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Abstract: Mitochondria are very important intracellular organelles because they have various func-
tions. They produce ATP, are involved in cell signaling and cell death, and are a major source
of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of
mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and
aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease,
longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we par-
ticularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA
copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a
therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.

Keywords: mitochondria; mitochondrial DNA; clinically relevant radioresistant (CRR) cells; can-
cer radioresistance

1. Introduction

A major function of mitochondria is the production of Adenosine tri-phosphate
(ATP). Mitochondria use pyruvic acid in the cytoplasm to efficiently produce ATP via the
tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). In recent years, it has
become clear that mitochondria not only function as an ATP-producing organelle, but also
as a signaling center in cell death such as apoptosis and ferroptosis [1–4]. Mitochondria
have also been reported as a major site of reactive oxygen species (ROS) generation [5].
High concentrations of mitochondria-derived ROS are toxic but moderate concentrations
have been shown to act as signaling molecules and play an important role in cellular
functions, such as cell proliferation [5,6]. Mitochondria-derived ROS also regulate cancer
cell growth [6–8]. Therefore, mitochondria are very important intracellular organelles that
play key roles in normal physiological functions as well as pathophysiological functions.
In this review, we discuss and highlight the importance and involvement of mitochondria
in normal and disease conditions, specifically focusing on cancer chemoresistance and
radioresistance (treatment resistance). We also describe the crucial role of mitochondria in
cancer therapy.
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1.1. Association of Mitochondrial DNA (mtDNA) Mutations in Several Diseases, Longevity, and
Radioresistance

Mitochondria have their own DNA (mtDNA). In eukaryotes, almost all the cells except
red blood cells have mitochondria and mtDNA, and mtDNA is present in the hundreds to
thousands per cell. It has been reported that the mtDNA is inherited maternally [9]. The hu-
man mtDNA genome encodes 13 genes, 22 tRNAs, and 2 rRNAs [10]. The 13 genes encoded
by mtDNA are all core subunits of oxidative phosphorylation (OXPHOS). OXPHOS is a se-
ries of phosphorylation reactions that occur in mitochondria in conjugation with ETC, that
is, ATP synthesis reaction (see detail in Section 1.3). It has been reported that mtDNA repli-
cation occurs independently of the cell cycle [11]. mtDNA is compacted or relaxed by the
concentration of mitochondrial transcription factor (TFAM). When mtDNA is in a relaxed
state, mtDNA forms replisome, which is composed of DNA polymerase Gamma (POLγ),
mitochondrial DNA helicase (TWINKLE) and mitochondrial single-stranded DNA-binding
protein (mtSSB), and replication occur [12,13]. The RNA primers for replication initiation
are generated by mitochondrial RNA polymerase (POLRMT) and replication is proceeds.
Moreover, mRNA and protein synthesis i.e., transcription and translation in mitochondria
are also different from nuclear DNA. The codon of mtDNA is different from nuclear DNA
and uses its own tRNA and ribosomal RNA [14]. Unlike nuclear DNA, mtDNA is not
protected by histones and is susceptible to gene mutations. The implication of mtDNA
mutations in specific diseases, especially mitochondrial diseases has been reported [15–18].
Mitochondrial disease exhibits various symptoms due to impaired mitochondrial func-
tion. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes
(MELAS), myoclonic epilepsy and ragged red fibers (MERRF), chronic progressive external
ophthalmoplegia (CPEO), and Leigh syndrome are examples of typical mitochondrial
diseases [19]. MELAS is a serious illness with stroke-like symptoms and is diagnosed in
early childhood or in the juvenile period [20]. Over 80% of MELAS patients have A3243G
mutation and about 10% of MELAS patients have T3271C mutation. These mutations are on
the tRNALeu(UUR). This mutation leads to destabilization of tRNA and leads to reduction of
the production of oxidative phosphorylation (OXPHOS) proteins, which produce ATP [21].
MERRF is characterized by myoclonic epilepsy and develops at a relatively old age [22].
About 80% of MERRF patients have A8344G mutation. The symptoms of this disease
are reported to be associated with mutations in complexes of NADH-CoQ reductase and
cytochrome C-oxidase (COX) [23]. CPEO is characterized by visual muscles’ myopathy
and ptosis, pigmentary degeneration of retina, and dysfunction of central nervous sys-
tem [24]. CPEO is one of the most common mtDNA diseases in adults and caused by
point mutation [25] or sporadic large-scale deletions [26,27]. Leigh syndrome is an infantile
sub-acute necrotizing encephalopathy. It is a progressive neurodegenerative disease [28].
In this syndrome, it is found that the complex I of ETC is missing [28]. Currently, there is
no cure for any mitochondrial disease, and most are treated symptomatically. A number of
studies also report that mtDNA mutations have been implicated in other diseases such as
deafness [29–31], diabetes mellitus [29], Alzheimer’s disease [31], Parkinson’s disease [32],
hypertension [33], prostate cancer [34], and exercise intolerance (due to a mutation in the
cytochrome b gene) [35]. Figure 1 lists the mtDNA mutations that cause various diseases,
as well as mutations that affect longevity or radioresistance [36–47].
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Figure 1. Mitochondrial DNA (mtDNA) mutations that cause various diseases, as well as mtDNA mutations that affect
longevity or radioresistance. Centenarian: a person over 100 years old; MELAS: mitochondrial myopathy, encephalopathy,
lactic acidosis, and stroke-like episodes; CPEO: chronic progressive external ophthalmoplegia; DM: diabetes mellitus;
LHON: Leber’s hereditary optic neuropathy; AD/PD: Alzheimer’s and Parkinson’s diseases; MERRF: myoclonic epilepsy
and ragged red fibers; LS: Leigh syndrome; NARP: neuropathy, ataxia, and retinitis pigmentosa; RS: radiosensitive; RR:
radioresistance; MM: mitochondrial myopathies; EXIT: exercise intolerance.

