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Abstract
Web surveys have replaced Face-to-Face and computer assisted telephone inter-
viewing (CATI) as themainmode of data collection inmost countries. This trend
was reinforced as a consequence of COVID-19 pandemic-related restrictions.
However, this mode still faces significant limitations in obtaining probability-
based samples of the general population. For this reason, most web surveys rely
on nonprobability survey designs. Whereas probability-based designs continue
to be the gold standard in survey sampling, nonprobability web surveys may
still prove useful in some situations. For instance, when small subpopulations
are the group under study and probability sampling is unlikely to meet sam-
ple size requirements, complementing a small probability sample with a larger
nonprobability one may improve the efficiency of the estimates. Nonprobability
samples may also be designed as a mean for compensating for known biases in
probability-basedweb survey samples by purposely targeting respondent profiles
that tend to be underrepresented in these surveys. This is the case in the Survey
on the impact of the COVID-19 pandemic in Spain (ESPACOV) that motivates
this paper. In this paper, we propose a methodology for combining probability
and nonprobabilityweb-based survey sampleswith the help ofmachine-learning
techniques. We then assess the efficiency of the resulting estimates by compar-
ing them with other strategies that have been used before. Our simulation study
and the application of the proposed estimationmethod to the second wave of the
ESPACOV Survey allow us to conclude that this is the best option for reducing
the biases observed in our data.
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1 INTRODUCTION

Ten years have passed since the American Association for Public Opinion Research (AAPOR) appointed a task force to
evaluate nonprobability survey sampling methods that were more and more frequently used in applied research contexts
at the time (Couper et al., 2013). During the last decade, nonprobability sampling designs have continued to grow as the use
of Big Data and web surveys spread (Lenau et al., 2021). The lockdowns that followed the onset of the COVID-19, together
with the need of quick data to grasp the impacts of the pandemic and to inform policymakers’ decisions, further bolstered
nonprobability sampling designs (Kohler, 2020). Web surveys mushroomed during COVID-19-related confinements and
have further displaced traditional survey modes, such as Face to Face and CATI, that still face important restrictions due
to social distancing rules and population fear to COVID-19 infection.
Most web surveys conducted during this time have relied on online convenience samples using social media and/or

river sampling to recruit participants or on quota samples selected from online opt-in panels (Schaurer & Weib, 2020).
Nonprobability sampling designs account for 38% of the 63 COVID-19-related surveys included in theOxford Supertracker,
a global directory that compiles the most significant efforts to collect information on the social and policy-related impacts
of the pandemic (Daly et al., 2020). Two other, less restrictive, trackers of COVID-19-related surveys conducted in 2020
put this figure up to 73% (of 78 surveys) in Cabrera-León and Sánchez-Cantalejo (2020) and 78% (of 177 surveys) in Matias
and Levitt (2020).1 In the case of COVID-19 social science project tracker (Matias & Levitt, 2020), we have retrieved the
documentation of 177 cases of research using surveys that were already initiated at the time of being included in the data
set. Of these, 138 (73%) used web survey as the main mode of data collection. A total of 90% of these web surveys used
nonprobability-based sample designs such as quota sampling from opt-in commercial panels (48%) and crowdsourcing
marketplaces such as Amazon MTurk (14%), Social Media ads and snowball sampling (34%) or a combination of them.
The lack of an adequate sampling frame that enables probability-based sample selection of the general population

initially hindered the usage ofweb surveys in official statistics and government and academic research,where high-quality
samples of the general population are required (Callegaro et al., 2015). In those settings,web surveys have beenusedmainly
as an auxiliarymode to interview sample units prerecruitedwith othermodes (i.e., follow-upwaves in longitudinal surveys
or cross-sectional survey samples selected from probability-based online panels) or as the main survey mode exclusively
in those cases where there was a comprehensive list of email contacts available for the population of interest. However, the
steep decline in response rates together with the high data collection costs in probability surveys increased the interest
in alternative data sources and sampling designs (Beaumont, 2020). With the pandemic, the trend toward the use of
nonprobability web survey designs have definitely reached academic research and several initiatives experimenting with
the integration of data obtained from probability and nonprobability web surveys have been conducted in official statistics
and government research projects (Beaumont&Rao, 2021;Wiśniowski et al., 2020). Somepeople have even come to believe
that probability surveys could be phased out for the production of official statistics. However, for other authors such as
Beaumont (2020), the time has not yet come because the alternatives are not reliable and general enough to eliminate the
use of probability surveys without severely sacrificing the quality of the estimates. Indeed, although nonprobability surveys
usually have large sample sizes, they present important selection and coverage problems since the sample generation
process is unknown inmost cases, so they can compromise the generalization of the results to the population under study
(Bethlehem, 2010; Elliott & Haviland, 2007; Vehovar et al., 2016).
Despite these limitations, nonprobability survey designs may prove useful in some cases. They can provide relevant

information that would not be available otherwise (Lenau et al., 2021). In other cases, where small subpopulations are the
group under study and probability sampling is unlikely to meet sample size requirements (Disogra et al., 2011; Robbins
et al., 2021), complementing a small probability sample with a larger nonprobability one may improve the efficiency
of the estimates (Wiśniowski et al., 2020). Nonprobability samples may also be designed as a mean for compensating
for known biases in probability-based web survey samples by purposely targeting respondent profiles that tend to be

1 The Oxford Supertracker includes mostly multicountry international and single-country official surveys, whereas the other two trackers focus on
academic research.
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underrepresented in these surveys as it is the case in the Survey on the impact of the COVID-19 pandemic in Spain
(ESPACOV) that motivates this paper (Rinken et al., 2020). The most rigorous uses of these designs entail the integration
of data from both probability and nonprobability samples to produce a single inference that compensates for biases
observed in both kind of samples.
Survey statisticians have provided different methods for combining information from multiple data sources. Current

reviews of statistical methods of data integration for finite population inference can be seen in Valliant (2020), Buelens
et al. (2018), and Rao (2020). Among themost importantmethods, we couldmention inverse probability weighting (Kim&
Wang, 2019; Lee, 2006; Lee & Valliant, 2009), inverse sampling (Kim &Wang, 2019), mass imputation (Rivers, 2007), dou-
bly robust methods (Chen et al., 2019), kernel smoothingmethods (Wang&Katki, 2020), or statistical matching combined
with propensity score adjustment (PSA; Castro-Martín et al., 2021a). Yang and Kim (2020) provide a good review of some
of these techniques.Most of theseworks assume that the variable of interest is only available in the nonprobability sample,
whereas other auxiliary variables are present in both data sources. However, as described above, there are other scenarios
where both the probability and nonprobability-based samples share the same questionnaire and measures, meaning that
it is possible to combine both of them in order to maximize the efficiency of the estimates.
Most surveys that integrate probability and nonprobability samples simply pool the samples and make inference using

theHorvitz–Thompson orHàjek estimator assuming the entire sample is probabilistic (Rinken et al., 2020). Thismethod is
rarely appropriate because usually nonprobability samples are not distributed proportionally with respect to demographic
or other relevant subgroups in the population. Some efforts have been undertaken to combine both probability and non-
probability samples to make inference while dealing with the different sources of bias. Elliott and Haviland (2007) studies
a composite estimator that is a linear combination of an unbiased sample mean estimate from a probability sample and
a biased sample mean estimate from a convenience sample. The weight of the mean estimator based on the probability
sample is determined by the ratio of its mean squared error (MSE) to the sum of that term and the MSE of the conve-
nience sample mean. Disogra et al. (2011) propose an alternative procedure using calibration. These authors combine the
previously calibrated probability sample with the nonprobability sample and then recalibrate overall to the probability
sample’s benchmarks from the previous step. Their simulation study shows that calibrating nonprobability samples with
probability samples using early adopter questionsminimizes bias in the resulting estimates in the larger combined sample.
Recently, Robbins et al. (2021) proposed weighting techniques that enable the two data sets to be analyzed as a single one
(i.e., a blended sample) by assuming four conditions for the probability and nonprobability samples. Authors consider four
separate methods for blending based on propensity scoremethods or on calibration weighting and warn on the challenges
of integrating both kind of samples. Finally, Sakshaug et al. (2019) propose a Bayesian approach to combine information
from probability and nonprobability samples. Data from the nonprobability sample are used to build an informative prior
distribution that is subsequently used to inform the estimates from the probability sample. The simulation study and the
application with real data suggest that resulting Bayesian estimates are more efficient than estimates exclusively based in
probability samples, even when their sample sizes are quite small.
In this paper,we explore other alternatives that combine someof these ideaswith the help ofmachine-learningmethods.

