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Abstract

The levels of voltage-gated and synaptic currents in the same neuron type can vary substantially across indi-
viduals. Yet, the phase relationships between neurons in oscillatory circuits are often maintained, even in the
face of varying oscillation frequencies. We examined whether synaptic and intrinsic currents are matched to
maintain constant activity phases across preparations, using the lateral pyloric (LP) neuron of the stomatogas-
tric ganglion (STG) of the crab, Cancer borealis. LP produces stable oscillatory bursts on release from inhibi-
tion, with an onset phase that is independent of oscillation frequency. We quantified the parameters that
define the shape of the synaptic current inputs across preparations and found no linear correlations with volt-
age-gated currents. However, several synaptic parameters were correlated with oscillation period and burst
onset phase, suggesting they may play a role in phase maintenance. We used dynamic clamp to apply artifi-
cial synaptic inputs and found that those synaptic parameters correlated with phase and period were ineffec-
tive in influencing burst onset. Instead, parameters that showed the least variability across preparations had
the greatest influence. Thus, parameters that influence circuit phasing are constrained across individuals,
while those that have little effect simply co-vary with phase and frequency.
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Significance Statement

Across individuals, some attributes of circuit output are similar, yet others vary considerably. This was first
demonstrated in circuits where bursting neurons show relatively stable activity phases that are independent
of variations in cycle frequency, despite substantial variability in ionic currents. We show here that some at-
tributes of synaptic current trajectory covary with cycle period or phase but do not compensate for variabili-
ty in other currents. Importantly, activity phase is insensitive to experimental variation of the attributes it is
most correlated with, but very sensitive to variations of those that are tightly constrained. Therefore, phase
similarity is not because of compensatory regulation of intrinsic or synaptic currents but achieved through
tight regulation of synaptic attributes that influence phase.

Introduction
Sensory representations and motor outputs are charac-

terized by the relative timing between different circuit neu-
rons, particularly during oscillatory activity (Ainsworth et
al., 2012). Distinct phases of activity within each cycle are

found both during oscillations associated with cognition
and various behavioral states (Hasselmo et al., 2002;
Hájos et al., 2004; Somogyi and Klausberger, 2005;
Buzsáki and Wang, 2012; Wilson et al., 2015; Buzsáki and
Tingley, 2018; Dragoi, 2020), and during rhythmic motor
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activity, where they underlie the sequential activation of
different groups of muscles (Vidal-Gadea et al., 2011;
Bucher et al., 2015; Grillner and El Manira, 2015, 2020;
Katz, 2016; Kiehn, 2016; Bidaye et al., 2018). The relative
timing (phase) of a neuron’s activity within each oscillation
cycle is dependent on an interplay of intrinsic membrane
currents and total cycle-to-cycle synaptic input (Harris-
Warrick, 2002; Oren et al., 2006; Marder, 2011; McDonnell
and Graham, 2017; Martinez et al., 2019b). There are two
confounding aspects of this interplay. First, in many oscilla-
tory systems, phase is maintained over a range of frequen-
cies, i.e., intrinsic and synaptic properties have to ensure that
absolute timing of responses changes proportionally to the
speed of rhythmic circuit activity (Grillner, 2006; Mullins et al.,
2011; Zhang et al., 2014; Le Gal et al., 2017; Martinez et al.,
2019b). Second, phase can be very similar across individual
animals despite substantial variability in the individual ionic
and synaptic currents (Bucher et al., 2005; Marder and
Goaillard, 2006; Calabrese et al., 2011, 2016; Marder, 2011;
Roffman et al., 2012; Golowasch, 2014; Hamood and
Marder, 2014; Marder et al., 2014a).
The phenomenon that circuit activity is maintained de-

spite substantial variability in underlying conductances
has been explored most thoroughly in invertebrate central
pattern generators, including those of the crustacean sto-
matogastric ganglion (STG). In these circuits, the timing of
neural activity is critically dependent on voltage-gated ion
channels (Harris-Warrick et al., 1995a,b; Kloppenburg et
al., 1999). However, such voltage-gated conductances
and the associated ion channel expression show substan-
tial interindividual variability (Liu et al., 1998; Golowasch
et al., 2002; Marder and Goaillard, 2006; Schulz et al.,
2006; Marder, 2011; Hamood and Marder, 2014; Marder
et al., 2014a), raising the question how activity can be so
similar across preparations. A possible explanation is
suggested by the finding that voltage-gated conductan-
ces do not vary independently, but in a cell type-specific
correlated manner (Khorkova and Golowasch, 2007;
Schulz et al., 2007; Ransdell et al., 2012; Temporal et al.,
2012; Tran et al., 2019). Theoretical work suggests that
homeostatic, compensatory tuning explains correlation of
expression levels of different ion channels (Prinz et al.,
2004b; O’Leary et al., 2013, 2014; Franci et al., 2020), and
there is some experimental evidence that co-regulation of
voltage-gated conductances can have compensatory
function to preserve circuit activity (MacLean et al., 2003,
2005; Ransdell et al., 2012, 2013; Zhao and Golowasch,
2012; Santin and Schulz, 2019).

Synaptic currents also vary substantially across individ-
uals and their magnitude is correlated with relative timing
of the burst onset of the postsynaptic neuron (Goaillard et
al., 2009). In theoretical work, the magnitude of synaptic
currents has been varied and tuned alongside voltage-
gated conductances to show which combinations and
possible mechanisms give rise to similar activity (Prinz et
al., 2004b; O’Leary et al., 2014), and it has been sug-
gested that the relative synaptic strengths must be differ-
ent in individual animals to produce observed activity
phases (Günay et al., 2019). However, it is unknown
whether synaptic currents co-vary with individual voltage-
gated currents in a correlated manner to compensate for
variability in intrinsic neuronal excitability. Furthermore,
the effect of synaptic input on rhythmic patterns is not just
dependent on synaptic strength, but also on timing, dura-
tion, and details of the temporal trajectory of the synaptic
current (Prinz et al., 2003; Martinez et al., 2019b).
We examine how synaptic inputs contribute to phase

constancy under normal biological conditions in the face
of variability across individuals. For this, we use the identi-
fied lateral pyloric (LP) neuron in the STG, a follower neu-
ron of the triphasic oscillatory pyloric circuit, which has a
single copy in each animal. We examine the variability of
synaptic input to the LP neuron across animals and com-
pare that with its activity phase. We examine correlations
among synaptic parameters and between these parame-
ters and intrinsic voltage-gated currents of the LP neuron.
We then use the dynamic clamp technique to explore how
synaptic parameters influence the activity phase of the LP
neuron.

Materials and Methods
Experimental preparation
Adult male crabs (Cancer borealis) were acquired from

local distributors and maintained in aquaria filled with
chilled (12–13°C) artificial sea water until use. Crabs were
anesthetized before dissection by placing them in ice for
at least 20min. The stomatogastric nervous system in-
cluding the STG, esophageal ganglion, the pair of com-
missural ganglia, and the motor nerves were dissected
from the stomach and pinned to a saline filled, Sylgard-
coated (Dow Corning) Petri dish (schematic in Fig. 1A).
The STG was desheathed, exposing the somata of the
neurons for intracellular impalement. Preparations were
superfused with chilled (10–13°C) physiological saline
containing: 11 mM KCl, 440 mM NaCl, 13 mM CaCl2 ·
2H2O, 26 mM MgCl2 · 6H2O, 11.2 mM Tris base, and 5.1
mM maleic acid with a pH of 7.4.

Extracellular recordings of rhythmic patterns
Extracellular recordings from identified motor nerves

were performed using pairs of stainless steel electrodes,
placed inside and outside of a petroleum jelly well created
to electrically isolate a small section of the nerve, and am-
plified using a differential AC amplifier (AM Systems,
model 1700). All traces were digitized using a Digidata
1332 data acquisition board and recorded in pClamp 10
software (both Molecular Devices).
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The activity of three neuron types was used to identify
the triphasic pyloric pattern (Marder and Bucher, 2007).
The two pyloric dilator (PD) neurons belong to the pyloric
pacemaker group of neurons, and we therefore used their
burst onset as the reference time that defined each cycle
of activity. The pyloric constrictor neurons include the

single LP neuron and multiple pyloric (PY) neurons. The
constrictor neurons are follower neurons that receive
strong inhibition from the pacemaker group and rebound
from this inhibition to produce bursting activity at different
phases. Spontaneous rhythmic pyloric activity was re-
corded from the lateral ventricular nerve (lvn), the PD
nerve (pdn), and occasionally also from the pyloric nerve
(pyn; Fig. 1A, nomenclature after Maynard and Dando,
1974). The lvn contains the axons of all three neurons
types, with LP action potentials easily identifiable by their
large amplitude. The pdn contains only the axons of the
PD neurons, and the pyn only those of the PY neurons.

Intracellular recordings and voltage clamp
For Intracellular impalement of the LP neuron soma,

glass microelectrodes were prepared using the Flaming-
Brown micropipette puller (P97; Sutter Instruments) and
filled with 0.6 M K2SO4 and 20 mM KCl, yielding electrode
resistances of 10–30 MV. Individual pyloric neurons were
sequentially impaled, and the LP neuron was identified by
its activity pattern and correspondence of action poten-
tials between the soma recording and the extracellular
recording of the lvn (Fig. 1A). Recordings were amplified
using Axoclamp 2B and 900A amplifiers (Molecular Devices)
and recorded alongside the extracellular signals in pClamp.
For current measurements, the LP soma was simultane-
ously impaled with two electrodes, and membrane potential
was controlled in two electrode voltage clampmode.

Measurements of voltage-gated currents
In LP and other pyloric neurons, three intrinsic voltage-

gated currents are relatively straightforward to measure in
the intact circuit, without pharmacological manipulation
(Zhao and Golowasch, 2012): the high-threshold K1 cur-
rent (IHTK), the fast transient K1 current (IA), and the hyper-
polarization-activated inward current (IH).
IHTK, consisting of the delayed rectifier and calcium-de-

pendent K1 currents (Khorkova and Golowasch, 2007),
was measured from the responses to voltage steps
following a 270-ms prestep to �40mV to inactivate IA.
Voltage steps (750ms) were delivered from �60 to
130mV, in increments of 10mV. In addition to subtract-
ing the baseline current at �40mV, the current recorded
from the smallest voltage step was used to estimate the
leak current, scaled proportionally for all voltage steps,
and subtracted offline. The persistent component (IHTKp)
was measured by taking an average of current recorded
during the last 70ms of a voltage step (90–99% of step
duration). The transient component (IHTKt) was measured
by taking the current peak, recorded during the first
150ms of the voltage step.
IA was obtained by recording the total K1 current (IKtot)

and digitally subtracting the previously measured IHTK.
The neuron was held at �80mV to remove inactivation.
IKtot was then activated using voltage steps from �60 to
140 mV in 10-mV increments. After subtracting IHTK from
IKtot, the difference current was baseline subtracted.
Because these currents were recorded without blocking
sodium currents, effects of spikes generated in the

A

B

C

D

Figure 1. Pyloric activity phases are variable but not correlated
with the cycle period. A, Left, Schematic diagram shows the
layout of the STNS in vitro and the locations of intracellular
(electrode) and extracellular (circles) recordings. OG: esopha-
geal ganglion, CoG: commissural ganglion, STG: stomatogas-
tric ganglion, lvn: the lateral ventricular nerve, pdn: PD nerve,
pyn: pyloric nerve. Middle, Schematic diagram shows a simpli-
fied circuit diagram of the neurons recorded. Ball-and-stick
symbols are inhibitory chemical synapses. Resistor denotes
electrical coupling. Right, Simultaneous extracellular and intra-
cellular recordings show the regular triphasic oscillations of the
pyloric circuit. Shown are bursting activity of pacemaker neuron
PD and follower neurons LP and PY. Cycle period (P) and laten-
cies of the onset and end of each burst (arrows) are calculated
from the onset of the PD burst. Extracellular recordings are
from the lvn (showing the LP, PD and PY spikes), the pdn
(showing the PD spikes), and pyn [showing the PY and the lat-
eral posterior gastric (LPG) neuron spikes]. Intracellular record-
ing from the LP neuron shows bursting activity (yellow) and
slow wave oscillations, as well as timing of IPSPs from the PY
(light blue) and PD (pink) neurons. B, Burst latencies of the PD
and LP neuron in reference to PD burst onset, as marked in
panel A, shown versus P. Quartile plot shows the distribution of
P, with the dashed line indicating the mean value. Lines indicate
best linear fit, showing that latencies grow proportionally with P.
C, Phase values (w = latency/P) shown versus P. Histograms
show distribution of w values. Linear fits indicate a lack of cor-
relation between all w values and P. D, CV of P and w values
shown to compare variability of the values within preparations
(quartile plots) to their variability across preparations (circles).
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electrotonically relatively distant axon were seen in the IA
traces (Fig. 2A; see also Zhao and Golowasch, 2012).
Before measuring the peak amplitude of the currents, we
used a robust smoothing function to remove the action
potential-mediated transients. The amplitude of IA was
measured as the maximum during the first 150ms of the
voltage step.
IHTKp, IHTKt, and IA were converted into conductances

using the voltage-current relationships and an estimated
K1 reversal potential (EK) of �85mV. We then fit a stand-
ard sigmoid equation to a plot of conductance over mem-
brane potential:

IX ¼ gXðV � EKÞ
gX ¼ gmax

1þ exp
�
� ðV � V1=2Þ=k

�
;

(X = HTKp, HTKt, or A). The sigmoid fits yielded values
for maximal conductance (gmax), voltage of half- activation
(V1/2) and slope factor (k).
IH was measured by holding LP at �40mV for.1.5 s

and then stepping to more negative potentials between

�60 and �120mV for 5 s, in increments of 10mV.
Because of the small and variable size of IH in the LP neu-
ron, it is difficult to measure an accurate activation curve
or reversal potential at physiological temperatures, partic-
ularly because rhythmic synaptic currents occur at similar
amplitudes. Therefore, we only used the response to the
step to �120mV to estimate IH. The current was calcu-
lated by taking the difference between the current at the
beginning and just before the end of the voltage step. The
measured current was converted into conductance using
a reversal potential of �30mV (Buchholtz et al., 1992). In
two preparations, the LP neuron did not have any measur-
able IH.

Measurements of synaptic currents
Pyloric neurons receive mainly graded inhibitory synap-

tic input. Because LP is a follower neuron, pyloric oscilla-
tions continue while the LP neuron is voltage clamped,
thus allowing for measurement of the IPSCs (Martinez et
al., 2019b). LP was voltage clamped at a holding potential
of �50mV for at least 30 s. Relatively higher level of

A1

C D E

B

A2 A3

Figure 2. Parameters defining voltage-gated currents IHTK, IA, and IH show considerable variability. A, Example voltage clamp re-
cordings of high-threshold potassium currents [IHTK, A1; arrows indicate the transient (t) and persistent (p) components], the tran-
sient potassium A current (IA, A2) and the H current (IH, A3). Double-arrow in A3 indicates the measured amplitude of IH. B,
Schematic diagram of fits in each experiment to the IHTK and IA conductances (g, measured by dividing current by the driving force,
assuming EK = �80mV). Fits were used to calculate maximum conductance (gmax), half-activation voltage (V1/2), and activation
slope factor (k, measured from the slope of the dashed line). C, Maximal conductances of the transient and persistent components
of IHTK, IA, and IH across preparations. D, Half-activation voltage of the transient and persistent components of IHTK and of IA across
preparations. E, Activation slope factor of the transient and persistent components of IHTK and of IA across preparations. Among
these parameters, there were some pairwise correlations among the gmax values as well as the parameters V1/2 and k (see Extended
Data Fig. 2-1 for plots and Extended Data Fig. 2-2 for all p and R values).
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holding potential was used to allow the network to main-
tain its natural oscillation frequency with minimal interfer-
ence and to parameterize contributions of cell specific
synaptic inputs more precisely. The current was aver-
aged from the last 5 cycles measured, and a resulting
unitary waveform was extracted. This unitary waveform
was tagged at five distinct points, t0 to t4 (with the cycle
period P = t4 – t0), which were connected using a piece-
wise linear graph (Fig. 3). The IPSC can be defined as the
duration of this waveform from t1 to t4. The baseline of
the IPSC (I= 0) was defined as the IPSC onset value at
time t1. The IPSC waveform was normalized by P. Thus,
the IPSC waveform can be characterized fully using the
following parameters:

• Phase parameters:
1. DCLP: duty cycle of the LP burst preceding the

phases of synaptic input (= (t1 – t0)/P),
2. DCPY: duty cycle of the PY component of the IPSC

(= (t2 – t1)/P),
3. DCPD: duty cycle of the pacemaker component of

the IPSC (= (t4 – t2)/P),
4. u LP: peak phase of the synapse within the cycle,

relative to the onset of the LP burst (= (t3 – t0)/P),

5. u PD: peak phase of the synapse within the cycle,
relative to the onset of the PD burst (= (t3 – t2)/P),

6. Dpk: peak phase of the synapse within the IPSC
(= (t3 – t1)/(t4 – t1)).

• Amplitude parameters:
7. Itot: the maximum IPSC amplitude,
8. IPD: amplitude of the pacemaker component of the

IPSC,
9. IPY: amplitude of the PY component of the IPSC

(= Itot – IPD).
• Slope parameters:

10. mPY: rise slope of the PY component (= IPY/(t2 – t1)),
11. mPD: rise slope of the pacemaker component

(= IPD/(t3 – t2)),
12. mfall: decay rate of the IPSC (= Itot/(t4 – t3)).
Clearly, these parameters are not independent and

include redundant ones. We defined all parameters to
maintain the clarity of the biophysical interpretation of
the IPSC and the contributing network components.
However, for correlations between synaptic parameters
and between synaptic and intrinsic current parameters,
we defined the nonredundant subset, which consists of
the following five parameters:

A B1

B2

C1 C2 C3 C4

Figure 3. Parameters that define the synaptic input show considerable variability. A, Total current measured in the LP neuron volt-
age clamped at a holding potential of �50mV during the ongoing pyloric rhythm. The pyloric rhythm is recorded extracellularly (lvn),
indicating the timing of the LP, PY, and PD neuron bursts. LP action potentials escape the voltage clamp and can be seen in the
current and extracellular recordings (pale yellow). The portion of the current outside this range is because of synaptic input (down-
ward arrows) from the PY (light blue) and pacemaker (PD, pink) neurons. The gray curve is the current low-pass filtered (,20Hz).
B1, The synaptic waveform shape (gray curve) during a single cycle of oscillation is approximated by a piecewise-linear curve (black
curve), marked by five time points (t0–t4) denoting the borders of the colored regions in panel A. The time range of the IPSC and the
amplitudes of the synaptic currents because of the pacemaker neurons (Isyn-PD), because of the PY neurons (Isyn-PY), and the sum of
the two (Isyn-tot) are marked. B2, The piecewise-linear curve of B1 shown in phase (time/period). This normalized curve is used to de-
fine the parameters of synaptic input to the LP neuron. For definitions, please refer to the main text. Five primary parameters (in red)
are chosen for further analysis. C, The interindividual variability of different synaptic parameters, including current amplitudes (C1),
slopes (C2), peak phases (C3), and duty cycles (C4).
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DCPY;DCPD;Dpk;mPY; andmfall:

The other seven parameters can be calculated from
these values using simple geometry:

DCLP ¼ 1� ðDCPD þ DCPYÞ
u PD ¼ Dpk � ðDCPD þ DCPYÞ
u LP ¼ u PD þ DCLP ¼ ð1� DpkÞ � ðDCPD þ DCPYÞ
Itot ¼ mfall � P � ðu LP � 1Þ
IPD ¼ Itot � IPY ¼ mfall � P � ðu LP � 1Þ �mPY � DCPY � P
IPY ¼ mPY � P � DCPY

mPD ¼ IPD
u PD � P ¼ mfall � ðu LP � 1Þ �mPY � DCPY

Dpk � ðDCPD þ DCPYÞ � DCPY
:

Note that the synaptic conductance waveform was
taken to be identical to the synaptic current waveform
measured in voltage clamp, as synaptic current at a con-
stant holding potential simply scales with synaptic
conductance.

Dynamic clamp application of artificial synaptic input
current
Dynamic clamp was implemented using the NetClamp

software (Gotham Scientific) on a 64-bit Windows 7 PC
using an NI PCI-6070-E board (National Instruments). We
used dynamic clamp to inject artificial synaptic currents
(Isyn) into the synaptically isolated LP neuron (Prinz et al.,
2004a; Zhao et al., 2010; Chen et al., 2016; Golowasch et
al., 2017; Martinez et al., 2019b). In these experiments,
the preparations were superfused with saline containing
10�5

M picrotoxin (Sigma-Aldrich) to block the bulk of syn-
aptic input to the LP neuron (Martinez et al., 2019a).
The dynamic clamp injected current Isyn was defined as:

Isyn ¼ gsynðV � EsynÞ;
where gsyn is the synaptic conductance and Esyn is the
synaptic reversal potential (set to �80mV). gsyn was de-
fined as a unitary stereotypical piecewise-linear wave-
form, mimicking the experimentally measured synaptic
conductance. The unitary synaptic conductance wave-
forms were constructed using the following algorithm:

• Itot = 1.
• DCLP 1 DCPY 1 DCPD = 1.
• DCLP, DCPY, u PD and IPY were chosen from the values

between 0 and 1, in increments of 0.2.
• mPD .mPY

• DCLP 1 DCPY 1 u PD , 1.

These rules yielded a total of 80 waveforms, which in-
cluded a few duplicates. Each waveform was applied pe-
riodically with a cycle period of 1 s and a peak amplitude
of 0.5 mS. In each trial, the artificial synaptic input was ap-
plied for at least 30 s.
In these experiments, the bursting activity of the LP

neuron was quantified by measuring the latency of the
burst onset compared with the end of the conductance
waveform (t4 in Fig. 3). Note that this is different from the
burst latency measured for calculating the LP phase dur-
ing an ongoing pyloric rhythm (Fig. 1A, right panel), which

is measured with respect to the onset of the pacemaker
PD neuron bursts. However, our primary goal in these ex-
periments was to understand how changing the shape of
the synaptic input influenced the activity of the LP neuron.
The corresponding reference point in the dynamic clamp
experiments would have been the onset of the pacemaker
component of the synaptic input (t2 in Fig. 3). However,
had we measured latency with respect to t2, our calcula-
tion of latency would have given the appearance that it
changes with the waveforms, even if there was absolutely
no change in the LP neuron activity. This is because t2 is
quite different across the 80 waveforms. The end of the
conductance waveform is the only reference point that
accurately reports changes in the LP activity.

Data analysis
All analysis was performed using custom scripts

written in MATLAB (MathWorks). All linear correlations
were measured using MATLAB built-in function ‘corr,’
which computes Pearson’s linear correlation coeffi-
cient. Principal component analysis (PCA) was per-
formed using the MATLAB ‘pca’ function. Figures were
plotted in MATLAB and panels were assembled in
CorelDRAW (version 2020, Corel).
The activity phase (wLP on) of the LP neuron burst onset

is defined as the time interval between the onset of the
pacemaker PD neuron’s burst to the onset of the LP neu-
ron burst, normalized by the period (P) of that cycle, de-
fined as the time interval between the two consequent PD
neuron bursts (Fig. 1A). To examine the effect of changing
the synaptic waveform along each principal component
(using dynamic clamp) on wLP on, for each principal com-
ponent PCj (j = 1,...,5), we projected all 80 synaptic wave-
forms onto the plane defined by PCj and each PCk (k= j).
We then found all waveform pairs (say wn and wm) that fell
within 60.1 of each PCk value and were different by at
least 0.1 in PCj, and measured wLP on for each waveform.
(In this analysis, to exclude any effect of the duration of in-
hibition, we computed wLP on by calculating the latency as
the time-to-first-spike of the burst relative to the end of
dynamic clamp inhibition, and then divided this latency by
P.) We then calculated the sensitivity of the LP burst onset
latency (lat) for this pair of waveforms wn and wm as:

snm ¼ latðwnÞ � latðwmÞ
PCjðwnÞ � PCjðwmÞ;

[here, PCj(wn) is assumed to be . PCj(wm)]. We reported
the sensitivity of wLP on to PCj, while keeping PCk con-
stant, as the statistical distribution defined by snm values
in all preparations (200–500 data points, depending on j
and k). The overall sensitivity burst latency to PCj in each
preparation was calculated as the mean value of all snm
values when changing PCj, while keeping PCk constant,
for all k= j, in that preparation.
We also examined the sensitivity of latency to the onset of

the LP burst to changing the synaptic parameters, in our dy-
namic clamp experiments, along a predetermined fixed di-
rection (DC = DCPD 1 DCPY) as opposed to any other
direction in the parameter space. Because our parameter
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space is 5D (DCPY, DCPD, Dpk,mPY,mfall), this space can be
equivalently described by an orthonormal basis with one
unit vector in the direction of DC and four unit vectors or-
thogonal to DC and one another. Thus, the first basis vector
was the unit vector in the direction of DC. To choose the
other four basis vectors, we projected all synaptic wave-
forms into the four-dimensional hyperspace (DC\) perpen-
dicular to DC and performing a PCA to obtain the four PCs
that define the basis of the DC\ hyperspace. Note that
these four PCs are distinct from those described above.

Results
Variability of phase
The goal of this study was to identify mechanisms that

allow a follower pyloric neuron to maintain constant activ-
ity phase across preparations, despite considerable vari-
ability in cycle period, synaptic input, and voltage-gated
conductances. We chose the LP neuron to explore these
mechanisms, because it exists as a single copy and is
readily identifiable. The LP neuron does not have intrinsic
oscillatory activity but receives periodic inhibitory synap-
tic input from the pacemaker neurons AB and PD, and the
follower PY neurons. In each cycle, it rebounds from inhi-
bition to produce a burst of action potentials (Fig. 1A).
The triphasic pyloric activity pattern was continuously

present in all preparations, with the temporal sequence of
each PD burst being followed after some delay by the LP
burst, and then the PY burst (Fig. 1A). To quantify the vari-
ability in phase and its consistency across different cycle
periods (P), we measured the latencies of the LP neuron
burst onset (LPon) and termination (LPoff) across 28 prepa-
rations, from at least 30 s of pyloric activity in each. All la-
tencies were measured with respect to the burst onset
of the pacemaker group PD neurons. We also kept track
of the burst end phase (PDoff) of the PD neurons, to quan-
tify the degree to which the pacemakers maintain a con-
stant duty cycle (Abbott et al., 1991). We did not quantify
the PY neuron burst onset and end phases, because in C.
borealis, they are virtually identical to LPoff of the same
cycle, and PDon of the subsequent cycle (Goaillard et al.,
2009). First, we determined the mean values for latencies,
P, and phases (w = latency/P) in each preparation. Across
preparations, P ranged from 423 to 2038ms, with a mean
of 880ms (6368 SD). As reported previously (Bucher et
al., 2005; Goaillard et al., 2009), the latency values of
PDoff, LPon, and LPoff increased roughly proportionally
with P (Fig. 1B). Consequently, phases did not change
significantly with P (Fig. 1C).
It is noteworthy that a lack of correlation with P does

not mean that phases were completely invariant, as the
histograms in Figure 1C indicate. We compared the vari-
ability of mean phases and P across preparations with the
cycle-to-cycle variability observed across individual prep-
arations. Figure 1D shows box plots of coefficients of vari-
ation (CVs) within individual preparations, alongside the
single CV values calculated from the means across prepa-
rations. Variations in phase were in the same range within
and across preparations. In contrast, there was a much
larger variability of mean P across preparations than

within each preparation. These results confirm that
phases are under much tighter control across prepara-
tions than cycle period.

Interindividual variability of voltage-gated currents
and synaptic inputs
The maximal conductances (gmax) of voltage-gated

ionic (henceforth called intrinsic) currents in identified py-
loric neurons, including LP, show large variability across
animals (Marder and Goaillard, 2006; Schulz et al., 2006;
Goaillard et al., 2009; Marder, 2011; Golowasch, 2014;
Marder et al., 2014a). Variability of gmax is well correlated
with variability in transcript levels of the underlying ion
channel genes, and therefore serves as a good proxy for
variability of ion channel numbers (Schulz et al., 2006).
We measured intrinsic currents in LP for two reasons.

First, variability has previously only been determined for
gmax, and we wanted to also examine the variability of
voltage dependence. Second, we measured synaptic cur-
rents in the same preparations to establish whether there
was co-variation that could indicate compensatory regu-
lation of intrinsic and synaptic currents. We performed
these measurements of synaptic and intrinsic currents
during ongoing rhythmic pyloric activity, restricting our-
selves to the subset of intrinsic currents that under these
conditions can be measured without pharmacological
manipulation (Zhao and Golowasch, 2012). They included
the high-threshold voltage-gated K1 current (IHTK), the
transient K1 current (IA), and the hyperpolarization-acti-
vated inward current (IH; Fig. 2A). Currents were con-
verted to conductance values, and for K1 currents, the
activation curves in each individual preparation were fit
with a sigmoid to determine gmax, voltage of half activa-
tion (V1/2), and the slope factor (k; Fig. 2B). For IHTK, we
obtained these parameters for both the transient (IHTKt)
and the persistent (IHTKp) components.
Like previous reports (Schulz et al., 2006; Khorkova and

Golowasch, 2007), gmax values of IHTK, IA, and IH showed
large variability (Fig. 2C). In addition, we found that for
both IHTK and IA, the parameters V1/2 and k were also sub-
ject to large variability (Fig. 2D,E). We interpret this as
an indication that not only the number of channels, but
also their gating properties can vary substantially across
individuals. Additionally, among these parameters, there
were some pairwise correlations among the gmax values
as well as the parameters V1/2 and k (Extended Data Fig.
2-1 for plot and Extended Data Fig. 2-2 for p and R
values).
To examine variability of synaptic inputs across prepara-

tions, we recorded the LP neuron’s graded IPSCs in re-
sponse to PD and PY neuron input during ongoing pyloric
activity (Fig. 3A). The shape of the recorded IPSCs varied
considerably across preparations. We used 12 parameters
to quantify the IPSC characteristics (Fig. 3B; see Materials
and Methods). The distributions of these parameters
showed that the IPSC in the LP neuron varies greatly
across preparations (Fig. 3C).
The latency of the LP burst onset relative to the pace-

makers is shaped by the interaction between its intrinsic
voltage-gated ionic currents and the synaptic input that
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it receives. Notably, hyperpolarization during inhibition
de-inactivates IA and activates IH (Harris-Warrick et al.,
1995a,b). This plays an important role in controlling the tim-
ing of the burst onset, because IH increases the strength of
the rebound burst and advances its onset, while IA delays it
(MacLean et al., 2005). The activation levels of IH and IA in
each cycle depend on the strength, duration, and history of
the inhibition.
In addition, wLP on is sensitive to changes in both magni-

tude and temporal trajectory of synaptic inputs (Goaillard et
al., 2009; Martinez et al., 2019b). We hypothesized that the
synaptic inputs to the LP neuron may covary in a compen-
satory fashion with its intrinsic properties, thus resulting in a
relatively constrained activity phase across animals. We
therefore examined the extent to which the synaptic input
parameters may be coregulated with gmax of these ionic cur-
rents, as well as IHTK. We also tested for any correlations
of synaptic parameters with V1/2 and k values of the K1

currents. We did not find any significant pairwise linear
correlations between any of the synaptic and intrinsic cur-
rent parameters (Fig. 4; all p values in linear regression
analysis. 0.05;N=19).

The LP burst onset is influenced by synaptic
parameters
Our results suggest that the consistency of phase

across individuals and its independence of cycle period
do not simply arise from pairwise correlations between
synaptic and intrinsic parameters. We therefore asked
whether individual synaptic or intrinsic current parameters
are good candidates for playing a substantial role in con-
trolling phase. To this end, we made use of the variability
of mean P and the limited variability of mean wLP on across
individuals and performed correlational analyses. For syn-
aptic currents, we included the maximum IPSC amplitude
and the amplitude of the pacemaker IPSC, as these are

commonly used synaptic parameters. Otherwise, we re-
stricted the analysis to the nonredundant set of param-
eters. As described in Materials and Methods, the five
nonredundant parameters are the subset of measures
that are sufficient to describe synaptic current trajec-
tory and can theoretically vary independently of each
other.
First, we tested whether variability of current parame-

ters was correlated with P. We found that a subset of the
parameters describing the trajectory of synaptic currents,
but none of the intrinsic parameters, showed correlations
with P (Fig. 5). The IPSC slope parameters mPY and mfall

were strongly correlated with P. This means that the
slopes of the DCPD also showed a weak (negative) corre-
lation with P. Both these slopes are therefore shallower
for slower oscillations. The latter is somewhat surprising,
as we found a negative trend but no correlation between
wPD off and P in the pyloric pattern analysis shown in
Figure 1C. This difference could be because of the fact
that DCPD, as measured from the IPSC, includes an addi-
tional interval in which the synaptic current persists be-
yond the PD burst offset.
Next, we explored whether wLP on was correlated with

any of the current parameters (Fig. 6). Once again, we
found correlations with a subset of the parameters de-
scribing the trajectory of synaptic currents, but none with
intrinsic parameters. wLP on was weakly positively corre-
lated with mPY, and strongly negatively correlated with
Dpk. Interestingly, wLP on was correlated strongly with
both DCPD and DCPY, with opposite signs. This suggests
that synaptic inputs from both the pacemakers and the
PY neurons may influence wLP on, although the input from
the PY neurons is primarily responsible for the termina-
tion of the LP neuron burst, not its onset (Marder and
Bucher, 2007). In comparison with Figure 5, mPY and
DCPD were correlated with both wLP on and P, whereas

Figure 4. There are no pairwise linear correlations between any of the synaptic parameters and parameters of the voltage-gated
ionic currents. Data shown are from experiments in which every parameter was measured in a single preparation (N=19). The pa-
rameters are defined in Figures 2 and 3. Each dot represents an LP neuron from an individual animal.
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mfall was only correlated with P, and Dpk and DCPY only
with wLP on.

The influence of synaptic parameter variation on the
LP neuron’s burst onset
Given that our results revealed no correlations between

single intrinsic current parameters and wLP on, but correla-
tions between wLP on and several synaptic parameters,
we further explored which aspects of the overall synaptic
current trajectory were important. Because we found no
correlations between synaptic current amplitudes and
wLP on or P, we restricted the analysis to the nonredun-
dant parameters. As stated above, these five parameters
can theoretically be varied independently to change syn-
aptic current trajectory. However, this does not mean that
they actually varied independently in the measured exper-
imental data. Indeed, we found that most parameter pairs
were correlated, some strongly and others weakly (Fig.
7A). In particular, Dpk and DCPD were strongly correlated,
as was expected for parameters that quantify the contri-
bution of the pacemakers. However, mfall, which also

depends on the strength and the timing of the pacemaker
inputs, was not correlated with Dpk or DCPD. In contrast,
mfall was strongly correlated with mPY. This is somewhat
surprising, because mPY quantifies the rise of the PY to
LP synapse, whereas mfall is because of the decay of the
pacemaker to LP synapse.
Our correlational analysis indicates that multiple synap-

tic parameters co-vary across experiments. It is important
to note that these correlations do not indicate any inher-
ent dependency among any of these parameters, but
that these correlations arise because of (periodic) interac-
tions among the pyloric circuit neurons. Only circuit-level
interactions can, for example, relate characteristics of the
pacemaker to LP synapses to those of the PY to LP
synapse.
The correlation of multiple synaptic parameters with

wLP on (as seen in Fig. 6) indicates that these five parame-
ters in fact covary across preparations and therefore the
variation in synaptic shape are not because of five

Figure 5. A subset of the LP neuron synaptic, but not intrinsic,
parameters are correlated with the pyloric cycle period. The five
primary synaptic parameters, the amplitudes of the total and
pacemaker-component of the synaptic current, and the intrinsic
current parameters are compared with the pyloric cycle period
(P) across preparations. Three synaptic parameters, but no in-
trinsic parameter, covary with P. The synaptic parameters are
highlighted.

Figure 6. The LP neuron burst onset phase is correlated with
multiple synaptic, but not intrinsic, parameters. The LP burst
onset phase (wLP on) is compared with the five primary synaptic
parameters, the amplitudes of the total and pacemaker-compo-
nent of the synaptic current, and the intrinsic current parame-
ters across preparations. wLP on covaries with four synaptic
parameters, but not with intrinsic parameters. The synaptic pa-
rameters are highlighted.
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independent parameters, but a smaller combination of
these five. Thus, it is possible to simplify the correlational
analysis by determining which combination of parameters
explains the observed variability in wLP on. To reduce the
dimensionality of the IPSC parameter space, we per-
formed PCA. We found that 95% of the total variability of
IPSC parameters were explained by the first three PCs
(PC1: 55.2%; PC2: 22.8%; PC3: 16.5%). Figure 7B shows
all synaptic waveforms in the plane of the first two
PCs, as only PC1 and PC2 were significantly corre-
lated with wLP on (PC1: p, 0.001; PC2: p = 0.013; Fig.
7C). Interestingly, both PC1 and PC2 (and only these)
were also significantly correlated with P (PC1: p,
0.001; PC2: p =0.024; Fig. 7D).
To examine whether the coordinated variation of synap-

tic parameters in the direction of PC1 was sufficient to ex-
plain phase maintenance, we used the linear regression fit
equations of PC1 versus wLP on and PC1 versus P (Fig.
7C,D, left panels) to predict a linear relationship between
wLP on and P. In Figure 7E, we compare this prediction
(black line) with the data for LP on over P shown in Figure
1C, open circles. This comparison produced a coefficient
of determination of R2 = 0.10, which was comparable with
the linear fit obtained in Figure 1C (R2 = 0.16 for wLP on).
This indicates that variation of the synaptic conductance
trajectory with P along PC1 is sufficient to remove the cor-
relation between wLP on and P, thus predicting phase

maintenance across preparations. Additionally correcting
this prediction by adding the linear regression fit equa-
tions of PC2 (Fig. 7C,D, right panels) did not greatly
change this prediction (Fig. 7E, violet line, R2 = 0.08).
Our analysis of data obtained during spontaneous py-

loric rhythmic activity revealed combinations of synaptic
parameters whose coordinated variation could potentially
result in relatively constant wLP on across preparations,
despite variation in P. However, there are two caveats.
First, correlation may result from causation in some
cases, but not in others. A synaptic parameter (or a princi-
pal component, such as PC1) that is correlated with wLP

on may in fact causally influence wLP on. If so, the system
must adjust this parameter at different cycle periods to
produce phase maintenance. For example, this could ex-
plain why PC1 is correlated with both wLP on and P. In
contrast, a parameter may simply change with wLP on but
not influence it, in which case its change with P would not
contribute to phase maintenance. Similarly, a parameter
such as Dpk that is correlated with wLP on but not P may
also causally influence wLP on (Martinez et al., 2019b) and
would therefore be kept constant across animals to main-
tain phase. Second, causation may not necessarily reveal
itself as a correlation. In our data, wLP on (and all other py-
loric phases) varied in a fairly limited range, independent
of the large variability of P. Therefore, simply analyzing
correlations in data obtained from spontaneous rhythms

A B C

D

E

Figure 7. The primary synaptic parameters are correlated. A, The five primary synaptic parameters were compared pairwise across
preparations. Of the 10 nontrivial comparisons (shown in black), 6 showed significant correlations. The trivial comparisons (gray) are
shown for clarity. B, PCA was used to find directions of largest variability among the five synaptic parameters. The first two principal
components described 78% of the variability in synaptic parameters. Filled circles show all recorded synaptic waveforms, projected
down to the PC1-PC2 plane. Percentages on axis labels indicate the extent of variability in the direction of the PC. The directions of
the five primary synaptic parameters in the PC1-PC2 plane are indicated by brown line segments (biplot). See Extended Data Figure
7-1 for projections onto all PC subplanes. C, Across preparations, the LP burst onset phase (f LP) is correlated with both PC1 and
PC2 (but not PC3, PC4, or PC5). D, Across preparations, both PC1 and PC2 (but not PC3, PC4, or PC5) are correlated with the py-
loric cycle period (P). E, Using the PC1 and PC2 correlations with f LP and P (lines in left graphs of panels C, D) to calculate a linear
relationship (black line) between f LP and P correctly predicts a lack of correlation between these two factors. Including both the
PC1 and PC2 correlations (all lines in panels C, D) to do the linear prediction (magenta line) does not greatly improve the prediction.
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Figure 8. Using dynamic clamp to inject a periodic synaptic conductance waveform into the synaptically-isolated LP neuron to
measure the latency of LP burst onset. A, A predetermined conductance waveform (one of 80) is injected into the synaptically-iso-
lated LP neuron as an inhibitory synapse for 30 cycles at a cycle period of 1 s. The latency of the LP burst onset, measured form
the end of the conductance waveform (long vertical dashed line in inset), reaches a steady state value after several cycles. Inset
shows the last cycle. B, A total of 80 synaptic conductance waveforms were used periodic dynamic clamp injection in each LP neu-
ron, as described in A. C, An example analysis of the sensitivity of LP burst onset latency to changes in synaptic waveform shape
along PC1, while PC2 remains constant (but other PCs vary freely). C1, The 80 synaptic waveforms (gray filled circles) used in dy-
namic clamp experiments were sorted by projecting the shape down to the PC1-PC2 plane. Pairs of waveforms (black circles) that
fell along horizontal lines of constant PC2 (and were apart by at least 0.05 in PC1 units) were chosen for sensitivity analysis. C2,
Example responses of the LP neuron to dynamic clamp injection of synaptic conductance waveforms marked by the yellow stars in
C1. C3, The change in LP burst latency (see A) as a function of the change in PC1 value (in bins of 0.1), averaged across constant
PC2. The slope of this change (Dlatency/DPC) is used as a measure of sensitivity. D, Same as C, but changing the waveform along
PC3 while keeping PC1 constant.
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Figure 9. Varying synaptic waveform shape along each principal component while keeping another principal component constant.
A, Graphical representation of how the shape of a representative synaptic waveform (black) changes when synaptic parameters are
shifted by 25% in the direction of each principal component (in the direction of the arrow). B1, Sensitivity of LP burst onset latency
to changing the principal component along a single PC (marked by gray box in each panel) while a single other PC is kept constant
(and the other three are not controlled). Examples of the process (marked by arrows) are shown in Figure 8C,D. In these panels,
quartile plots are from data including every individual sensitivity value (200–500 data points) in each experiment (N=10 animals).
Black squares show mean values. B2, The same data as in B1, reorganized so that each panel shows data when a single PC (gray
box) is kept constant while a single other PC is varied (and the other 3 are not controlled). The red and blue arrows point to the
same data as they do in B1. C, Overall sensitivity of LP burst latency (Fig. 8) to changing the synaptic waveform along each PC,
measured as an overall average of the values shown in panel B. In this graph, only the mean sensitivity values in each experiment
are used as data points (N=10). These sensitivities were significantly different (one-way RM-ANOVA p, 0.001). Different letters (a–
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constrained the maximum effect a synaptic parameter
may have on wLP on to the same limits. Within these limits,
a parameter that has no correlation with P or wLP on may
in fact have a strong influence on wLP on and, for this rea-
son, be kept constant across animals (and thus show no
correlation with P).
For these reasons, establishing a causal influence of

synaptic parameters on wLP on requires experimentally
controlling and systematically varying them. To this end,
we performed a set of experiments in which the LP neuron
was synaptically isolated, and synaptic conductance
waveforms were artificially applied using the dynamic
clamp technique. Conductance trajectories were con-
structed to resemble the current trajectories and adher-
ing to the same decomposition into parameters shown
in Figure 3B. We kept the cycle period constant at 1 s
and injected the waveforms periodically until the LP
burst activity attained a steady state (;30 cycles; Fig.
8A). In each experiment, this procedure was repeated
with 80 different synaptic trajectories in randomized
order (Fig. 8B). Because our focus here is on variability
and activity phase, we did not do a complete analysis of
these dynamic clamp experiments on LP activity and
only considered the effect on the LP neuron’s burst
onset at steady state, measured as the latency from the
end of the artificial synaptic input (Fig. 8A, inset; also
see Materials and Methods).
The correlations obtained from the PCA imply that vary-

ing synaptic waveform along PC1 while retaining the re-
spective correlations with P and wLP on shown in Figure
7C,D should keep wLP on independent of P, which would
be sufficient to describe phase constancy across prepa-
rations. We used our dynamic clamp data to examine
whether changing the synaptic waveform along PC1 in
fact influenced the LP burst onset latency. To do so, we
first described our 80 synaptic waveforms in terms of
PC1-PC5. Because visualization of 5D space is difficult, if
not impossible, we show the waveform shapes projected
down to the PC1-PC2 and PC1-PC3 planes (Fig. 8C1,D1,
respectively). To analyze the effect of changing the synap-
tic shape in the direction of each PC, we first measured the
sensitivity of the LP burst onset latency to changing that
PC, while keeping another PC constant (see Materials and
Methods). We did this analysis for each pair of PCs. Two
examples are shown in Figure 8C,D. Surprisingly, the LP
burst onset latency showed little sensitivity when the syn-
aptic waveform was changed along PC1 while keeping
PC2 constant (example in Fig. 8C2; average effects in Fig.

8C3; one-way ANOVA: p=0.26 and F=1.32). In contrast,
changing the synaptic waveform along PC3 while keeping
PC1 constant produced a very large decrease the burst
onset latency (example in Fig. 8D2; averages in Fig. 8D3;
one-way ANOVA: p, 0.001 and F=8.21 using). This result
is surprising because it implies that changing the synaptic
waveform along PC1 does not result in any change in the
LP burst onset, which contradicts our initial interpretation
of the correlations observed in Figure 7C,D. If changing the
synaptic waveform along PC1 does not produce any
change in the LP burst onset, then it makes no sense to
claim that the mechanism for phase constancy across
preparations with different cycle periods is by changing the
synaptic waveform along PC1. Similarly, the synaptic
waveforms showed no correlation between PC3 and either
P or wLP on. Yet, experimentally changing the synaptic
waveform along PC3 produces a large effect on the LP
burst onset.
In Figure 9, we summarize the statistics of the effect of

changing the synaptic waveform (with dynamic clamp)
along each PC, while keeping one other PC constant.
Figure 9A is an illustration of how synaptic waveform
changes along each of the five PCs. Figure 9B shows the
sensitivity of the LP neuron’s burst onset latency to these
changes, either grouped by the PC that was systemati-
cally varied while one other was fixed (Fig. 9B1) or
grouped by the PC that was fixed while one other was
systematically varied (Fig. 9B2). On average, changing the
synaptic waveform along each of the PCs, except for
PC2, had some effect on the burst onset latency (Fig. 9C).
PC3 had the largest effect, followed by PC5. In addition,
fixing PC3 made the LP neuron’s burst onset latency in-
sensitive to varying any of the other PCs, while fixing any
of the other PCs did not have that effect (Fig. 9D). These re-
sults suggest that the synaptic parameters (PC1 and PC2)
that show the largest variation across preparations have lit-
tle influence on the burst onset of the LP neuron, whereas
two of the synaptic parameters (PC3 and PC5) which have
large effect on the burst onset show little variability and are
kept relatively constant across preparations.
To provide a more intuitive understanding of the

changes in the direction of PC3, we restricted the
changes to the main components in the original synaptic
parameters, which were to simultaneously increase DCPD

and DCPY (see Extended Data Fig. 9-1). A simple concurrent
change of these two parameters (i.e., changing DCPD 1
DCPY) simply implies changing the proportion of the cycle
that the synapse is active (see Fig. 3B). Thus, changing

continued
d) indicate p, 0.01 with post hoc Tukey’s test; shared letters indicate p. 0.05. Asterisks indicate post hoc analysis indicating
whether the mean value (m)= 0, **p, 0.001, ***p, 0.0001. D, Statistical summary of panel A data, indicating how varying one PC,
while keeping another PC constant (and not controlling others), would produce a change in LP burst latency. Asterisks indicate post
hoc analysis indicating whether m = 0, *p, 0.01, **p, 0.001, ***p, 0.0001. E, The direction of DC is marked as fPC3 for visual
comparison with PC3 in panels A–D. The other fPCs are roughly (but not exactly) in similar directions as the corresponding PCs of
A–D. F1, Sensitivity of LP burst onset latency to changing the principal component along a single fPC (marked by gray box in each
panel) while a single other fPC is kept constant (and the other three are not controlled). Data are the same as in B. Black squares
show mean values. F2, The same data as in F1, reorganized so that each panel shows data when a single PC (gray box) is kept con-
stant while a single other PC is varied (and the other 3 are not controlled). G, Overall sensitivity of LP burst latency to changing the
synaptic waveform along each fPC (as in panel F), measured as an overall average of the values shown in F. Notations the same as
in C. See Extended Data Figure 9-1 for values of PCs and fPCs.
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DCPD 1 DCPY provides a way to intuit the major effect of
changing the synapse in the direction of PC3, which is a
change in the proportion of each cycle during which the LP
neuron is inhibited. We therefore fixed the direction of PC3
to be exactly that of DCPD 1 DCPY (henceforth simply called
DC) and asked how the dynamic clamp changes in this di-
rection influence the LP latency. To do this comparison, we
had to redefine the directions of our 5D parameter space to
be either along DC or perpendicular to it (DC\). The deriva-
tion of the principal components in the DC\ hyperspace is
described in Materials and Methods. Thus, our parameter
space can be described in terms of five new directions, one
in the direction of DC, which is approximately that of PC3.
For clarity, we call this direction fPC3. The other four di-
rections are the principal components in the DC\ hyper-
space (derivation described in Materials and Methods)
which are approximately aligned with the directions PC1,
PC2, PC4, and PC5 (Fig. 9E; Extended Data Fig. 9-1).
Again, for clarity, we call these directions, respectively,fPC1; fPC2; fPC4; and fPC5 (Extended Data Fig. 9-1). We
then re-analyzed the dynamic clamp data using the new
directions to measure the sensitivity of the LP neuron’s
burst onset latency to changing the parameters in these
directions.
We found that varying the synaptic waveform in the di-

rection of DC (fPC3) produced the largest effect on the LP
neuron burst latency compared with any of the directions
in (Fig. 9F). Similarly, when the synaptic waveforms were
fixed in the direction of fPC3, changes in any other direc-
tion produced little effect on the burst latency (Fig. 9F2,
middle panel). These effects are summarized in the statis-
tics shown in Figure 9G.

Discussion
Variability of activity phases within and across
individuals
During oscillatory circuit activity, differences in sensory,

descending, and modulatory inputs often result in differ-
ent activity phases between different neurons, whereas
similar behavioral settings and circuit states produce
characteristic phase relationships (Marder and Bucher,
2001; Wang, 2010; Grillner and El Manira, 2015, 2020;
Wilson et al., 2015; Frigon, 2017). These activity phases
can even be maintained over a wide range of rhythm fre-
quencies within individuals, which has been demon-
strated in many motor systems (DiCaprio et al., 1997;
Wenning et al., 2004; Marder et al., 2005; Grillner, 2006;
Le Gal et al., 2017).
Across individuals, activity patterns can vary, particu-

larly in cycle period, but retain enough consistency in
the activity phases to be readily matched across the
same individuals. In the pyloric circuit, spontaneous in
vitro rhythmic patterns in individual preparations show
some cycle-to-cycle variability in the bursting neurons’
activity phases, consistent with cycle-to-cycle variabili-
ty in cycle period (Bucher et al., 2005; Elices et al.,
2019). However, mean phases are well maintained when
mean cycle period is experimentally altered (Hooper,
1997; Tang et al., 2012; Soofi et al., 2014). Across

individuals, phases also show some limited variability
but are insensitive to substantial differences in mean
cycle period (Bucher et al., 2005; Goaillard et al., 2009).
We confirm here that phases can vary across individuals
but do not correlate with mean cycle period (Fig. 1C). We
also show that the variability of neuronal activity phases
across individuals is within the same ranges as cycle-to-
cycle variability within individuals, although cycle period
varies substantially more across individuals than it does
within individuals (Fig. 1D). This raises the question of
whether these activity phases are constrained to a small
range of variability. We assert that there is no absolute
measure for how much variability constitutes a lot or a lit-
tle, and such an assessment should depend on a refer-
ence value. For example, in the leech heartbeat system,
variability in phase has been interpreted as being large
because phase values varied as a substantial fraction of
the reference cycle (Wenning et al., 2018). In the pyloric
circuit, variability of phases under control conditions is
limited in the sense that phases are largely constrained
to values that differ from those under different neuromo-
dulatory conditions (Marder and Bucher, 2007; Harris-
Warrick, 2011). In our dataset, variability in phase was
large enough to allow us to search for correlations with
intrinsic and synaptic current parameters, but the fact
that phases remain independent of cycle period justified
asking which parameters may be constrained or may co-
vary in a compensatory manner to achieve consistent
circuit output phases across individuals.

Variability of intrinsic and synaptic currents
Activity phases are shaped by both intrinsic and synap-

tic currents, both of which can vary substantially across
individuals. In the LP neuron, the known intrinsic currents
vary several-fold across animals (Liu et al., 1998; Schulz
et al., 2006, 2007; Golowasch, 2014). We found that the
voltage-gated currents do not just vary in magnitude, but
that the half-activation voltage and slope factors were
also quite variable across preparations (Fig. 2). Different
studies have reported a range of different values for these
parameters (Zhao and Golowasch, 2012). Some variability
may be because of recordings in different cell types or
species (Harris-Warrick et al., 1995b), but the mean val-
ues of the parameters that we recorded are consistent
with the original recordings of ionic currents in the crab
LP neuron (Golowasch and Marder, 1992). It should be
noted that the magnitude of K1 conductances correlate
well with corresponding channel gene mRNA copy num-
bers (Schulz et al., 2006), which serves as independent
confirmation that variability is not solely because of noise
or experimental error. We cannot provide a similar inde-
pendent confirmation for variability in voltage depend-
ence, and it is not obvious to which degree half-activation
and slope factor measurements may be more affected by
experimental error than gmax is. However, variability in
voltage dependence may be because of posttranslational
modifications of ion channels (Jindal et al., 2008;
Voolstra and Huber, 2014; Laedermann et al., 2015) or
their phosphorylation state (Ismailov and Benos, 1995;
Hofmann et al., 2014).
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Not only did we not find any correlations between intrin-
sic and synaptic currents in the LP neuron, but we also
did not find any correlations between intrinsic current pa-
rameters with either cycle period (Fig. 5) or wLP on (Fig. 6).
This does not mean that intrinsic currents do not play an
important role in controlling phase. Intrinsic properties, as
determined by voltage-gated ionic currents, pump cur-
rents and even leak currents, are primary determinants of
its activity. In the LP neuron, intrinsic properties have a
great influence on wLP on, as can be seen for example
from the slow response of this neuron to repetitive dy-
namic clamp application of the same artificial synaptic
input (Fig. 7A). This slow response is indicative of a form
of short-term memory over a timescale of many cycles
that is attributed to intrinsic properties (Goaillard et al.,
2010; Schneider et al., 2021). Some aspects of phase reg-
ulation are in fact dominated by intrinsic properties. For
example, the phase difference between the LP and PY
neurons is largely determined by differences in intrinsic
currents, as experimentally applying identical synaptic
input into both neuron types preserves their relative timing
(Rabbah and Nadim, 2005).
Varying synaptic current amplitudes across individuals

can still give rise to similar CPG output, for example in the
leech heartbeat system (Norris et al., 2007, 2011). In the
pyloric circuit, similar values for wLP on are achieved
across individuals despite large variability of pacemaker
synaptic input during ongoing rhythmic activity (Goaillard
et al., 2009). We confirm the substantial variability in
pacemaker to LP synaptic current amplitudes and in addi-
tion describe similar variability for PY to LP input (Fig.
3C1). However, phase also depends on the relative tim-
ing, duration, and precise temporal trajectory of synaptic
inputs (Prinz et al., 2003; Martinez et al., 2019b). In partic-
ular, wLP on is exquisitely sensitive to the shape and ampli-
tude of synaptic input within preparations (Martinez et al.,
2019b), and we show here that attributes describing the
trajectory of the total synaptic current input to LP vary
substantially across individuals (Fig. 3C2–C4). Therefore,
similar values of wLP on are found across individuals de-
spite varying intrinsic and synaptic currents.
In general, phase is dependent on an interplay of intrin-

sic and synaptic currents. Because wLP on adjusts over
several cycles, any such interplay must occur at a much
slower timescale than that of an individual cycle. Synaptic
inhibition activates IH and de-inactivates IA, which plays
a critical role in determining rebound delay in follower
neurons at different cycle periods (Harris-Warrick et al.,
1995a,b; MacLean et al., 2005). IH and IA promote phase
maintenance in individuals, particularly in conjunction
with short-term synaptic depression, which results in an
increase of inhibition with increasing cycle periods (Nadim
and Manor, 2000; Manor et al., 2003; Bose et al., 2004;
Greenberg and Manor, 2005; Mouser et al., 2008).
Goaillard et al. (2009) recorded pyloric circuit activity and
subsequently measured mRNA expression levels of the
channel genes coding for IH and IA in LP, and also found
no correlations with wLP on. However, they did find wLP on

to be correlated with the maximum value of a neuropep-
tide-activated current, which was also correlated with

synaptic currents. Therefore, a lack of correlations be-
tween cycle period or wLP on and single intrinsic current
parameters across individuals may simply mean that vari-
ability is well compensated across different currents.
The total synaptic current to the LP neuron is a combi-

nation of inputs from the pacemaker neurons AB and PD,
and the 3–5 PY neurons, and therefore has a complex
waveform shape (Fig. 3). Of the five parameters that de-
fined the synaptic waveform, three showed significant
correlation with P across different animals (Fig. 5), and
four parameters had a strong correlation with wLP on (Fig.
6). Surprisingly, these parameters did not include the
strength of the synaptic input from the pacemaker or PY
neurons. Goaillard et al. (2009) did not consider PY synap-
tic inputs to LP but separated AB and PD inputs by their
different reversal potentials and found wLP on correlated
with peak values of both, albeit with different sign. It is un-
clear whether this different finding simply results from the
different way we defined synaptic strengths. However, the
duty cycle and peak phase of the synapse, which strongly
influence the LP phase in individuals (Martinez et al.,
2019b) were among the correlated parameters. A linear di-
mensionality reduction using PCA showed only two param-
eters (the first two principal components PC1 and PC2)
sufficiently explained the correlation between cycle period
and wLP on. