolism of endogenous molecules, xenobiotics and drugs
introduced into the human body [1–3]. While their principal role
is to detoxify organisms by modifying endogenous and
exogenous compounds for a rapid excretion, such as pollutants
or drugs, in some cases they render their substrates more toxic
thereby inducing severe side effects and adverse drug
reactions [4–8]. Phase I DMEs catalyze oxidative reactions
leading to metabolites that may be either excreted or
additionally modified by the phase II DMEs catalyzing
conjugation reactions. In some cases, phase II DMEs can
directly modify a compound without passing through the phase
I DMEs. Overall, most previous investigations have been

prioritizing the phase I DMEs, in particular cytochromes P450
(CYPs) [9–12]. Yet, phase II DMEs metabolize a broad range
of compounds that can either be beneficial or lead to toxicity,
poor drug bioavailability or adverse drug reactions [4–6,13].
Therefore, much efforts are needed to explore their impact on
drug efficacy and safety.

Here we focus on sulfotransferases (SULTs), a family of
enzymes that metabolize a large number of drugs [3]. SULTs
[14] (Figure 1) catalyze the sulfoconjugation from the co-factor
3′-Phosphoadenosine 5′-Phosphosulfate (PAPS) to a hydroxyl
or amino group of the substrate by executing a nucleophilic
attack. At high concentrations some substrates inhibit the
enzyme [15] and dead-end complexes with bound inactive
cofactor PAP have been identified [15–17]. Sulfoconjugation
usually facilitates excretion, but in some particular cases the
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pharmacological activity of some drugs increases (e.g., the
hypotensive prodrug minoxidil becomes fully active after sulfate
conjugation). Further, SULTs can convert some chemicals to
carcinogens or to activators of promutagens by creating highly
reactive sulfate esters that can bind covalently to DNA (e.g.
7,12-dimethylbenz(a) anthracene) [4,6–8]. SULTs that are
responsible for the metabolism of small endogenous
compounds and xenobiotics are localized in the cytosol
[4,8,18]. Four families of human SULTs have been identified by
now, SULT1, SULT2, SULT4 and SULT6, and more than 30 X-
Ray structures, holo or apo, have been reported in the Protein
Data Bank (PDB) [14,19]. Among them, SULT1, metabolizing a
wide variety of compounds like phenols, thyroid hormones and
drugs (e.g. minoxidil, paracetamol, 17α-ethinylestradiol), is the
most expressed one (found in liver, lung, intestine, kidney,
thyroid, blood or brain [18]).

Notably, experimental and computational approaches have
been proposed to predict Absorption, Distribution, Metabolism,
Excretion and Toxicity (ADME-Tox) properties of drugs or the
response to environmental toxins [1,20–22]. ADME-Tox
predictions [12,22–26] are challenging but extremely important
in prioritizing appropriate small molecules not only during the
selection of potent candidates in drug discovery projects but
also, to some extent, for chemical biology studies. Classical in
silico ADME-Tox predictions are mostly based on statistical
approaches using annotated databases, like Quantitative
Structure-Activity Relationships and Quantitative Structure-
Property Relationships (QSAR/QSPR) [26–28]. However, the
complexity of ADME-Tox molecular mechanisms, for instance
specific interactions with DMEs or with other ADME-Tox-
related proteins, requires a deep mechanistic understanding
[10–12,29] of the ligand-protein interactions at atomic level.
Such knowledge should become more accessible for basically
all proteins within the next 15 years as structural genomics
projects gain full speed [30]. Indeed, in recent years in silico
approaches exploiting the 3D structure of ADME-Tox related
proteins, like docking/scoring or pharmacophore approaches,
were successfully developed to complement QSAR models
[10–12,29,31–34].

Here we report a novel in silico structure-based approach to
probe ligand binding to SULTs. We developed a protocol
combining docking-scoring methods with QSAR modeling in
order to predict SULTs ligand binding. One of the key
characteristics of DMEs (CYPs, SULTs) is that they are
promiscuous, showing a remarkable plasticity of the active site
to adapt its conformation to diverse ligands [12,14,17,35,36].
Therefore, we explored the flexibility of SULTs by molecular
dynamics (MD) simulations in order to elucidate the molecular
mechanisms involved in ligand binding and to identify the most
suitable multiple receptor conformations for ligand binding
prediction [29,37–39]. Then, we employed a structure-based
docking-scoring approach [34,40,41] to probe ligand binding
and finally we combined the predicted interaction energies with
a QSAR methodology. To the best of our knowledge our
protocol is the first in silico structure-based approach consisting
of a protein-ligand interaction analysis at atomic level that
considers flexibility, in both the ligands and the enzymes, along
with a QSAR approach, to identify small molecules that can

interact with II phase DMEs. Our results show that the
automated protocol successfully prioritizes potent binders for
the three studied here isoforms: SULT1A1, SULT1A3 and
SULT1E1. Such approach could be very helpful for drug
discovery or chemical biology endeavors, alerting for possible
SULTs binding and thus risks of toxicity or poor bioavailability,
or for possible strategies for the design of a prodrug.

Results

Collecting SULT1 Ligands
We decided to explore three isoforms, SULT1A1, SULT1A3

and SULT1E1, belonging to the largest SULT1 family and for
which a number of substrates and inhibitors have been

Figure 1.  Visualization of the human structure
sulfotransferase 1A3 (PDB ID: 2A3R).  A: SULT1A3 is
represented in cartoon colored according to its secondary
structure, red for helices, yellow for strands and green for
loops; the co-factor PAP and the co-crystallized ligand L-
dopamine are shown in sticks. B: SUTL1A3 is represented in
grey surface, with the co-factor PAP and the co-crystallized
ligand L-dopamine in sticks.
doi: 10.1371/journal.pone.0073587.g001
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idebntified [14,18,42]. We collected 157, 117 and 80 known
binders (substrates or inhibitors) for SULT1A1, SULT1A3 and
SULT1E1, respectively (see Materials & Methods section).
Several drugs (paracetamol, minoxidil), estrogens and toxic
compounds (like bisphenol A used in plastic industry and
recently discovered to be toxic) are present in our collection.
Chemical structure clustering (see Materials & Methods section
for details) resulted in 60, 50 and 33 diverse active compounds
for SULT1A1, SULT1A3 and SULT1E1, respectively (examples
for each isoform are shown in Table 1 and Figure S1). Putative
decoys were taken from the diverse chemical compound
libraries ChemBridge™ PremiumSet™ and the Maybridge®
HitFinder™. The actives and decoys were merged and filtered
using a soft drug-like filter in terms of physicochemical
properties (see Materials & Methods section). For each
isoform, we obtained two validation datasets, ChemBridge and
Maybridge, containing: 46556 and 13148 compounds for
SULT1A1; 49546 and 13138 compounds for SULT1A3; 49529
and 13121 compounds for SULT1E1, respectively.

Molecular Dynamics Simulations and Multiple Receptor
Conformations

We ran three MD simulations for each of the isoforms,
SULT1A1, SULT1A3 and SULT1E1, with bound cofactor PAP
and without bound ligands. Previously, it has been
demonstrated that PAPS and PAP have equivalent stabilizing
effects on these SULT isoforms [17,43]. Thus, we used PAP
(substituting PAPS) in order to generate protein conformations
capable to accommodate substrates and inhibitors. All
trajectories showed stable potential energies from 0.5 to 2.0 ns
of the production range (Figure S2, S3 and S4 given in the
supporting information). Our analysis focuses mainly on the
plasticity of the binding sites observed during the MD
simulations. The list of residues of the binding sites is given in
the supporting information (Text S1). The Solvent Accessible
Surface Area (SASA) values of the binding sites along the MD
production are shown in Figure 2. Among the three isoforms,
SULT1A3 displays the highest values of SASA, i.e. the most
open binding site, while SULT1E1 displays the lowest values,
i.e. the most closed pocket. These results suggest a different
dynamic behavior of the binding pockets for the three isoforms.

For each isoform, we extracted 4500 structures from the
three MD productions, from 0.5 to 2.0 ns. In order to select

multiple receptor conformations with diverse binding site
conformations, we employed Hierarchical Ascendant
Classification (HAC) based on the matrix of Root Mean Square
Deviation (RMSD) for all atoms of the binding site and of the
cofactor. We imposed a RMSD difference of at least 1.3 Å,
resulting in 11 conformations for SULT1A1, 7 for SULT1A3 and
7 for SULT1E1 (Figure 3).

Binding pockets characterization
We performed structural analysis of the binding sites of the

MD generated conformations and of the X-ray structures (Table
2). The volumes of the binding sites of different SULT1A1
conformations vary from 707.6 to 949.5 Å3. We found pockets
with volumes quite similar to that of the X-ray structure (for
instance clusters 2, 3, 4, 7) and pockets with volumes larger
than that of the X-ray structure. Differences were also observed
for SASA. For example, the SASA of the pocket of the cluster 4
conformation is similar to that of the X-ray structure (Figure 4A
and 4B). In contrast, the cluster 10 conformation (Figure 4C)
reveals a closed pocket in terms of SASA. These results
indicate that loop 1 may open as a gate (Figure 4A, 4B, and
4C), as previously suggested in [14,44]. The different clusters
centroids show various volumes and SASA, suggesting that the
binding site of SULT1A1 may easily adapt its conformation to
ligands of different sizes and shapes.

Results for SULT1A3 are unexpected. As seen from Table 2,
all obtained clusters centroids have huge binding sites with
volume three times larger than that of the X-ray structure while
SASA can be twice higher than in the X-Ray structure. The
structural comparison (Figure 4D, 4E, 4F and Figure 2) shows
that the binding site remains open with large volume and SASA
during the entire MD trajectories. It is likely that the bound L-
dopamine in the X-ray structure maintains the pocket
conformation more closed than in the modeled MD apo
structures, e.g. an induced fit is present in the complex, as
similar phenomena have already been observed in other
protein-ligand complex structures [45]. Indeed, the amino group
of L-dopamine is located between the two carboxylic groups of
Glu146 and Asp86, thus involved in two salt bridges. During
the MD simulations without bound ligand, the repulsing
interaction between the two carboxylic groups led to the
opening of loop 1 (amino acid residues 85-90). Interestingly,
the superposition of the two available X-ray structures for

Table 1. Examples of diverse active molecules for each SULT1 isoform assigned in different clusters.

Isoform Compound Known Function Type
SULT1A1 Diflunisac Non-Steroidal Anti-Inflammatory Drug (NSAID) Inhibitor: IC50=3.7.10-6M
 Bisphenol A Organic compound raising concerns about its presence in consumer products and foods Substrate: Km=4.2.10-6 M
 Triclosan Antibacterial and antifungal agent Inhibitor: IC50=2.3.10-6 M

SULT1A3 Resveratrol Antioxidant Substrate: Km=1.3.10-6 M
 Curcumin Curcumin is a curcuminoid of the Indian spice turmeric. Inhibitor: IC50=4.10-6 M
 Mefenamic Acid Non-Steroidal Anti-Inflammatory Drug (NSAID) Inhibitor: IC50=150.10-9 M

SULT1E1 Daidzein Daidzein is an isoflavone and acts as antioxidant Substrate: Km=8.10-9 M
 17αethinylestradiol Ethinyl estradiol is a derivative of estrogen used in oral contraceptive pills Substrate: Km=3.10-6 M
 Trans-Piceatannol Antioxidant Inhibitor : Ki=400.10-9 M

Prediction of Ligand Binding to Sulfortansferases
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SULT1A3, one bound with L-dopamine (PDB ID 2A3R) [46]
and one apo (PDB ID 1CJM) [47], shows a displacement of
loop 1 of 4.9 Å. Thus, the substrate-binding pocket is largely
open in the X-ray apo structure likewise in the modeled MD
apo structures. The conformational change of loop 1 of
SULT1A3 accompanying the ligand binding [14,44] is strongly
supported by the holo and apo X-ray structures and the MD
apo conformations.

Next, the MD structures of SULT1E1 show diverse pocket
conformations, larger or smaller than the X-ray one (Figure 4G,
4H, 4I and Figure 2). SULT1A1 and SULT1E1 have some
similarities regarding their binding sites plasticity. For the two
isoforms, the binding pockets of the representative MD
structures are either larger or smaller than those of the X-Ray
structures. Thus, these isoforms can accommodate their
binding sites according to the ligands size.

Some differences of the binding sites for different SULT1
isoforms observed here could explain some of the substrate
specificities known for the three isoforms. Overall, the volumes
of different binding site conformations of SULT1E1 are larger
than those of SULT1A1. The larger pocket of SULT1E1 may
facilitate its favorable interactions with large ligands. Indeed,
steroids, which are large and quite rigid molecules, are specific
substrates for SULT1E1. Further, all MD centroid structures for
SULT1A3 have significantly larger binding pockets than the
holo X-ray structure. As such, opening of the binding site may
facilitate interactions with more bulky ligands than the co-
crystallized dopamine. In fact, large ligands also interact with
SULT1A3, for instance α-zearalenol, dobutamine or SKF38393.

However, experimental SULT1A3 structures with bound large
ligands would be very helpful to clarify the ligand-binding
mechanism for this isoform.

Figure 3.  Multiple receptor conformations generation.  
doi: 10.1371/journal.pone.0073587.g003

Figure 2.  Solvent Accessible Surface Area (SAS) of binding pockets for the three SULT1 isoforms for one MD
production.  
doi: 10.1371/journal.pone.0073587.g002
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Identifying the Best Multiple Receptor Conformations
by Virtual Screening

Virtual Screening (VS) experiments were performed using
docking-scoring approach in order to identify the protein
conformations, which can better discriminate known binders
from putative decoys. We ran 56 VS for all isoforms. A total of
24 VS were carried out for SULT1A1 on the 11 representative
MD conformations and the X-ray structure with two compounds
datasets, ChemBridge and Maybridge. Similarly, we performed
16 VS for SULT1A3 and 16 VS for SULT1E1. The best results
obtained for the MD centroid conformations and the X-ray

Table 2. Structural characteristics of the binding sites for
different isoforms and multiple receptor conformations.