Our main contributions to this area of research are the development of a new estimationmethod for integrating data from
probability and nonprobability samples in those situationswhere the variables of interest are observed in both samples.We
then assess the efficiency of the resulting estimates by comparing them with other strategies that have been used before.
The application of this method to the second wave of the ESPACOV allows us to conclude that the estimationmethod that
we propose is the best option for reducing observed biases in our data.
This paper is structured as follows. Section 2 introduces the ESPACOV II survey that is our motivating case study. Sec-

tion 3 establishes notation and describes the proposed methods for integrating probability and nonprobability samples.
Section 4 reports the results of an extensive simulation study run on a set of synthetic populations in which the perfor-
mance of the proposed estimators is analyzed for finite size samples. The proposed methods are applied in a real-world
scenario in Section 5. Finally, the implications of our findings are discussed in Section 6.

2 MOTIVATING CASE STUDY

This new estimation technique was designed to analyze the data obtained in a web survey on the effects of the COVID-19
pandemic in Spain (ESPACOV Survey) that used amixedmultiphase sampling design inspired by the responsive approach
(Groves & Heeringa, 2006). This survey was designed, implemented, and funded by the Institute for Advanced Social
Studies at the SpanishNational ResearchCouncil (IESA-CSIC) (Rinken et al., 2020). Therewere two editions of the survey:
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the first one was fielded from April 4 through April 11, 2020 in the fourth week of the lockdown, that in Spain began on
March 14. The second edition was conducted from January 18 to 25, 2021, almost 1 year into the pandemic. This paper
focuses on the measurement of the direct impact of the COVID-19 pandemic in terms of infection and severity of the
disease and the consequences of the pandemic on the overall physical and mental health self-perception as well as the
economic situation in the respondents households. For that reason, we use data from the second edition of the survey that
allows to assess the situation almost 1 year after the beginning of this major health crisis.
Questionnaires addressed the opinions and attitudes of the Spanish population regarding the COVID-19 crisis, as well

as the assessments of its management and its consequences, either anticipated (ESPACOV I) or endured (ESPACOV II).2
Both editions of the ESPACOV Survey were web based and followed a sampling design that combined the use of SMS

invitations to take part in the survey—sent to a list of randomly generated mobile phone numbers—(probability-based
sample) with the publication of Facebook, Instagram, andGoogle Ads segmented to purposely oversample the sociodemo-
graphic profiles thatwere underrepresented in the probability-based sample (nonprobability sample). In the first edition of
the ESPACOV Survey, both sampling procedures were applied sequentially so that the outcomes of the probability-based
sample informed the design of the purposive sample. In the second edition, both samples were fielded simultaneously
taking advantage of the knowledge acquired in the previous edition. An in-depth explanation and justification of this
methodology is provided in Rinken et al. (2020). The combined use of SMS invitations and an RDD (random digit dialing)
sampling frameminimizes sampling and coverage problems for collecting web survey data in countries where unsolicited
text messages are allowed and there is a high coverage of smartphones (Kim & Couper, 2021) as it is the case in Spain.3
A total of 66,439 SMS invitations with links to the questionnaire were sent in January 2021 for the probability-based

sample in the second edition of ESPACOV Survey, of which 51.3% were delivered. The effective sample size after 8 days in
fieldwork was 𝑛 = 973 (2.97% of delivered SMS). Invitations to complete the survey were advertised via Facebook, Insta-
gram, andGoogle ads from January 18 to 22. The invitation reached 1,054,301 impressions and 7647 clicks for a total number
of 671 completed interviews. A question was included in order to ascribe to each respondent the sampling procedure by
which they had reached the online questionnaire. Respondents’ answers to this question were confirmed with the web
survey paradata (i.e., user agent strings) and duplicates were managed selecting those that were the most complete (for
incomplete questionnaires) or the most recent (for complete questionnaires). As expected, given the low response rates
that RDD smartphones surveys typically get, data from the probability-based sample presented significant nonresponse
bias in relevant variables such as age, sex, region, municipal size, educational level, professional activity, and ideology.
Once the biases were detected and analyzed, raw data were weighted by iterative (raking) adjustments regarding munic-
ipality size, region (aggregated as NUTS-1), age group, sex, and education level. This weight adjustment procedure has
proved useful for correcting biases in both editions of ESPACOV as well as in previous surveys conducted by IESA-CSIC.
As shown in Table 1, the integration of data from both sampling schemes partially accomplished its aim of maximizing

representativeness of the Spanish resident population aged 18 and more. The distribution of the unweighted blended
survey is more similar to the population than those of the individual samples (with the exception of gender). Moreover,
the profiling of ads worked as intended oversampling respondents aged 65 and more and reducing, although less than
needed, the proportion of employed respondents and those with higher education. Contrary to expectations, the profiling
resulted in a significant overrepresentation of women in the blended sample.
The next section develops the methods followed for correcting biases in both probability and nonprobability samples

and blending the data so that they can be analyzed as a single data set.

3 METHODS

3.1 Context and survey design

Let 𝑈 denote a finite population of size 𝑁, 𝑈 = {1, … , 𝑖, … ,𝑁}. Let 𝑠𝑟 be a probability sample of size 𝑛𝑟 selected from 𝑈

under a probability sampling design (𝑠𝑟, 𝑝𝑟) with 𝜋𝑖 =
∑

𝑠𝑟∋𝑖
𝑝𝑟(𝑠𝑟) the first-order inclusion probability for individual 𝑖.

Let 𝑠𝑣 be a nonprobability (volunteer) sample of size 𝑛𝑣, self-selected from𝑈. Let 𝑦 be the variable of interest in the survey

2 The research data and related documentation of both editions of the survey can be retrieved at the Spanish Research Council institutional repository:
https://digital.csic.es/handle/10261/211271 (ESPACOV I) and https://digital.csic.es/handle/10261/233224 (ESPACOV II).
3 According to official statistics data regarding 2021, 93.9% of spaniards aged 16–74 y.o. accessed the Internet with their smartphones in the previous
3 months.

https://digital.csic.es/handle/10261/211271
https://digital.csic.es/handle/10261/233224
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TABLE 1 Population data sources

Probability Nonprobability Blended sample (Unweighted) Population
Gendera Male 48.4% 40.7% 45.3% 48.5%

Female 51.6% 59.3% 54.7% 51.5%
Agea 18–29 18.2% 3.3% 12.1% 15.0%

30–44 33.0% 15.8% 26.0% 25.4%
45–64 41.3% 37.4% 39.7% 35.9%
65 or more 7.5% 43.5% 22.2% 23.7%

Age (mean) 44.2 58.3 50 51
Education levelb First degree 21.0% 20.7% 20.9% 17.1%

Second degree 18.7% 26.1% 21.7% 49.1%
Higher ED 60.3% 53.2% 57.4% 33.8%

Labor statusb Employed 69.2% 41.3% 57.8% 48.5%
Unemployed 9.1% 6.4% 8.0% 9.2%
Inactive 21.7% 52.3% 34.2% 42.3%

aContinuous population register, official population data as of January 1, 2021
bEconomically active population survey (EAPS), first quarter 2021.
National Statistics Institute of Spain (INE).

estimation and let 𝐱𝑖 be the values presented by individual 𝑖 for a vector of covariates 𝐱. The variable of interest and the
covariates have been measured in both samples.
The population total, 𝑌, can be estimated via the Horvitz–Thompson estimator:

�̂�𝑅 =
∑
𝑖∈𝑠𝑟

𝑑𝑖𝑦𝑖 (1)

being 𝑑𝑖 = 1∕𝜋𝑖 . This estimator is design-unbiased of the population total if there is not lack of response. The design-based
variance of this estimator is given by

𝑉𝑝(�̂�𝑅) =
∑
𝑖,𝑗∈𝑈

𝑦𝑖
𝜋𝑖

𝑦𝑗

𝜋𝑗

(
𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗

)
, (2)

where 𝜋𝑖𝑗 are the second-order probabilities of the sampling design 𝑝𝑟. If 𝜋𝑖𝑗 > 0 ∀(𝑖, 𝑗), an unbiased estimator is given by

𝑉𝑝(�̂�𝑅) =
∑
𝑖,𝑗∈𝑠𝑟

𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗

𝜋𝑖𝑗

𝑦𝑖
𝜋𝑖

𝑦𝑗

𝜋𝑗
. (3)

Large-scale surveys generally have sample units that do not provide the desired data. In order to mitigate the effects
of nonresponse on survey estimates, adjustments are made to the estimator after the data have been collected. Various
nonresponse adjustments can be made to the survey data ranging from simple nonresponse adjustment cell methods to
more advanced nonresponse propensity adjustments, being calibration weighting (Särndal & Lundström, 2005) the most
popular. In the reweighting process, the designweights 𝑑𝑖 are replaced by newweights 𝑑𝑖 that are used for the construction
of the estimator given by (1).