Several studies have reported that mtDNA mutations play various roles in aging [48–50].
Furthermore, it has been shown that various individual mtDNA mutations are present in
centenarians [45–47]. For example, A5178C mutation, which was found in centenarians,
changes the 237th amino acid of ND2 from Leucine to Methionine. Methionine residue in
the protein has been reported to have a protective effect on mitochondria against oxidative
damage and therefore this mutation is suggested to contribute the longevity at least in part [51].
A5178C mutation has also been reported to protect from myocardial infarction because of the
anti-oxidative effect [51]. Moreover, it has been found that there is a mutation (referred to as
the “common deletion”) that harbors a 4977 base pair deletion of mtDNA in the D-loop and
this deletion increases with age [52]. This deletion has also been implicated in the prognosis of
breast cancer [53].

A mtDNA mutation (G11778A) has been reported to be implicated in radioresis-
tance [42]. The G11778A mutation is able to repair double strand breaks and leads to
short term radiation survival [42]. On the other hand, T8993G mutation has been reported
to show radiosensitivity. This mutation is located in the ATP6 gene and decreases ATP
synthase, which produce ATP. This mutation has been reported to increase mitochondrial
ROS production [44] and show radiosensitivity [54].

1.2. mtDNA Copy Number and Its Roles in Disease, Longevity, and Treatment Resistance

There are multiple copies of mtDNA in mitochondria. Of note, aged populations
have a lower mtDNA copy number in blood [55,56] and exhibit mtDNA heteroplasmy
(the presence of more than one type of organelle genome) [57,58]. These results show
that mtDNA quantity and quality decrease with age. On the other hand, in the Amami
region, which is one of the highest proportions of centenarians, it has been reported that
the mtDNA copy number from blood of three groups (under 70, 70–90, over 90 years old)
does not decrease with age [59]. In addition, the mtDNA mutation rate did not increase
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with age. These results indicate that mtDNA quality control plays an important role in
longevity.

There are several reports investigating the relationship between mtDNA copy number
and cancer. It has been reported that an increase in mtDNA copy number promotes
colorectal cancer progression [60]. Additionally, it has been reported that an increase in
mtDNA copy number was a risk in breast cancer, pancreatic tumor, lung cancer, lymphomas
and skin cancer [61–66]. On the other hand, it has been reported that an increase in mtDNA
copy number was protective in cancer [67]. In addition, according to findings from the
Cancer Genome Atlas project, some cancers have less mtDNA content compared with
normal tissue near the tumor [68]. Furthermore, in colorectal cancer, the risk of carcinoma
development is associated with lower amount of mtDNA [69]. King et al. [70] established
cultured cell lines, which are referred to as “ρ0 cells” that lack mtDNA. It is noteworthy
that ρ0 cells show different behaviors compared to their parental cells. For example, ρ0 cells
from SK-Hep1 and SH-SY 5Y cells show resistance to oxidative stress [71,72]. In contrast,
ρ0 cells from yeast and teratocarcinoma cells show sensitivity to oxidative stress [73,74].
We previously showed that ρ0 cells are more sensitive to hydrogen peroxide (H2O2), which
is a well-characterized ROS [75]. These findings indicate that there are relationships
among mtDNA aging, cancer progression and treatment resistance. However, there is
a discrepancy in the relationship between mtDNA depletion and oxidative tolerance.
Therefore, we think it is very important to clarify this relationship and to investigate the
need for functional mitochondria in cancer cells.

1.3. ATP Synthesis, ROS Production, and Mitochondrial Membrane Potential (∆Ψm) in Cancer
and Cell Death

Energy production is the main function of mitochondria. Mitochondria produce
ATP by OXPHOS. The OXPHOS system is composed of the ETC and ATP synthase. The
ETC is composed of complexes I, II, III and IV. ETC transports electrons from complex
I to complex IV. During electron transport, a proton gradient is formed over the inner
mitochondrial membrane and protons were transported into the mitochondria matrix
via ATP synthase. Before the ETC, glucose is metabolized to pyruvate by the glycolysis
in the cytosol. Pyruvate then enters into mitochondria by pyruvate dehydrogenase and
resulting in mitochondrial acetyl-CoA, nicotinamide adenine nucleotide (NADH)+H, and
CO2. Acetyl-CoA then enters the tricarboxylic acid (TCA) cycle, which generates further
NADH+H. These NADH+H and FADH2 from beta-oxidation give an electron to NADH
dehydrogenase in complex I and proceed ETC. The ETC system is prone to electron leakage,
which generates ROS, i.e., superoxide [76] and H2O2 [77]. This leakage also induces lipid
peroxidation in mitochondrial membranes, which alters the ∆Ψm [78,79].

It has been reported that cancer cells produce ATP via glycolysis rather than OXPHOS
even under aerobic conditions [80,81], which leads to low ∆Ψm, resulting in resistance
to cell death [82]. It has been proven that ∆Ψm is involved in cell death [83]. When the
mitochondrial membrane permeable transition pore (mPTP) is opened by a stimulus such
as stress, ions and small molecules pass through the membrane and the ∆Ψm disappears.

2. Mitochondria Transplantation (mtTP) as a Novel Therapeutic Strategy

It has been shown that mitochondria can be transferred both artificially and under nor-
mal physiological state. We can transfer mitochondria as a “cybrid” [70] or treated isolated
mitochondria directly into the cells or tissues [84,85]. We can also transfer mitochondria
by co-culture cells as a normal physiological state [86]. Mitochondria transfer from one
cell to another cell occurs especially when the mitochondria are injured [87]. Therefore,
the mitochondrial transplantation from healthy cells to abnormal cells is thought to be a
novel and attractive therapeutic concept. It has been reported that mitochondria and/or
organelles transfer between cells through tunneling nanotubes [88]. After the report, re-
placement of damaged mitochondria with healthy mitochondria has been developed in
order to overcome mitochondrial diseases and mitochondria dysfunctions [89–97]. It has
been shown that mtTP rescues ischemia reperfusion-induced damage and protects the
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brain from apoptosis [93]. Current clinical and preclinical studies utilizing mtTP have been
conducted or are in progress for the treatment of heart ischemia, brain ischemia, sepsis,
cancer, acute kidney injury, and theoretically for any disorders in which mitochondria are
damaged and disrupted [85,93,98,99].

One of the examples of mtTP is mitochondria donation between eggs in fertility
treatment. This is a method used in in vitro fertilization called “pronuclear transfer”. This
procedure uses a donor egg that has healthy mitochondria. The fertilized donor eggs
were enucleated and the nucleus from the mother’s egg, which is also fertilized, was
transplanted. This provides the fertilized egg with healthy mitochondria and nuclear DNA
from the parent. The embryo is then returned to the mother’s uterus and a healthy baby is
born. The United Kingdom passed the first legislation in 2012 to allow the use of mtTP
technology on the eggs and fertilized eggs of patients with mitochondrial diseases [100]. In
addition, children who have undergone mtTP have already been born [101].

We have demonstrated that mitochondria from a non-cancer cell line can be trans-
planted into cancer cell lines that lack mtDNA (ρ0 cells) [94]. This mitochondrial trans-
plantation has been checked using MitoTrackerTM, which can stain mitochondria, and
confirmed that the healthy stained mitochondria from fibroblast cells have certainly trans-
planted into ρ0 cells. Recently, in a clinical trial, it has been shown that mtTP leads to cardio
protection [102]. Moreover, in the breast cancer cell line MCF-7, mtTP induces a decrease
in mitochondrial ROS and superoxides via stimulating both superoxide dismutase 2 and
catalase expression. Furthermore, mtTP inhibits MCF-7 cell proliferation, reduces cellular
oxidative stress, and suppresses drug resistance [103]. It has been reported that mtTP ρ0

cells have decreased intracellular Fe2+ levels and downregulation of aquaporins. Since
aquaporins regulate H2O2 permeability, these cells exhibit H2O2 resistance compared with
the non-mtTP ρ0 cells [96]. Thus, mtTP may enhance mitochondrial function that will allow
for the rescue of cells and restoration of normal function. Taken together, these results
indicate that mtTP may be an upcoming effective therapeutic option. Therefore, mtTP is a
very promising technique, which may be applicable for the treatment of many diseases
including cancer. However, mtTP is only in the beginning stages of development, so further
investigation will be needed to address various technical and ethical issues. Table 1 shows
the preclinical and clinical studies about mitochondrial transplantation.

Table 1. Preclinical and clinical studies about mitochondrial transplantation.

Donor Recipient Disease Result Reference

Rectus Abdominis Heart Heart ischemia
reperfusion

Cardiac function
improved [85,98]

Granular cells Oocyte Infertility Normal babies were born [101]
Astrocytes Neuron Ischemic damage Recover ATP production [104]

HeLa cells (cervical
cancer cell line) AD model mice Alzheimer disease Cognitive defect and

gliosis were ameliorated [105]

Cybrids from PC-12 cells
and human osteosarcoma Brain 6-OHDA induced PD

model

Improve motor function
and mitochondrial

function
[106]

BHK-21 cell (kidney cell
line) Sciatic nerve Sciatic nerve crush Injured sciatic nerve

improved [107]

Oocyte cytoplasm Oocyte Infertility Increase pregnancy [108]

Mesenchymal stem cells Brain Rat brain ischemia
reperfusion

Protect from apoptosis
Restores motor function [94]

WI-38 (fibroblast cell line) ρ0 cells (HeLa, SAS) mtDNA deficient
Prohibitin 2 enhancement

Survive without
pyruvate and uridine

[97]

MLO-Y4 cell (osteocyte
cell line) ρ0 cells (MLO-Y4) mtDNA deficient Increase ATP production [109]
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3. Involvement of Mitochondrial Dysfunction in Treatment-Resistant Cancer Cells

In order to investigate the molecular mechanism(s) of radioresistance in cancer cells,
we established radioresistant cell lines by step-wise fractionated X-ray exposure [110–113].
In this procedure, the cells are exposed to X-rays (2 Gy/day) for at least a month, which
induces radiation resistance. The established cells were referred to as “clinically relevant
radioresistant (CRR)” cells [110]. The morphology of the CRR cells was different from
their parental cells and they appeared to be more tightly bound to each other than their
parental cells (Figure 2). Moreover, CRR cells exhibit low levels of DNA double strand
breaks after ionizing radiation (IR) exposure [110]. In addition, the CRR cells are not only
IR resistant but also H2O2 resistant despite low catalase enzyme activity. Interestingly,
the expression of other antioxidative enzyme genes does not seem to be upregulated in
CRR cells [114]. CRR cells also exhibit lipid peroxidation resistance upon H2O2 treatment.
Lipid peroxidation normally leads to cell death and this lipid peroxidation resistance
was due to a decrease in the expression level of lipoxygenase (ALOX). Administration of
oxidized lipids to cancer cells increases cell death and an inhibitor of ALOX decreases lipid
peroxidation [114]. Moreover, it has been reported that ALOX targets mitochondria under
oxidative stress. For example, when ALOX was administrated into isolated mitochondria,
cytochrome c release and ROS generation were observed [115]. Furthermore, it has been
reported that ALOX expression was enhanced in CRR cells, and overexpression of ALOX12
enhances ROS generation and amount of HNE, which is one of the lipid peroxidation
by-products [116]. These results indicate that the CRR cells inhibit ferroptosis and show
resistance from oxidative stress via decreasing mitochondrial function. The characteristics
of CRR cells known to date are summarized in Table 2. These results show that plasma
membrane status and lipid peroxidation enzyme activity are very important in oxidative
stress resistance.

Table 2. Characteristics of clinically relevant radioresistant (CRR) cells.

CRR Characteristics References

Morphology Tight binding This review, [116]
Irradiation Resistant [111,117]

H2O2 Resistant [114]
Docetaxel Resistant [118]
DNA DSB Low [112]

∆Ψm Low [118]
Superoxide Low [114]

Hydroxyl radical Low [114]
Lipid peroxidation Low [114]

mtDNA copy number Low [114]
ATP production Low [114]

Fe2+ amount Low [119]
AQP8 gene expression Low [114]
ALOX gene expression Low [114]
GBP1 gene expression High [120]
miR-7-5p expression High [119]
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Figure 2. Morphology of CRR cells, ρ0 cells, ρ0 cells harboring transferred mitochondria, and parental cells. (A): HeLa
parent cells, (B): HeLa CRR cells, (C): HeLa ρ0 cells, (D): HeLa ρ0 Mito cells, (E): SAS parent cells, (F): SAS CRR cells, (G):
SAS ρ0 cells, (H): SAS ρ0 Mito cells.

There are additional CRR cell characteristics that may contribute to their treatment
resistant phenotype. For example, CRR cells have both low ∆Ψm and superoxide pro-
duction [118]. Furthermore, CRR cells are resistant not only to IR but also to docetaxel,
which can increase the level of mitochondrial ROS production [118]. A DNA array experi-
ment showed that CRR cells express higher levels of guanine nucleotide-binding protein 1
(GBP1) compared to parental cells and when GBP1 is knocked down by siRNA, CRR cells
lose their radioresistance [120]. Recently, it has been reported that knockdown of GBP1
results in impaired mitochondrial respiratory function [121]. Treatment with everolimus,
an mTOR inhibitor, abolishes the IR resistance properties of CRR cells [110]. In addi-
tion, the autophagy inducer rapamycin increases the radiosensitivity of CRR cells and
the autophagy inhibitor 3-methyladenine induces radioresistance in parental cells [122].
Furthermore, an mTOR inhibitor affects mitochondria dynamics [123]. These results show
strong relationships between radioresistance, autophagy, and mitochondria. There is also
a correlation between radioresistance and mtDNA copy number. For example, mtDNA
copy number was decreased in CRR cells compared to parental cells [112]. Furthermore,
CRR cells had low ATP production, low ROS levels, low ∆Ψm, and low aquaporin 8
gene expression, of which the latter is expressed in both the plasma and mitochondrial
membranes [113,114,124]. MicroRNA array analysis revealed that CRR cells had higher
miR-7-5p expression levels compared to parental cells [119]. Candidate target genes of
miR-7-5p are summarized in Table 3. One of the target genes is SLC25A37 (mitoferrin),
an iron transporter in mitochondria. When this gene was knocked down by siRNA, ra-
dioresistance was observed in parental cells [119]. Moreover, mitochondrial Fe2+ levels
were significantly decreased in CRR cells [119]. Mitoferrin is a mitochondrial iron im-
porter that synthesizes mitochondrial heme and iron–sulfur clusters. These results suggest
that mitoferrin have an important role in CRR cell characteristics. Recently, inhibition
of mir-7-5p decreased intracellular and mitochondrial ROS, enhanced JC-1 signal, which
is an indicator of ∆Ψm, downregulated the ferritin gene expression, and enhanced the
ALOX12 gene expression [116]. In contrast, ρ0 cells show high Fe2+ amount, high lipid
peroxidation, and low ALOX expression. These factors are different (opposite) from CRR
cells and ρ0 cells considered to be sensitive to the oxidative stress. Interestingly, CRR cells
lose their radioresistance when irradiation is terminated, and the cells are cultured for more
than six months [119]. This result strongly suggests that this phenotype is reversible and
radioresistance induced by irradiation also has the potential for reversibility. Therefore,
further investigation of CRR cells is very important to eradicate cancer. Recently, it has
been reported that an Italian group has established a cell line in rhabdomyosarcoma, also
named clinically relevant radioresistant cells [125]. They establish these cells by irradiating
6 Gy × 6 times not 2 Gy/day, but show radioresistance. These cells have been reported to
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produce less mitochondrial superoxide. Taken together, these data show that mitochondria
play key roles in cancer therapy and resistance to treatment.

Table 3. miR-7-5p target genes.

Localization Gene Name

Plasma membrane
ATP2B2 FLRT2 SEMA4C

SEAMA6D TMEM65 VSTM4

Cytoplasm AKT3 MAPK4 -

Mitochondria
CRLS1 NDFUA4 PTPMT1

SLC25A15 SLC25A16 SLC25A37

TIMM50 TMEM65 VDAC1

ER SERP1 - -

Lysosome BLOC1S4 - -

Golgi apparatus GLG1 GOLGB1 -

ATP2B2: ATPase plasma membrane Ca2+ transporting 2; FLRT2: Fibronectin Leucine Rich Transmembrane
Protein 2; SEMA4C: Semaphorin 4C; SEAMA6D: Semaphorin 6D; TMEM65: Transmembrane Protein 65; VSTM4:
V-Set And Transmembrane Domain Containing 4; AKT3: AKT Serine/Threonine Kinase 3; MAPK4: Mitogen-
Activated Protein Kinase 4; CRLS1: Cardiolipin Synthase 1; NDFUA4: NADH dehydrogenase (ubiquinone) 1
Alpha subcomplex subunit 4; PTPMT1: Protein Tyrosine Phosphatase Mitochondrial 1; SLC25A15: Mitochondrial
ornithine transporter 1; SLC25A16: Graves disease carrier protein; SLC25A37: Mitoferrin-1; TIMM50: Translocase
Of Inner Mitochondrial Membrane 50; TMEM65: Transmembrane protein 65; VDAC1: Voltage-dependent anion-
selective channel protein 1; SERP1: Stress Associated Endoplasmic Reticulum Protein 1; BLOC1S4: Biogenesis Of
Lysosomal Organelles Complex 1 Subunit 4; GLG1: Golgi Glycoprotein 1; GOLGB1: Golgin B1.

4. Conclusions and Future Perspectives

mtDNA mutations and mtDNA copy number are important not only for health,
mitochondrial diseases, and aging but also for cancer radioresistance. Other mitochondrial
parameters such as ATP production, ∆Ψm, and ROS production are also involved in
radioresistance. mtTP is now ready for clinical evaluation and this technology may be a
promising therapeutic strategy for a variety of diseases with mitochondrial dysfunctions
such as mitochondria diseases, myocardial infarction, acute kidney injury, aging, and
cancer. To apply this technology, further investigation addressing various ethical and
technical issues will be required. Additionally, a better understanding of the underlying
mechanism of cancer cell resistance particularly clarifying the role of mitochondria in
this process would lead to the development of more effective therapeutic strategies for
cancer. Overall, in cancer cells it may be possible to fine-tune mitochondria function so that
radioresistance might be overcome (summary in Figure 3). However, further investigation
including animal studies and clinical trials are required in order to determine if altering
mitochondrial function can confer radiosensitivity to cancer cells.
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