Isoform Structure Pocket Volume (Å3)
Pocket Solvent Accessible
Surface Area (Å2)

SULT1A1 X-Ray 735.7 963

 Cluster 1 900.7 940

 Cluster 2 787.9 919

 Cluster 3 707.6 914

 Cluster 4 743.2 925

 Cluster 5 895.5 1009

 Cluster 6 882.3 900

 Cluster 7 781.1 837

 Cluster 8 804.5 894

 Cluster 9 949.5 914

 Cluster 10 894.0 870

 Cluster 11 912.5 859

SULT1A3 X-Ray 875.8 770

 Cluster 1 2470.7 1426

 Cluster 2 2749.1 1522

 Cluster 3 2043.4 1425

 Cluster 4 2949.1 1518

 Cluster 5 2588.7 1568

 Cluster 6 2440.0 1455

 Cluster 7 1958.8 1338

SULT1E1 X-Ray 1118.8 379

 Cluster 1 1385.7 356

 Cluster 2 873.8 274

 Cluster 3 952.7 290

 Cluster 4 1337.5 399

 Cluster 5 1774.8 516

 Cluster 6 2023.6 620

 Cluster 7 2123.8 637

structures for each isoform are shown by enrichment graphs in
Figure 5. Protein-ligand interaction energies for active centroids
as predicted by docking (averaged for the X-ray and the two
best performing MD structures) and compared to the
experimental affinities are given for illustration in Table S1 (see
the Supporting Information). As it is widely accepted, docking
approaches cannot achieve an exact prediction of the binding
affinities, rather they help to prioritize active molecules among
a large number of compounds.

Two MD structures for SULT1A1 achieve better enrichment
results than the X-ray structure on the ChemBridge™ dataset
(Figure 5A). Indeed, the structures of clusters 4 and 10 show
Area Under Curve (AUC) for the Receiver Operating
Characteristic (ROC) curve (not shown) larger than the X-ray
structure. The early enrichments are also better for these two
MD structures than for the X-ray one. Similar results are
obtained on the Maybridge® dataset (Figure 5B). The best
performing is the cluster 10 structure adopting slightly larger
binding pocket than the holo X-ray structure allowing thus
better prediction for the larger actives. In the case of SULT1A3
(Figure 5C and 5D) the VS experiments did not suggest a MD
structure performing better than the holo X-ray one, yet early
enrichments are slightly better for two MD structures than for
the X-ray one in the case of the ChemBridge™ dataset. The
MD structures and the holo X-ray for SULT1A3 show similar
AUC, lower than those for SULT1A1. The best MD structures
for SULT1A3, clusters 3 and 7, have binding sites twice larger
than the holo X-ray one, thus, not allowing to correctly rank the
small actives and prioritizing large ligands, actives or decoys.
Our analysis showed a balanced representation of small and

Figure 4.  Binding sites of different SULT1 structures.  A:
SULT1A1 X-Ray structure. B: SULT1A1 cluster 4 MD structure.
C: SULT1A1 cluster 10 MD structure. D: SULT1A3 X-Ray
structure. E: SULT1A3 cluster 3 MD structure. F: SULT1A3
cluster 7 MD structure. G: SULT1E1 X-Ray structure. H:
SULT1E1 cluster 3 MD structure. I: SULT1E1 cluster 4 MD
structure.
doi: 10.1371/journal.pone.0073587.g004
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large actives for SULT1A3 in our datasets (see Dataset 1. sdf
for SULT1A1, Dataset 2. sdf for SULT1A3 and Dataset 3. sdf
for SULT1E1 given in the supporting information). Next, very
good results have been obtained for SULT1E1 (Figure 5E and
5F). The two best MD structures demonstrate much better
early enrichment and larger AUC in comparison to the X-ray
structure. The best performing is the cluster 3 structure
showing slightly smaller volume of the binding site than the X-
ray one.

Overall considering the flexibility of the binding sites via
multiple receptor conformations improved the enrichments. We
achieved better discrimination for binders of SULT1A1 and
SULT1E1 than for SULT1A3. The discrimination performance
for SULT1A3 is lower because during the MD simulations this
isoform adopted large and open binding site conformations due
to the two closely placed Glu146 and Asp86 in the initial
structure. On the other hand, the holo X-ray binding pocket is
extremely closed, therefore not allowing correct positioning and

ranking of large active molecules. In both cases, the
enrichment is worsened in comparison with the other isoforms.

We also analyzed the druggability of the MD and X-ray
structures. We calculated the druggability score using
DogSiteScorer [48]. DogSite calculates several pockets
descriptors and employs support vector machine method to
return a score of druggability between 0 and 1 (0 – non-
druggable, 1 - druggable). A strong druggability score (>0.9)
was attributed to the X-ray structures for the three isoforms
(see Table 3). Interestingly, our multiple receptor protocol
successfully provides 3 MD conformations with a higher
druggability score than the X-ray structures for SULT1A1 and
for SULT1E1. Moreover, the conformations best discriminating
the actives for SULT1A1 and SULT1E1 show druggability
scores of 0.97 and 0.96, respectively. Further, lower
druggability scores were obtained for the MD conformations of
SULT1A3 as compared to the X-ray structure. Despite of the
very high druggability score of the X-ray SULT1A3, the

Figure 5.  Enrichment graphs obtained on the X-ray and two best performing MD structures for each isoform.   The X-Ray
structure is in black and the MD structures in blue and green. 100% refers to all screened compounds including all actives and
decoys. The Receiver Operating Characteristic Curve Areas (AUC) are also given. A: SULT1A1 with ChemBridge™ as decoys. B:
SULT1A1 with Maybridge® as decoys. C: SULT1A3 with ChemBridge™ as decoys. D: SULT1A3 with Maybridge® as decoys. E:
SULT1E1 with ChemBridge™ as decoys. F: SULT1E1 with Maybridge® as decoys.
doi: 10.1371/journal.pone.0073587.g005
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obtained enrichment is not very high. Thus, the druggability
score is a useful indicator but is not sufficient for a final
selection of the best multiple receptor conformations, a
validation with known binders can be critical.