𝑌 can be also estimated with the naive estimator based on the sample mean of 𝑦 in 𝑠𝑣:

�̂�𝑣 = 𝑁
∑
𝑖∈𝑠𝑣

𝑦𝑖
𝑛𝑣

. (4)

If the convenience sample 𝑠𝑉 suffers from selection bias, this estimator will provide biased results. This can happen if
there is an important fraction of the population with zero chance of being included in the sample (coverage bias) and if
there are significant differences in the inclusion probabilities among the different members of the population (selection)
(Couper, 2011; Elliott & Valliant, 2017).
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3.2 Estimating propensities in the nonprobability sample

In this context, PSA can be used to reduce the selection bias that would affect the unweighted estimates. This approach
aims to estimate the propensity of an individual to be included in the nonprobability sample by combining the data from
both samples, 𝑠𝑟 and 𝑠𝑣.
Propensity scores, 𝜋𝑣𝑖 , can be defined as the propensity of the 𝑖th individual of participating in the survey, this is, the

probability that 𝐼𝑣𝑖 = 1, being 𝐼𝑣𝑖 the indicator variable for unit 𝑖 being included in the sample 𝑠𝑣

𝐼𝑣𝑖 =

{
1 𝑖 ∈ 𝑠𝑣

0 𝑖 ∈ 𝑈 − 𝑠𝑣
, 𝑖 = 1, … ,𝑁. (5)

PSA assumes that the selection mechanism of 𝑠𝑉 is ignorable and follows a parametric model:

𝜋𝑣𝑖 = 𝑃(𝐼𝑣𝑖 = 1|𝐱𝑖) = 𝑝𝑖(𝐱) = 𝑚(𝛾, 𝐱𝑖) 𝑖 = 1, … ,𝑁 (6)

for some known function𝑚(⋅) with second continuous derivatives with respect to an unknown parameter 𝛾.
The procedure is to estimate the propensity scores by using data of both, the volunteer and the probability sample. The

maximum likelihood estimator (MLE) of 𝜋𝑣𝑖 is𝑚(�̂�, 𝐱𝑖) where �̂� maximizes the log-likelihood function:

𝑙(𝛾) =
∑
𝑈

(𝐼𝑣𝑖log(𝑚(𝛾, 𝐱𝑖)) + (1 − 𝐼𝑣𝑖)log(1 − 𝑚(𝛾, 𝐱𝑖))

=
∑
𝑠𝑣

log
𝑚(𝛾, 𝐱𝑖)

1 − 𝑚(𝛾, 𝐱𝑖)
+
∑
𝑈

log(1 − 𝑚(𝛾, 𝐱𝑖)). (7)

As is usual in survey sampling, we consider the pseudo-likelihood since we do not observe all units in the finite
population:

𝑙(𝛾) =
∑
𝑠𝑣

log
𝑚(𝛾, 𝐱𝑖)

1 − 𝑚(𝛾, 𝐱𝑖)
+
∑
𝑠𝑝

1

𝜋𝑖
𝑙𝑜𝑔(1 − 𝑚(𝛾, 𝐱𝑖)). (8)

Once the MLE of 𝜋𝑣𝑖 has been obtained, we transform the estimated propensities �̂�𝑣𝑖 = 𝑚(�̂�, 𝐱𝑖) to weights by inverting
them (Valliant, 2020) and obtain the inverse probability weighted (IPW) estimator:

�̂�𝐼𝑃𝑊 =
∑
𝑖∈𝑠𝑉

𝑦𝑖∕�̂�𝑣𝑖 =
∑
𝑖∈𝑠𝑉

𝑦𝑖𝑑𝑣𝑖. (9)

The properties of the IPW estimators (under both the model for the propensity scores and the survey design for the
probability sample) are developed in Chen et al. (2019). These authors prove that under certain regularity conditions and
assuming the logistic regression model for the propensity scores, the IPW estimator �̂�𝐼𝑃𝑊 is asymptotically unbiased for
the population total (�̂�𝐼𝑃𝑊 − 𝑌 = 𝑂𝑝(𝑛

−1∕2
𝑣 )) and they obtain an asymptotic expression for its variance:

𝑉(�̂�𝐼𝑃𝑊) =
∑
𝑈

(𝑦𝑖∕�̂�𝑣𝑖 − 𝐛𝑇
1
𝐱𝑖)

2(1 − �̂�𝑣𝑖)�̂�𝑣𝑖 + 𝐛𝑇
1
𝐷𝐛1, (10)

where 𝐛𝑇
1
=
∑

𝑈
(1 − �̂�𝑣𝑖)𝑦𝑖𝐱

𝑇
𝑖
∕
∑

𝑈
�̂�𝑣𝑖(1 − �̂�𝑣𝑖)𝐱𝑖𝐱

𝑇
𝑖
, and 𝐷 = 𝑉𝑝(

∑
𝑖∈𝑠𝑟

𝑑𝑖�̂�𝑣𝑖𝐱𝑖) where 𝑉𝑝 denotes the design-based
variance under the sampling design 𝑝.
The above asymptotic variance provides a plug-in method for variance estimation. Thus, we propose the variance

estimator given by

�̂�(�̂�𝐼𝑃𝑊) =
∑
𝑠𝑣

(𝑦𝑖∕�̂�𝑣𝑖 − �̃�𝑇
1
𝐱𝑖)

2(1 − �̂�𝑣𝑖) + �̃�𝑇
1
�̃��̃�1, (11)
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where

�̃�𝑇
1
=
∑
𝑠𝑣

(1 − �̂�𝑣𝑖)

�̂�𝑣𝑖
𝑦𝑖𝐱

𝑇
𝑖
∕
∑
𝑠𝑣

(1 − �̂�𝑣𝑖)𝐱𝑖𝐱
𝑇
𝑖

(12)

and

�̃� =
∑
𝑖,𝑗∈𝑠𝑟

𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗

𝜋𝑖𝑗

�̂�𝑣𝑖�̂�𝑣𝑗

𝜋𝑖𝜋𝑗
𝐱𝑖𝐱

𝑇
𝑖
. (13)

This estimator require knowledge of second-order inclusion probabilities, which are often impossible to compute or
unavailable to data analysts for complex sampling designs. There are some alternative estimators of the design variance
𝑉𝑝(

∑
𝑖∈𝑠𝑟

𝑑𝑖�̂�𝑣𝑖𝐱𝑖)without involving 𝜋𝑖𝑗 (Haziza et al., 2008; Särndal, 1996). From a practical viewpoint is better the use of
jackknife and bootstrap techniques (Wolter, 2007) by their applicability in many cases and under different conditions and
because they are implemented in general purpose software packages.

3.3 Combining the probability and the nonprobability samples

We are going to consider the situation in which there are no coverage biases in either the probability or the nonprobability
sample. Let 𝑈𝑟 and 𝑈𝑣 be two sampling frames, in this situation 𝑈𝑟 and 𝑈𝑣 coincide with the population under study 𝑈.
A simple estimator is calculated by weighting the estimators obtained from each sample:

�̂�𝑐𝑜𝑚 = 𝛼�̂�𝑅 + (1 − 𝛼)�̂�𝐼𝑃𝑊, (14)

where 𝛼 is a nonnegative constant such that 0 ≤ 𝛼 ≤ 1.
We denote the values of the variance of �̂�𝑅 and the MSE of the estimator of �̂�𝐼𝑃𝑊 by 𝑉1, 𝑉2, respectively. Since frames

𝑈𝑟 and 𝑈𝑣 are sampled independently, the MSE of �̂�𝑐𝑜𝑚 is given by

𝑀𝑆𝐸(�̂�𝑐𝑜𝑚) = 𝛼2𝑉1 + (1 − 𝛼)2𝑉2, (15)

where the first component of the right-hand side is computed under the sampling design 𝑝𝑅 and the second one under
the selection mechanism model.
Next, we consider the problem of selection of the best coefficients. The value of 𝛼 that minimizes the variance in (15) is

given by

𝛼𝑜𝑝𝑡 =
𝑉2

𝑉1 + 𝑉2
(16)

and the minimumMSE is

𝑀𝑆𝐸(�̂�𝑜𝑝𝑡) =
𝑉1𝑉2

𝑉1 + 𝑉2
, (17)

but the values 𝑉1 and 𝑉2 are unknown. One possibility is to estimate them from the sample and substitute them in the
previous expression. In this way, we can calculate the coefficients 𝛼𝑜 =

�̂�2

�̂�1+�̂�2

, where �̂�1 and �̂�2 are estimators of the

variance of �̂�𝑅 and the MSE of �̂�𝐼𝑃𝑊 (e.g., the estimators obtained in Equations 3 and 11 ). Other solutions are to weight
each estimator by the weight that sample has in the total sample 𝛼𝑛 = 𝑛𝑟∕(𝑛𝑟 + 𝑛𝑣) or 𝛼𝑒 = 0.5.
The resulting estimator (14) can be rewritten as

�̂�𝑐𝑜𝑚 =
∑
𝑖∈𝑠

𝑦𝑖𝑑
⋆
𝑖

(18)
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being 𝑠 = 𝑠𝑟
⋃

𝑠𝑣 and

𝑑⋆
𝑖
=

{
𝛼𝑑𝑖 if 𝑖 ∈ 𝑠𝑟,

(1 − 𝛼)𝑑𝑣𝑖 if 𝑖 ∈ 𝑠𝑣.
(19)

Besides the modification of weights for handling selection bias, other adjustments may also be carried out to take into
account auxiliary information. Calibration (Deville & Särndal, 1992) is the most used technique for weights adjustment,
aiming at ensuring consistency among estimates of different sample surveys and some improving the precision of estima-
tors (Devaud & Tillé, 2019; Rueda et al., 2006). Calibration weighting was previously used in this context by Disogra et al.
(2011) who proposes calibrating auxiliary information in the nonprobability sample with that in the probability sample,
so that after calibration the weighted distribution of the nonprobability sample is similar to that of the target population.
Using the calibration paradigm, we wish to modify, as little as possible, basic weights 𝑑⋆

𝑖
to obtain new weights 𝑤⋆

𝑖
, for

𝑖 ∈ 𝑠 to account for auxiliary information and derive a more accurate estimation of the total 𝑌. Let z
𝑖
= (𝑧1𝑖, … , 𝑧𝑝𝑖) be the

value taken on unit 𝑖 by a vector of auxiliary variables z of which we assume to know the population total t
𝑧
=
∑𝑁

𝑘=1
z
𝑘

and that is available for the units of each sample. The vector of calibration variables z
𝑖
does not have to match the vector

𝐱 used in the propensity model.
A general calibration estimator can be defined as

�̂�𝐶𝐴𝐿 =
∑
𝑖∈𝑠

𝑤⋆
𝑖
𝑦𝑖, (20)

where 𝑤⋆
𝑖
is such that

min
∑
𝑖∈𝑠

𝐺(𝑤⋆
𝑖
, 𝑑⋆

𝑖
) s.t.

∑
𝑖∈𝑠

𝑤⋆
𝑖
z
𝑖
= t

𝑧
, (21)

where 𝐺(𝑤, 𝑑) is a distance measure satisfying the usual conditions required in the calibration paradigm. Given the
set of constraints, different calibration estimators are obtained by using alternative distance measures. If we take the
Euclidean type of distance function 𝐺(𝑤⋆

𝑖
, 𝑑⋆

𝑖
) = (𝑤⋆

𝑖
− 𝑑⋆

𝑖
)2∕2𝑑⋆

𝑖
, we can obtain an analytic solution that produces the

linear calibration estimator:

�̂�cal =
∑
𝑖∈𝑠

𝑤⋆
𝑖
𝑦𝑖. (22)

The asymptotic properties of this calibration estimator can be obtain by adapting the asymptotic framework of Isaki
and Fuller (1982), to the case of the dual-frame finite population as in Ranalli et al. (2016).

3.4 Using machine-learning techniques

Logistic models are often used to estimate the propensity to participate in the survey of each individual. In recent decades,
numerous machine-learning (ML) methods have been considered in the literature for the treatment of nonprobability
samples and have proved to be more suitable for regression and classification than linear regression methods (Castro-
Martín et al., 2020; Chu & Beaumont, 2019; Ferri-García & Rueda, 2020; Kern et al., 2020).
Among the most important MLmethods are boosting algorithms. Boosting algorithms have been applied in propensity

score weighting (Lee et al., 2010, 2011) showing on average better results than conventional parametric regression models.
A common machine-learning algorithm under the Gradient Boosting framework is XGBoost (Chen & Guestrin, 2016).
Given its theoretical advantage over Gradient Boosting, which could lead to even better results in a broader range of
situations (Castro-Martín et al., 2021b), we propose the use of this method for estimating propensities that will be used to
define the estimators previously proposed.
XGBoost works as a decision tree ensemble. Decision trees are basic machine-learningmodels which define split points

for the auxiliary variables until reaching a final node containing the corresponding prediction. Once 𝐾 decision trees are
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trained, the final propensity given by XGBoost is given by the following formula:

�̂�𝑥𝑔𝑖 = 𝜙(𝐱𝑖) =

𝐾∑
𝑘=1

𝑓𝑘(𝐱𝑖), 𝑓𝑘 ∈  , (23)

where  = {𝑓(𝐱) = 𝜔𝑞(𝐱)}; with 𝑞 ∶ ℝ𝑚 → 𝑇 being the structure of a tree that calculates the final node 𝑗, with a value of
𝜔𝑗 , associated with 𝐱𝑖 .
Similarly to logistic regression, the pseudo log-likelihood function (8) is maximized. However, a regularizing function

is also considered in order to penalize complex decision trees:

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2, (24)

where 𝑇 is the number of final nodes and 𝛾 and 𝜆 are hyperparameters. Therefore, the final objective function is defined
as

(𝜙) =
∑
𝑖∈𝑠

𝑙𝑙𝑜𝑠𝑠(�̂�𝑥𝑔𝑖, 𝐼𝑣𝑖) +
∑
𝑘

Ω(𝑓𝑘), (25)

where 𝑙𝑙𝑜𝑠𝑠 is the logistic loss.
In order to minimize this objective function, each tree is trained iteratively. In this manner, the following function is

minimized when training the 𝑡th decision tree:

(𝑡) =
∑
𝑖∈𝑠

𝑙𝑙𝑜𝑠𝑠(𝐼𝑣𝑖, �̂�
(𝑡−1)
𝑥𝑔𝑖

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡), (26)

where �̂�(𝑡−1)
𝑥𝑔𝑖

is the propensity given by the previous iteration. The process is optimized via the Gradient Tree Boosting
method (Friedman, 2001).
However, the importance of choosing the right hyperparameters has also been underlined for the proper functioning of

the algorithm. Therefore, a grid search of the optimal parameters is also performed before training. Each considered set
is validated with cross-validation (Refaeilzadeh et al., 2009). The grid includes the following hyperparameters:

(i) Maximum depth: The depth limit which is applied to each tree forming the ensemble. The considered values are 1,
2, and 3.

(ii) Number of rounds: The number of boosting iterations which are computed. The considered values are 50, 100, and
150.

(iii) Learning rate: A step size shrinkage rate used in order to avoid overfitting. The considered values are 0.3 and 0.4.
(iv) Colsample by tree: The ratio of variables considered when training the trees. The variables are chosen by simple

random sampling independently for each tree. The considered values are 0.6 and 0.8.
(v) Subsample: The ratio of training data considered by simple random sampling at each boosting iteration. The

considered values are 0.5, 0.75, and 1.

XGBoost, including the hyperparameter optimization process, can be easily applied with Caret (Kuhn, 2018), an R
package. The proposed estimators may then be reformulated in the following manner:

�̂�𝑋𝐼𝑃𝑊 =
∑
𝑖∈𝑠𝑣

𝑦𝑖∕�̂�𝑥𝑔𝑖 =
∑
𝑖∈𝑠𝑣

𝑦𝑖𝑑𝑥𝑔𝑖 , (27)

�̂�𝑥𝑔𝑐𝑜𝑚 =
∑
𝑖∈𝑠𝑣

𝑦𝑖𝑑
⋆
𝑥𝑔𝑖

(28)

being

𝑑⋆
𝑥𝑔𝑖

=

{
𝛼𝑑𝑖 if 𝑖 ∈ 𝑠𝑟,

(1 − 𝛼)𝑑𝑥𝑔𝑖 if 𝑖 ∈ 𝑠𝑣,
(29)
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and

�̂�xcal =
∑
𝑖∈𝑠

𝑤⋆
𝑥𝑔𝑖

𝑦𝑖, (30)

where 𝑤⋆
𝑥𝑔𝑖

are the weights obtained after applying calibration to 𝑑⋆
𝑥𝑔𝑖
.

It is not easy to obtain an explicit expression for theMSEof this estimator fromwhich to obtain error estimators since the
asymptotic behavior of the XGBoost method is not studied in the survey sampling context. In the simulation section and
in the application, we will use resampling methods for the construction of confidence intervals.

4 SIMULATION STUDY

We carry out a simulation study to see which of the proposed estimators works best.
We simulate a population of size 500,000 in which we have three target variables 𝑦1 𝑦2, and 𝑦3, and eight auxiliary

variables to perform the PSA algorithms and the calibration, 𝑥1, … , 𝑥8. Four variables (𝑥1, 𝑥3, 𝑥5, 𝑥7) follow a Bernoulli
distribution with 𝑝 = 0.5 and four others (𝑥2, 𝑥4, 𝑥6, 𝑥8) follow Normal distributions with a standard deviation of one and
a mean parameter dependent on the value of the previous Bernoulli variable for each individual

𝑥1𝑖, 𝑥3𝑖, 𝑥5𝑖, 𝑥7𝑖 ∼ 𝐵(0.5), 𝑖 ∈ 𝑈

𝑥𝑗𝑖 ∼ 𝑁(𝜇𝑗𝑖, 1), 𝑖 ∈ 𝑈, 𝑗 = 2, 4, 6, 8,

𝜇𝑗𝑖 =

{
2, if 𝑥(𝑗−1)𝑖 = 1,

0, if 𝑥(𝑗−1)𝑖 = 0,
𝑖 ∈ 𝑈, 𝑗 = 2, 4, 6, 8.

(31)

The target variables were simulated as follows:

𝑦1𝑖 = 𝑁(10, 4) + 5𝜋𝑖, 𝑖 ∈ 𝑈,

𝑦2𝑖 = 𝑁(10, 4) + 2(𝑥7𝑖 = 1) − 2(𝑥7𝑖 = 0) + 𝑥8𝑖 + 5𝜋𝑖, 𝑖 ∈ 𝑈,

𝑦3𝑖 =

{
1 if 𝑦1 > 12.87,

0 if 𝑦1 ≤ 12.87,
𝑖 ∈ 𝑈.

(32)

Variables 𝑦1 and 𝑦2 are treated as numeric variables in the estimation procedure, while variable 𝑦3 is treated as binary,
where the class 1 represents a feature of interest. The different types of target variables allow the results to reproduce the
behavior of different kinds of population parameter estimation that are often done in official statistics.
Five hundred iterations are carried out and in each one of them we draw a probability sample of size 𝑛𝑃 = 250 and

a nonprobability sample of sizes 𝑛𝑁𝑃 = 500; 1000; 2000. The probability sample is drawn by simple random sampling
without replacement (SRSWOR) from the full population, but we include a mechanism to reproduce nonresponse bias in
our simulation, which is a prevalent bias in real probability surveys. This mechanism works by defining the probability
of response, 𝑝𝑅, for each individual of the pseudopopulation:

𝑝𝑅𝑖 =
exp(−2 − (𝑥1𝑖 = 1) + 0.15 ⋅ 𝑥2𝑖 + (𝑥5𝑖 = 1) − 0.06 ⋅ 𝑥6𝑖)

1 + exp(−2 − (𝑥1𝑖 = 1) + 0.15 ⋅ 𝑥2𝑖 + (𝑥5𝑖 = 1) − 0.06 ⋅ 𝑥6𝑖)
, 𝑖 = 1, 2, … ,𝑁. (33)

If the individual 𝑖 is selected for sample 𝑠𝑃, a Bernoulli trial with probability 𝑝 = 𝑝𝑅𝑖 is performed, and if the result is
1, the individual is finally included in 𝑠𝑃. If the result is 0, the individual is not selected. Therefore, the final probability
sample has a random size 𝑛𝑃 ≤ 250 (specifically the average sample size over the 500 iterations is 215). The nonprobability
sample is drawnwith a Poisson sampling designwhere𝜋 is proportional to the vector of inclusion probabilities. This prob-
ability was made dependent on 𝑥5, 𝑥6, 𝑥7, and 𝑥8 (which allowed the experiment to cover Missing At Random situations)
as:

ln
(

𝜋𝑖

1 − 𝜋𝑖

)
= −0.5 + 2.5(𝑥5𝑖 = 1) +

√
2𝜋𝑥6𝑖𝑥8𝑖 − 2.5(𝑥7𝑖 = 1), 𝑖 ∈ 𝑈. (34)
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The first four explanatory variables (𝑥1, 𝑥2, 𝑥3, 𝑥4) do not have any relationship with any target variable or any other
explanatory variable. The propensity models are fitted using all of the eight variables, but the first four variables only add
noise to the final propensity model. This is done in order to simulate a common situation in real-world studies, where
irrelevant variables are included in propensity models, and therefore constituting a misspecification of the model.
The evaluated estimators are the following:

(i) Reference estimator (�̂�𝑅𝐸𝐹): the two samples are joined and calibration is performed to obtain the final estimator.
(ii) Elliott and Haviland estimator (�̂�𝐸𝐻): we join the probabilistic and nonprobabilistic sample and obtain the final

estimator using the formulas proposed in the paper by Elliott and Haviland (2007).
(iii) Based on the article by Robbins et al. (2021), we calculate four estimators:

(i) the disjoint propensity score (DPS) weights estimator (section 2.1.1. of Robbins et al., 2021): �̂�𝑅𝐷𝑅1

(ii) the simultaneous weights estimator (section 2.1.2. of Robbins et al., 2021): �̂�𝑅𝐷𝑅2

(iii) the disjoint calibration (DC) weights estimators (section 2.2 of Robbins et al., 2021):�̂�𝑅𝐷𝑅3

(iv) the combined calibration estimator (section 2.2 of Robbins et al., 2021): �̂�𝑅𝐷𝑅4

(iv) Propensities estimator (�̂�𝑃𝑃𝑆𝐴): the probability and nonprobability sample propensities are obtained, both samples
are merged and calibration is performed to obtain the final estimator using the inverse of propensities as initial
weights.

(v) Calibration—PSA estimator (�̂�𝐶𝑃𝑆𝐴): calibration is performed in the probability sample (�̂�𝑐𝑎𝑙𝑅) using the variables
𝑥1, 𝑥3, 𝑥5, and 𝑥6, and in the nonprobability sample we calculate the propensities by XGBoost using all variables
that are common to both the probability and the nonprobability sample (𝑥1, … , 𝑥8). To obtain the final estimator, we
combine �̂�𝑐𝑎𝑙𝑅 and �̂�𝑋𝐼𝑃𝑊 in several ways, considering 𝛼0.5, 𝛼𝑛, and 𝛼0 =

̂𝐸𝐶𝑀(�̂�𝑋𝐼𝑃𝑊)

�̂�(�̂�𝑐𝑎𝑙𝑅)+ ̂𝐸𝐶𝑀(�̂�𝑋𝐼𝑃𝑊)
. We will denote these

estimators �̂�𝐶𝑃𝑆𝐴−0.5−𝑥, �̂�𝐶𝑃𝑆𝐴−𝑛−𝑥, and �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥.
�̂�(�̂�𝑐𝑎𝑙𝑅) is calculated with the residuals’ method using the 𝑐𝑎𝑙𝑖𝑏𝑒𝑣 function of sampling package (Tillé & Matei,
2021) and ̂𝐸𝐶𝑀(�̂�𝑋𝐼𝑃𝑊) is calculated as a sum of two terms:

̂𝐸𝐶𝑀(�̂�𝑋𝐼𝑃𝑊) =
∑
𝑖,𝑗∈𝑠𝑣

�̂�𝑥𝑔𝑖�̂�𝑥𝑔𝑗 − �̂�𝑥𝑔𝑖�̂�𝑥𝑔𝑗

�̂�𝑥𝑔𝑖�̂�𝑥𝑔𝑗

𝑦𝑖
�̂�𝑥𝑔𝑖

𝑦𝑗

�̂�𝑥𝑔𝑗
+ 𝐵2, (35)

the first that estimates the variance of �̂�𝑋𝐼𝑃𝑊 and �̂� = �̂�𝑋𝐼𝑃𝑊 − �̂�𝑐𝑎𝑙𝑅 that estimates the bias as is considered in Elliott
and Haviland (2007).
�̂�𝐶𝑃𝑆𝐴−0.5−𝑙, �̂�𝐶𝑃𝑆𝐴−𝑛−𝑙, and �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙 are calculated in a similar way but changing XGBoost by logistic regression
in the estimation of the propensities.

In all the estimators in which the propensities are calculated, we use both XGBoost and logistic regression methods
to see if there are differences in the results derived from the classification method used. We use 𝑥 for XGBoost and 𝑙 for
logistic regression in the subscripts to distinguish among methods.
The procedure is repeated across 500 iterations, and finally the Absolute Relative Bias (|RB|) and the root mean square

relative error (RMSRE) is obtained for each method

|𝑅𝐵| = 1

𝐵

𝐵∑
𝑖=1

|�̂�𝑖 − 𝑌|
𝑌

∗ 100

𝑅𝑀𝑆𝑅𝐸 =

√√√√ 1

𝐵

𝐵∑
𝑖=1

(
�̂�𝑖 − 𝑌

𝑌

)2

∗ 100,

(36)

where 𝐵 is the number of iterations, �̂�𝑖 is the estimator based on the iteration 𝑖, and 𝑌 is the true value.
In Tables 2, 3, and 4, values of |RB| and RMSRE can be seen for each of the proposed estimators.
It can be observed that calibration in both samples is not enough to completely remove selection bias, although this

approach provides smaller |RB| and RMSRE than other methods. The method proposed by Elliott and Haviland (2007) is
vastly efficient at removing part of the selection bias that exists in the simulation data, where the selection mechanism of
the nonprobability sample could be considered Missing At Random.
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TABLE 2 Values of |RB| and RMSRE, for each estimator and combination of sample sizes, in the estimation of target variable 𝑦1
𝒏𝑷 ≤ 250 , 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=2000
|RB| RMSRE |RB| RMSRE |RB| RMSRE

�̂�𝑅𝐸𝐹 4.031 4.282 3.935 4.179 3.990 4.188
�̂�𝐸𝐻 1.954 2.415 2.085 2.584 2.004 2.488
�̂�𝑃𝑃𝑆𝐴−𝑥 2.025 2.537 2.909 3.574 3.661 4.506
�̂�𝑃𝑃𝑆𝐴−𝑙 3.641 3.926 3.574 3.856 3.644 3.856
�̂�𝑅𝐷𝑅1−𝑥 5.489 5.663 8.141 8.211 9.673 9.698
�̂�𝑅𝐷𝑅1−𝑙 5.489 5.663 8.141 8.211 9.673 9.698
�̂�𝑅𝐷𝑅2−𝑥 2.562 2.990 2.641 3.125 3.359 3.701
�̂�𝑅𝐷𝑅2−𝑙 5.865 6.028 7.462 7.546 8.621 8.652
�̂�𝑅𝐷𝑅3−𝑥 3.057 3.425 2.544 2.966 2.005 2.391
�̂�𝑅𝐷𝑅3−𝑙 4.379 4.603 4.269 4.488 4.329 4.498
�̂�𝑅𝐷𝑅4−𝑥 3.496 3.851 3.081 3.493 2.320 2.722
�̂�𝑅𝐷𝑅4−𝑙 5.648 5.816 6.744 6.837 7.636 7.678
�̂�𝐶𝑃𝑆𝐴−0.5−𝑥 3.270 3.621 2.702 3.120 2.084 2.465
�̂�𝐶𝑃𝑆𝐴−0.5−𝑙 4.425 4.646 4.302 4.516 4.359 4.521
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑥 4.495 4.792 4.327 4.707 3.470 3.937
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑙 6.131 6.283 7.109 7.195 7.847 7.887
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

1.869 2.305 1.920 2.360 1.757 2.185
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

1.912 2.360 1.980 2.445 1.897 2.369

The combination of calibration and PSA (propensity weights are used as base weights in calibration) reduces |RB| and
RMSRE, particularly when the algorithm used in PSA is XGBoost, although the advantage of this algorithm vanishes as
the nonprobability sample size increases.
The behavior of the estimators considered in Robbins et al. (2021) is very diverse. In some cases, particularly �̂�𝑅𝐷𝑅1, the

relative bias is even larger than the casewhere only calibration is used. This could happen because someof the assumptions
made for these estimators do not apply in our simulation study. On the other hand, �̂�𝑅𝐷𝑅2 and �̂�𝑅𝐷𝑅3 are able to reduce|RB| and RMSRE in comparison to �̂�𝑅𝐸𝐹 , as long as XGBoost is used; in fact, they seem to be particularly sensitive to the
algorithm used for propensity estimation.

�̂�𝑃𝑃𝑆𝐴−𝑥 works better when the sample sizes 𝑛𝑃 and 𝑛𝑁𝑃 are similar, but the behavior gets worse as the sample size
𝑛𝑁𝑃 increases. The behavior of �̂�𝑅𝐷𝑅3−𝑥 is the opposite: as the sample size 𝑛𝑁𝑃 increases, the estimator gets better. This is
something that can be observed for �̂�𝐸𝐻 as well.
Finally, the behavior of the proposed estimators �̂�𝐶𝑃𝑆𝐴 depends on the factor used in weighting. The best estimator in

our simulator has been, by a huge margin, �̂�𝐶𝑃𝑆𝐴−𝛼0 , which is the estimator that weights the samples by the MSE.
It is worth mentioning that the results on |RB| and RMSRE are very similar between methods and sample sizes. This

can be explained by the fact that the target variables 𝑦1 and 𝑦2 have a very similar behavior, only varying because of the
relationship between 𝑦2 and the variables 𝑥7 and 𝑥8. The Missing At Random nature of both variables, which means that
the ignorability assumption of PSA applies in this study, explains why the application of adjustment methods can lead to
substantial reductions in |RB| and RMSRE.
Regarding the difference between the continuous variables, 𝑦1 and 𝑦2, and the binary variable 𝑦3, it is noticeable that

the results of every single method are worse in the estimation of 𝑦3. More precisely, the values of |RB| and RMSRE in
the estimation of 𝑦3 using any method are more than the double of their counterpart in the estimation of 𝑦1 and 𝑦2, and
the differences tend to increase as 𝑛𝑁𝑃 increases. The smallest difference can be observed for �̂�𝑅𝐷𝑅1 (between 2.08 and
2.20 times larger |RB| and between 2.12 and 2.21 times larger RMSRE for 𝑦3 in comparison to the average of 𝑦1 and 𝑦2,
regardless the algorithm used), while the largest difference can be observed for �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥 (between 2.77 and 2.95 times
larger |RB|, and between 2.75 and 2.96 times larger RMSRE for 𝑦3 in comparison to the average of 𝑦1 and 𝑦2).
For the estimators that work best in the first part of the simulation, we perform a comparison between the estimations

of jackknife variance, also calculating the length of the intervals obtained at 95% confidence level and their real coverage,
considering the three initial sample sizes. The results obtained considered 500 iterations can be seen in the Tables 5, 6,
and 7. The results show that �̂�𝑅𝐸𝐹 , �̂�𝑅𝐷𝑅3−𝑥, and �̂�𝑃𝑃𝑆𝐴−𝑥 present larger estimated variances and length of the confidence
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TABLE 3 Values of |RB| and RMSRE, for each estimator and combination of sample sizes, in the estimation of target variable 𝑦2
𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=2000
|RB| RMSRE |RB| RMSRE |RB| RMSRE

�̂�𝑅𝐸𝐹 4.453 4.749 4.449 4.701 4.501 4.696
�̂�𝐸𝐻 2.423 3.045 2.274 2.904 2.268 2.850
�̂�𝑃𝑃𝑆𝐴−𝑥 2.032 2.512 2.702 3.387 3.607 4.466
�̂�𝑃𝑃𝑆𝐴−𝑙 3.112 3.546 3.053 3.491 3.183 3.600
�̂�𝑅𝐷𝑅1−𝑥 7.106 7.296 9.933 10.011 11.459 11.492
�̂�𝑅𝐷𝑅1−𝑙 7.106 7.296 9.933 10.011 11.459 11.492
�̂�𝑅𝐷𝑅2−𝑥 2.496 2.985 2.547 3.065 3.143 3.653
�̂�𝑅𝐷𝑅2−𝑙 6.090 6.393 8.011 8.160 9.414 9.493
�̂�𝑅𝐷𝑅3−𝑥 3.376 3.765 2.740 3.181 2.298 2.796
�̂�𝑅𝐷𝑅3−𝑙 4.153 4.463 4.105 4.405 4.190 4.424
�̂�𝑅𝐷𝑅4−𝑥 3.745 4.096 3.243 3.653 2.522 3.004
�̂�𝑅𝐷𝑅4−𝑙 5.371 5.582 6.400 6.523 7.262 7.336
�̂�𝐶𝑃𝑆𝐴−0.5−𝑥 3.505 3.854 2.871 3.275 2.311 2.762
�̂�𝐶𝑃𝑆𝐴−0.5−𝑙 4.207 4.478 4.119 4.360 4.201 4.401
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑥 4.825 5.109 4.610 4.970 3.779 4.321
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑙 5.832 6.016 6.741 6.852 7.459 7.528
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

1.932 2.394 1.821 2.287 1.740 2.166
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

1.961 2.434 1.879 2.369 1.855 2.311

intervals in comparison to the rest of the estimators, and the difference increases as the sample size 𝑛𝑁𝑃 gets larger. The
coverage rates of the intervals are close to 0.95 for the proposed estimators �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥 , �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙 in different setups,
especially when the sample sizes are large while the interval based on �̂�𝑅𝐸𝐹 performs significantly poorer than the rest in
terms of coverage. Thus, the intervals based on the proposed estimators �̂�𝐶𝑃𝑆𝐴−𝛼0 seem to performwell in terms of length
and coverage, even when the size of the nonprobabilistic sample increases. It is also noticeable that the estimation of
binary variable 𝑦3 yields confidence intervalswith larger confidence intervals’mean coverage in comparison to continuous
variables 𝑦1 and 𝑦2, which points out that variance estimation may be slightly more reliable in the binary case than in the
continuous case, according to our simulation.

5 APPLICATION TO A SURVEY ON THE SOCIAL EFFECTS OF COVID-19 IN SPAIN

In this section, we apply the calibration and XGBoots PSA estimation method proposed in Section 3, to several variables
that assess the impact of the COVID-19 in Spain and compare the results with the measurements obtained when both
probability and nonprobability-based samples are merged and calibrated to correct observed deviations from population
benchmarks in relevant sociodemographic variables, �̂�𝑅𝐸𝐹 .
IESA carried out a previous study comparing the probabilistic sample with the target population to study the possible

difference between different population groups. The data set has 1644 observations and 101 variables. The variables of
age, sex, autonomous community, municipal size, educational level, professional activity, and ideology were used. Once
the biases were analyzed, raw data were weighted by iterative (raking) adjustments regarding municipality size, region
(aggregated as NUTS-1), age group, sex, and education level. We used these calibrated adjusted weights that were included
in the data file provided by IESA, to calculate the estimator �̂�𝑅. Thisweight adjustment procedure has been used for several
years in IESA surveys and has shown that it is good for correcting biases in the various waves of ESPACOV.
The propensity models are fitted using all variables available in the data set, previously eliminating those that are

recodings of main variables.
In this studio, we calculate the estimation based on calibration and XGBoots PSA and their confidence interval to 95%

of confidence level calculating the variance estimate using resampling techniques.
The variables analyzed are the following:
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TABLE 4 Values of |RB| and RMSRE, for each estimator and combination of sample sizes, in the estimation of target variable 𝑦3
𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250 𝒏𝑵𝑷=2000
|RB| RMSRE |RB| RMSRE |RB| RMSRE

�̂�𝑅𝐸𝐹 9.652 10.500 9.677 10.392 9.510 10.125
�̂�𝐸𝐻 5.657 6.991 5.506 6.897 5.680 7.101
�̂�𝑃𝑃𝑆𝐴−𝑥 5.446 6.785 7.462 9.034 9.951 11.792
�̂�𝑃𝑃𝑆𝐴−𝑙 8.748 9.676 8.752 9.515 8.690 9.379
�̂�𝑅𝐷𝑅1−𝑥 13.114 13.715 19.896 20.108 23.223 23.307
�̂�𝑅𝐷𝑅1−𝑙 13.114 13.715 19.896 20.108 23.223 23.307
�̂�𝑅𝐷𝑅2−𝑥 6.198 7.467 6.274 7.530 8.006 8.910
�̂�𝑅𝐷𝑅2−𝑙 14.009 14.588 18.213 18.473 20.660 20.767
�̂�𝑅𝐷𝑅3−𝑥 7.377 8.550 6.437 7.581 5.031 6.133
�̂�𝑅𝐷𝑅3−𝑙 10.489 11.302 10.436 11.102 10.333 10.901
�̂�𝑅𝐷𝑅4−𝑥 8.403 9.512 7.505 8.658 5.720 6.839
�̂�𝑅𝐷𝑅4−𝑙 13.498 14.127 16.461 16.795 18.259 18.403
�̂�𝐶𝑃𝑆𝐴−0.5−𝑥 7.854 8.995 6.822 7.952 5.221 6.312
�̂�𝐶𝑃𝑆𝐴−0.5−𝑙 10.590 11.385 10.494 11.151 10.394 10.944
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑥 10.641 11.695 10.851 11.985 8.403 9.855
�̂�𝐶𝑃𝑆𝐴−𝑛−𝑙 14.644 15.224 17.307 17.623 18.765 18.904
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

5.255 6.453 5.300 6.512 5.155 6.435
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

5.272 6.474 5.849 7.303 5.214 6.509

TABLE 5 Mean jackknife estimate of the variance and confidence intervals’ mean coverage and length from the simulation runs in the
estimation of target variable 𝑦1

𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=2000
J. variance Coverage Length J. variance Coverage Length J. variance Coverage Length

�̂�𝑅𝐸𝐹 1.801 0.610 3.867 3.083 0.628 4.956 4.718 0.558 5.819
�̂�𝐸𝐻 0.099 0.948 1.230 0.099 0.936 1.231 0.100 0.952 1.238
�̂�𝑃𝑃𝑆𝐴−𝑥 0.441 0.938 1.888 x 2.890 0.940 4.480 7.217 0.968 8.536
�̂�𝑅𝐷𝑅3−𝑥 1.102 0.820 3.254 1.720 0.884 4.148 3.475 0.972 6.075
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

0.086 0.942 1.149 0.084 0.932 1.135 0.088 0.948 1.152
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

0.089 0.940 1.169 0.090 0.940 1.173 0.104 0.952 1.259

(i) COVID-19 infection (respondent) (V1)
(ii) COVID-19 infection (close relatives) (V2)
(iii) Severity of infection – No symptoms (V3)
(iv) Severity of infection – Mild symptoms (V4)
(v) Severity of infection – Serious symptoms (V5)
(vi) Severity of infection – Hospital admission (V6)
(vii) Self-assessed health status (V7)
(viii) Mood self-assessment (V8)
(ix) Household income decreased as a result of COVID-19 pandemic (V9)

Tables 8 and 9 and Figure 1 show the outcomes of these variables measuring these direct and indirect effects of the
pandemic in Spain considering probability and nonprobability-based samples separately as well as the integrated file
using the estimation methods described above.
The main differences between both samples in the survey are the infection rate and the severity of the disease. The

proportion of respondents that have suffered the infection ismore than three points higher in the probability-based sample.
Also, hospitalization seems to be less likely for COVID-19 patients in this sample, although the difference is not statistically
significant. Both trends may be explained by the differences in the age structure of both samples, with the nonprobability
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TABLE 6 Mean jackknife estimate of the variance and confidence intervals’ mean coverage and length from the simulation runs in the
estimation of target variable 𝑦2

𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=2000
J. variance Coverage Length J. variance Coverage Length J. variance Coverage Length

�̂�𝑅𝐸𝐹 19.259 0.582 12.054 36.202 0.568 16.214 54.922 0.542 19.548
�̂�𝐸𝐻 0.114 0.896 1.321 0.113 0.908 1.314 0.114 0.914 1.320
�̂�𝑃𝑃𝑆𝐴−𝑥 3.104 0.932 3.765 9.887 0.960 8.360 26.854 0.976 15.752
�̂�𝑅𝐷𝑅3−𝑥 14.488 0.830 10.963 23.012 0.888 14.303 43.755 0.974 20.984
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

0.102 0.932 1.248 0.099 0.934 1.229 0.108 0.954 1.273
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

0.105 0.932 1.265 0.104 0.942 1.262 0.121 0.972 1.359

TABLE 7 Mean jackknife estimate of the variance and confidence intervals’ mean coverage and length from the simulation runs in the
estimation of target variable 𝑦3

𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=500 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=1000 𝒏𝑷 ≤ 250, 𝒏𝑵𝑷=2000
J. variance Coverage Length J. variance Coverage Length J. variance Coverage Length

�̂�𝑅𝐸𝐹 0.017 0.708 0.377 0.028 0.648 0.466 0.045 0.636 0.570
�̂�𝐸𝐻 0.001 0.952 0.140 0.001 0.960 0.141 0.001 0.960 0.141
�̂�𝑃𝑃𝑆𝐴−𝑥 0.005 0.944 0.196 0.021 0.946 0.431 0.071 0.974 0.856
�̂�𝑅𝐷𝑅3−𝑥 0.011 0.882 0.323 0.023 0.944 0.455 0.034 0.976 0.602
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

0.001 0.962 0.133 0.001 0.930 0.132 0.001 0.934 0.127
�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑙

0.001 0.964 0.134 0.001 0.934 0.142 0.001 0.972 0.142

TABLE 8 Estimates of selected variables on the direct impact of COVID-19 in Spain from integrated data using a new estimation method
based on calibration and XGBoost PSA (�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

) and direct calibration of the integrated sample (�̂�𝑅𝐸𝐹).

Individual samples Integrated sample
Probability Nonprobability �̂�𝑪𝑷𝑺𝑨−𝜶𝟎−𝒙

�̂�𝑹𝑬𝑭

Variable Estimation CI Estimation CI Estimation CI Estimation CI
V1 0.127 0.106–0.148 0.095 0.073–0.117 0.112 0.090–0.134 0.122 0.102–0.142
V2 0.306 0.277–0.336 0.291 0.256–0.325 0.299 0.265–0.333 0.285 0.258–0.313
V3 0.147 0.076–0.219 0.146 0.045–0.247 0.188 0.123–0.253 0.186 0.113–0.259
V4 0.716 0.625–0.807 0.688 0.555–0.820 0.650 0.567–0.734 0.660 0.484–0.837
V5 0.116 0.051–0.180 0.104 0.017–0.191 0.111 0.063–0.159 0.104 0.019–0.189
V6 0.021 0.000–0.050 0.042 0.000–0.099 0.012 0.000–0.031 0.037 0.000–0.088

sample being considerably older than the probability-based (58.3 vs. 44.2). Those differences are consistent with what
we already know regarding disease severity, with elders more at risk of developing serious illness, and compliance with
COVID-19 preventative measures (Wright & Fancourt, 2021).
Similarly, the age distribution of samples would explain the difference, statistically significant, on the assessment of

the impact of the pandemic on household income. This evaluation is considerably worse in the probability-based sample

TABLE 9 Estimates of selected variables on indirect effects of COVID-19 in Spain from integrated data using a new estimation method
based on calibration and XGBoost PSA (�̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥

) and direct calibration of the integrated sample (�̂�𝑅𝐸𝐹).

Individual samples Integrated sample
Probability Nonprobability �̂�𝑪𝑷𝑺𝑨−𝜶𝟎−𝒙

�̂�𝑹𝑬𝑭

Variable Estimation CI Estimation CI Estimation CI Estimation CI
V7 0.067 0.051–0.083 0.076 0.056–0.096 0.064 0.046–0.082 0.075 0.058–0.092
V8 0.277 0.248–0.305 0.235 0.203–0.267 0.265 0.228–0.303 0.261 0.234–0.288
V9 0.425 0.393–0.456 0.305 0.269–0.340 0.398 0.365–0.431 0.403 0.374–0.431
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F IGURE 1 Estimation of the selected variables including confidence intervals

where the weight of employment incomes is most important. In all these cases, the estimator that seems to correct best
the impact of the differences in age structure between both samples is the estimator that we develop in Section 3.
If we compare the estimates provided by only calibration, �̂�𝑅𝐸𝐹 and PSA and calibration, �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥, we observe dif-

ferences in different directions for each variable: in some variables the estimator �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥 provides lower estimates
compared to �̂�𝑅𝐸𝐹 and in other variables the opposite occurs. Regarding the width of the intervals, a uniform pattern
is not observed either. However, in the simulation study it is observed that estimator �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥 does not have cover-
age problems, while estimator �̂�𝑅𝐸𝐹 in many cases is not capable of eliminating the bias. For this reason, we consider
prevalence estimates based on method �̂�𝐶𝑃𝑆𝐴−𝛼0−𝑥 to be more reliable.

6 CONCLUSIONS

With more than 8 million official cases and almost 91,000 casualties as of mid-January 2022, Spain is one of the EU
countries that has been worst affected by COVID-19. Spanish GDP declined by 10.8% in 2020 and working hours for the
equivalent of 2million of jobs were lost according to the International LabourOrganization (ILO) data. Using a design that
combines probability and nonprobability-based sampling methods and proper estimation techniques, the second edition
of the ESPACOV Survey fully reflects the relevance of this impact. According to main survey estimators, 11.2% of the Span-
ish population had COVID-19 and 29.9% had witnessed the infection of close relatives until January 2021, 10 months after
theWorldHealthOrganization (WHO) declared the novel coronavirus (COVID-19) outbreak a global pandemic. Although
the majority of those infections were asymptomatic or endured with mild symptoms (65%), the pandemic was taking a
huge toll on the economy of families (39.8% declared that household income had decreased) and on mental well-being,
with more than one in four (26.5%) assessing their mood as very bad or bad.
The estimates suggested in literature that could be applied to the data from this survey were based on the simple inte-

gration of both samples. In this paper, we address the problem of how to improve these estimates. We introduce four
methods for calculating weights that blend probability and convenience samples; these methods combine calibration and
PSA using machine-learning techniques for those situations where the variables of interest are observed in both samples.
Before their application to the survey, we evaluate the behavior of the proposed estimators against other techniques

for integrating probability and nonprobability samples used in the literature. As in many simulation studies, the number
of simulation conditions we have generated is limited. However, we considered a simulation study with several sample
sizes to cover different Missing At Random situations and we compared the performance of standard logistic regression
model with a machine-learning algorithm (XGBoost) when estimating the propensity score. Our simulation study shows
that the proposed estimator based on calibration and PSA techniques is very efficient at reducing self-selection bias and
RMSRE with this kind of data. The intervals based on these proposed estimators seem to perform well in terms of length
and coverage, for different model setups, especially for large sizes of the nonprobabilistic sample.
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In our simulations, the best performing techniques for the estimation of the propensity scores were those based on
boosting, which guaranteed considerably lower bias and RMSRE in comparison to a similar estimator based on logistic
regression and other techniques considered in the study.
Before applying ML techniques, we have considered hyperparameter tuning. The simulation proved that, in the con-

text of integrating probability and nonprobability data, tuning is data-dependent and therefore we strongly suggest that
researchers consider tuning parameters before using ML techniques in this context.
Based on the simulation results, we consider the use of the proposed estimator �̂�𝐶𝐴𝐿−𝑃𝑆𝐴−𝛼0 (which is the estimator that

weights the samples by the MSE) as an alternative to the usual estimators for the estimation of the effects of the COVID-
19 pandemic in Spain. The application of this method to ESPACOV II Survey proves successful incorporating response
patterns observed in the nonprobability sample into the final integrated data set.
This study has some limitations. In our opinion, the main limitation to consider lies in the lack of response of the

probabilistic sample. This nonresponse may affect the representativity of the sample. The possible bias implied should be
evaluated and corrected in a more advanced way, previously to the application of the proposedmethods in order to ensure
their validity.
For the future, we want to compare the proposed methodology with other techniques that are appearing to combine

probability and nonprobability samples as Kim and Tam (2021) or Nandram et al. (2020). Extensions to small domain
estimation (Rao & Molina, 2015) and variance estimation under nonparametric PSA will also be future research topics.
Finally, we would like also to investigate the impact of weight trimming. In general, methods that lead to greater bias

reductions also tend to produce larger weight variations. Kernel weighting (Wang et al, 2020) distribute survey weights
fractionally to nonprobability sample units and can be an alternative to PSA to control variances.
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