To exemplify the predicted protein-ligand interactions, we
focused on the first retrieved actives for SULT1E1, known to
metabolize estrogen hormones. The first actives ranked by the
employed docking-scoring were the estrogen derivatives
equilenin and 4-hydroestradiol for the X-ray structure and for
the cluster 3 MD structure, respectively (Figure 6). We
compared the best scored pose of equilenin to the bioactive
conformation of the co-crystallized ligand 3,5,3',5'-tetrachloro-
biphenyl-4,4'-diol. Figure 6A shows that equilenin and 3,5,3',5'-
tetrachloro-biphenyl-4,4'-diol are well superimposed and that
the hydroxyl group is correctly oriented in the docked pose.
Indeed, the ligand hydroxyl group points toward the co-factor
close to the phenylalanine gates Phe80 and Phe141 and forms
a hydrogen bond with H107, which is believed to act as a
catalytic base deprotonating the hydroxyl group during the
sulfate transfer [49]. Docking of the best-ranked 4-
hydroxyestradiol into the MD cluster 3 structure was also
successful (Figure 6B), the ligand hydroxyl group, supposed to
be sulfated, points toward the co-factor, close to the
phenylalanine gates Phe80 and Phe141.

Table 3. Druggability scores for different isoforms and
conformations.

Isoform Structure Druggability
SULT1A1 X-Ray 0.91
 Cluster 1 0.92
 Cluster 2 0.77
 Cluster 3 0.62
 Cluster 4 0.88
 Cluster 5 0.81
 Cluster 6 0.83
 Cluster 7 0.63
 Cluster 8 0.82
 Cluster 9 0.94
 Cluster 10 0.97
 Cluster 11 0.85

SULT1A3 X-Ray 0.92
 Cluster 1 0.41
 Cluster 2 0.32
 Cluster 3 0.36
 Cluster 4 0.43
 Cluster 5 0.62
 Cluster 6 0.81
 Cluster 7 0.79

SULT1E1 X-Ray 0.91
 Cluster 1 0.78
 Cluster 2 0.97
 Cluster 3 0.96
 Cluster 4 0.94
 Cluster 5 0.46
 Cluster 6 0.41
 Cluster 7 0.23

New QSAR models for SULT1
We considered further the molecular structures of the SULT1

active compounds in order to train QSAR classification models.
For each isoform, we built two models: a model based solely
on topological information of compound structures using
extended connectivity fingerprint descriptors (ECFPs) [50] and
another model that combined such information with the binding
energies computed on the MD protein conformations that best
retrieved the active compounds. Such information was then
employed to train classifiers using three machine learning
methods: support vector machine-based (SVM), random forest
and naïve Bayes. The models obtained with the support vector
machine gave slightly better performances (see Table S2).
Table 4 shows the performance of the SVM classifier with and
without included predicted binding energy values. For
SULT1E1, we obtained an accuracy of 73.94% (the percentage
of correctly predicted active compounds) in a leave-one-out
(LOO) cross-validation of the training set, which was increased
to 75.46% when introducing the energy values as an additional
input feature of the training set. In the case of SULT1A3, the
accuracy was raised from 73.80% to 78.00% when using the
predicted interaction energies. The QSAR models for SULT1A1
showed lower performance; the obtained accuracy in the leave-
one-out cross validation of 60.85% using ECFPs was
increased to 67.28% when binding energy information was
added. The lower accuracy of SULT1A1 models might be due
the higher chemical diversity of the active compounds for this
isoform. In all cases, the validation test performed on the
external set was successful, with more than 80% of the active
compounds correctly classified when using the models with the
best performance. The high performance on the external sets
might be due to the fact that the external sets contain
compounds similar to those of the training set within a
Tanimoto similarity of 0.6 (FCFP_4). Therefore our models
have been here validated within a domain of applicability given
by the clustering threshold.

Figure 6.  Best scored poses for SULTE1 actives.  A: X-Ray
structure of SULT1E1 with the co-crystallized ligand (3,5,3',5'-
tetrachloro-biphenyl-4,4'-diol) in cyan and the best scored pose
of the docked equilenin in magenta. B: Best scored pose of the
best ranked compound 4-hydroxyestradiol in magenta docked
into the MD Cluster 3 structure.
doi: 10.1371/journal.pone.0073587.g006
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Discussion

Phase II DMEs encounter drugs or other xenobiotics, in
general, modifying them into more hydrophilic metabolites to be
easily eliminated from the human body. However, highly
reactive, mutagenic or carcinogenic metabolites can also be
produced [4–8]. Phase II DMEs have up to now attracted much
less attention than cytochromes P450 [3,29,51] despite of their
critical roles in detoxification. For instance, UGTs and SULTs,
two major DMEs, are involved in the metabolism of many
clinically used drugs [3]. Inhibiting SULTs can alter their natural
functions that can cause drug–drug interactions [16,29,52]. All
together these data demonstrate the importance of exploring
phase II DMEs. As several X-ray structures for these enzymes
are available, such investigation can be carried out at the
atomic level. In the present study, we aim at developing a
method for prediction of interactions of these enzymes with
putative ligands, drugs or xenobiotics like pollutants.

To this end, we developed a novel approach to predict small
molecules binding on three main SULT1 isoforms by
combination of a docking-scoring approach, which takes into
consideration the flexibility of the protein binding site, and
QSAR modeling. Indeed, the SULT1 active sites accommodate
very diverse ligands in terms of size and chemistry, thus, it is of
crucial importance to introduce possible conformational
changes for ligand binding prediction. Although many
experimental 3D structures of SULTs have been resolved, only
a few 3D in silico studies have been reported to date [42–44].
These studies were not fully focused on the exploration of
SULT to integrate the protein flexibility for predicting ligand-
target interactions for a large number of compounds.
Conformational changes observed in the binding sites of
SULT1 family suggest that gating of loop 1 can be involved in
the ligand binding [14,17,44]. Overall, our MD simulations
support similar movements. However, more complex ligand-
binding mechanisms might be possible for SULT1A3. It was
suggested that substrates may not be completely uncoupled
from binding of the cofactor [17].

The better enrichments that we obtained using the MD best
structures compared to the rigid X-ray structures confirm that it

Table 4. Performance of the SVM QSAR model for each
isoform.

Isoform

Accuracy of
QSAR model
without
binding
energy
information
(LOO cross
validation)

Accuracy of
QSAR model
including
binding
energy
information
(LOO cross
validation)

Accuracy
(external
set)

Size of
the
training
set

Size of
the
external
set

SULT1E1 73.94% 75.46% 95.24% 120 86

SULT1A3 73.80% 78.00% 89.53% 100 66

SULT1A1 60.85% 67.28% 85.85% 66 42

is indeed critical to take into account the flexibility of the binding
sites for SULT1 in order to better discriminate binders from
non-binders. The conformational changes of the binding sites
of SULT1, e.g. loop 1 gating, facilitate the binding of diverse
ligands, which is of major importance for the SULTs role, i.e.
the detoxification. We achieved very good predictive results
using docking-scoring into the best MD conformations for
SULT1A1 and SULT1E1. Recently, Stjernschantz and co-
workers [43] screened experimentally 34 potential endocrine-
disrupting compounds on the murine and human SULT1E1 to
identify selective inhibitors of the human enzyme. They then
docked the identified active compounds using the software
GOLD [53] and performed subsequent MD simulations of the
docked complexes. This process helped to explain in part the
selectivity for some of the inhibitors of human SULT1E1. Using
our VS docking experiments we retrieved the most potent
inhibitors identified in [53] (estrogen derivatives) as the top
ranked compounds, confirming the very good prediction
performance of our approach for SULT1E1.

Regarding the SULTs substrate diversity and specificities,
several SULTs families have been studied by hierarchical
clustering of the chemical structures. Two studies, exploring
the similarity for local sequences and structural features of the
binding site and compound activity profiles [17,54], suggested
that SULT1A1 and SULT1A3 could display different substrate
specificities due to local sequence and structural differences of
the binding sites. As mentioned above, two negatively charged
groups are present in the binding site of SULT1A3, Asp86 and
Glu146, while two hydrophobic Ala residues are located in the
same positions in SULT1A1. Yet, the authors highlighted the
difficulty of predicting small-molecule binding patterns for SULT
family only from sequence or structural analysis [54]. It is
interesting to note that we obtained better QSAR prediction for
SULT1A3 than for SULT1A1 suggesting that SULT1A1 is more
promiscuous than SULT1A3. These results are consistent with
our MD simulations for SULT1A1 suggesting that its binding
site is very flexible as adopting open or closed conformations
along the MD trajectories that would facilitate the
accommodation of diverse ligands. Indeed, SULT1A1 interacts
with a large diversity of compounds, including simple phenols,
polycyclic aromatic compounds, estrogens. Further, Schapira
et al. [42] performed VS experiments using docking of 50,000
compounds (including drugs, clinical candidates and
endogenous molecules) into SULT1A3 and SULT1E1 in order
to explore substrate selectivity profile. They distinguished
correctly the preferential substrate classes for the two isoforms,
i.e. catecholamines (e.g. L-dopamine) for SULT1A3 and
steroids for SULT1E1. All docking results were carried out into
rigid X-ray structures extracted from X-ray structures co-
crystallized with the same preferred class of compounds,
however, considering the receptor flexibility would be crucial to
predict binders structurally different from the co-crystallized
ligands.

In order to identify structural factors of substrates controlling
the sulfonation several QSAR models have been developed for
SULT [55–57]. Taskinen et al. [58] built a QSAR model for
SULT1A3 based on 53 catechol compounds using Partial Least
Square (PLS). They found that the lipophilicity was positively
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correlated with sulfonation rate, but specific effects of polar
functional groups were more important than the general
lipophilicity. In particular, the presence of a positively charged
amino group favored sulfonation, whereas the presence of a
carboxylate anion strongly decreased reactivity. Finally, the
authors obtained a QSAR model with Q2 value of 0.72. The
same group developed 3D QSAR models performing
comparative molecular field analysis (CoMFA) on 95 diverse
compounds, obtaining in this case a Q2 value of 0.624 for the
best model [55]. The two negatively charged residues Glu146
and Asp86 of the binding site explain the preference for a
positive charge in the substrate. Such properties of the binding
site are explicitly taken into our QSAR model via the predicted
protein-ligand binding energy. We achieved 89.53% prediction
accuracy for the external set of 66 active compounds for
SULT1A3. In fact, the predicted binding energies improved the
QSAR models accuracy for the three isoforms highlighting thus
the complementarity of the structure-based and QSAR
approaches.

We should note that SULTs have not been extensively
experimentally screened and we did not find real decoys in
publicly available chemistry databases and in several
commercial collections (see the Methods section). Therefore,
developing in silico models, structure-based or QSAR, to
predict ligand binding for SULTs is challenging, it might be
possible that some of the used putative decoys are active for
some SULT isoforms. Yet, our results demonstrate that the
developed approach can be successfully employed to predict
ligand binding to the three SULT1s isoforms studied here.
Resulting in accurate QSAR models based on structure-based
methodology, our approach constitutes a major advance in the
in silico prediction of ADME-Tox properties of small molecules
related to interactions with phase II DMEs.

Material and Methods

Compound datasets preparation
Small molecules known to bind to SULT1A1, SULT1A3 and

SULT1E1, substrates or inhibitors, were collected (Figure 7)
from the databases BRENDA [59], Aureus Sciences (http://
www.aureus-sciences.com/), TOXNET (http://
toxnet.nlm.nih.gov/), PubChem [60] and literature [6,17,18]. We
did not found experiment data for inactive molecules, thus we
took putative decoy molecules those from two diverse chemical
compound collections, ChemBridge™ PremiumSet™ (http://
www.chembridge.com/) and the Maybridge® HitFinder™
(http://www.maybridge.com/) composed of 50000 and 14000
compounds, respectively. In order to select only drug-like
molecules, all datasets of actives and putative decoys were
filtered using the FAF-Drugs 2 server [61] using “soft” drug-like
physicochemical properties (see Text S1 in supporting
information) while the search utility to remove toxic/reactive
groups was turned off. After filtering, 49496 and 13088 decoys
remained from the ChemBridge™ and Maybridge® datasets,
respectively. In order to select chemically diverse molecules for
validation of our approach and to avoid possible over-
representation of a chemical series, we performed several
initial tests to cluster the actives using the fingerprints ECFP_4,

ECFP_6, FCFP_4 and FCFP_4 as implemented in Pipeline
Pilot v.7.5 (SciTegic, Inc/Accelrys). Finally, the filtered drug-like
actives were clustered using FCFP_4 with a Tanimoto similarity
criterion of 0.6. We then created two compound datasets for
each SULT1 isoform taking the active centroids of each cluster
for the corresponding isoform, and the decoys from the
Chembridge™ et and the Maybridge® filtered datasets,
respectively.

Protein structures preparation
For the three most important SULT1 isoforms, SULT1A1,

SULT1A3 and SULT1E1, we selected X-ray structures with co-
crystallized ligands and as complete as possible. For
SULT1A1, 5 holo PDB structures are available, all sharing very
similar conformations (all atom RMSD between the 5 structures
vary between 0.170 and 0.239 Å). The visual analysis of these
5 structures did not show striking differences in the binding
sites. For SULT1A3, only 1 holo structure is available. The
second one is an apo-form with many missing residues around
the cofactor binging site. For SULT1E1, only 1 holo structure is
available. Thus, we took the X-ray structures co-crystallized
with the ligands: p-nitrophenol (PDB ID: 1LS6 [6]), L-dopamine
(PDB ID: 2A3R [46]) and 3,5,3',5'-tetrachloro-biphenyl-4,4’-diol
(PDB ID: 1G3M [62]), for the isoforms SULT1A1, SULT1A3
and SULT1E1, respectively. All ligands and water molecules
were removed. We kept PAP as cofactor for all MD and
docking simulations. The pKa values of titratable groups were
calculated with the Finite Difference Poisson Boltzman
approach [63] using the web server tool Protein Continuum
Electrostatics (PCE) [64] with the default parameters (dielectric
value of 4 and 80 for solute and solvent, respectively). No
abnormal titration behaviors were obtained and His protonation
was assigned according to the computed pKas.

Figure 7.  Compound datasets preparation.  
doi: 10.1371/journal.pone.0073587.g007
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Molecular dynamics simulations
For each SULT1 isoform we performed three molecular

dynamic (MD) simulations using CHARMM c35b1 version [65].
We used the all atoms PARAM27 force field [66,67]. All
simulations were performed using monomer structures
because previous MD studies for SULT1A1 and SULT1E1
suggested identical behavior for monomers and dimers [43,44].
For each SULT1 structure we kept the cofactor PAP. Topology
and parameters of PAP were assigned by using the web server
SwissParam [68]. The solvation was taken into account by the
Generalized Born implicit solvent function FACTS [69]. Non-
bonded interactions were truncated in a cut-off distance of 12 Å
with a shift function for electrostatics and switch function for the
van der Waals interactions. The protein structures were initially
minimized using 500 steps of steepest descent algorithm
followed by 500 steps of conjugate gradient algorithm.
Distances between heavy atoms and hydrogen atoms were
constrained by SHAKE algorithm [70] allowing a time step of 2
fs. The system was heated during 100 ps to reach 300 K and
then equilibrated during 200 ps with a temperature window of
300±10 K. The production time was 2 ns for each MD
simulation run. We have 3 trajectories per isoform at different
initial velocities.

Multiple receptor conformations selection
For each isoform we extracted 4500 structures from the

three merged MD trajectories. SASA of the binding sites along
the MD trajectories was calculated using CHARMM program
and the volume was calculated using CASTp web server [71].
For each isoform the RMSD between the 4500 structures were
calculated for all atoms of the binding site and of the cofactor
(see Text S1 in the supporting information). We clustered
different conformations of the binding sites by applying HAC on
the obtained RMSD matrix using the aggregative method ward
as implemented in R software [72] and a RMSD distance of at
least 1.3Å. We took the centroid structure of each cluster in
order to define a representative set of protein conformations for
subsequent validation by virtual screening experiments.

Virtual screening experiments
First we performed preliminary docking experiments with

DOCK6.0 [73], AutoDock [74] and Vina 1.1.1 [75], to dock
several small and large ligands, dopamine, 4-nitrophenol,
pentachlorophenol, estradiol and 3,5,3',5'-tetrachloro-
biphenyl-4,4'-diol, into the three isoforms. We obtained the best
docking results using Vina with a RMSD of the bioactive
conformations within 1Å. Thus, for the subsequent prediction of
the SULTs binders, we performed VS experiments using Vina.
We used grid resolution of 1 Å, number of binding modes of 10
and exhaustiveness of 8. Fifty six VS runs were performed on
X-ray structures and protein structures extracted from MD for
the two datasets, the ChemBridge™ and the Maybridge®,
containing 49496 and 13088 compounds, respectively. For
SULT1A1, the grid size was of 24 Å for the three X, Y, Z axes
and the center coordinates were set to 22.979, 105.852 and
57.607. For SULT1A3, the grid size was of 26 Å, 24 Å and 30 Å
for the three X, Y, Z axes, respectively, and the center
coordinates were set to 56.936, 120.268 and -0.116. For

SULT1E1, the grid size was of 18 Å, 22 Å and 22 Å for the
three X, Y, Z axes, respectively, and the center coordinates
were set to -4.619, -16.110 and 33.948.

QSAR classification model of active compounds
The centroids of the clustered active compounds known to

bind SULT1A1, SULT1A3 and SULT1E1 (Figure 7) were
selected as positive sets in order to train QSAR classification
models for compounds binding SULTs. The resulting size was
60 for 1A1, 50 for 1A3 and 33 for 1E1. For each positive set of
active compounds, we built balanced training sets by random
sampling of negatives from the list of the 13088 putative
decoys of the Maybridge® library. Thus, the resulting training
sets contained 120, 100, and 66 molecules for 1A1, 1A3, and
1E1, respectively (Table 4). The process was repeated 10
times for each isoform in order to compute average results
from multiple random samples of the negative set. To describe
topological features of the compounds we used extended
connectivity fingerprints (ECFPs) [50] up to an atom vicinity of
2. To reduce the dimensionality of the resulting input feature
matrix, we applied principal component analysis using the
statistical package R.

Then we used three machine learning methods: a support
vector machine by using the kernlab R package (ksvm
function) [76], a random forest-based predictor by using the
randomForest R package [77], and a naïve Bayesian predictor
by using the caret R package [78]. For each of them we built
two QSAR models: for the first one we used only ECFP
descriptors, while for the second one the protein-ligand binding
energies calculated on the best performing MD receptor
conformation were added as an additional descriptor.
Performance of each QSAR classification model was assessed
by the percentage of correctly classified compounds in
comparison to the total number of compounds in the set
through leave-one-out cross-validation. In addition, we used an
external validation dataset that contained all known active
compounds after the FAF-Drugs 2 filtering, where the
molecules identical with those of the training set were removed
(resulting in 86 compounds for 1A1, 66 compounds for 1A3, 42
compounds for 1E1).
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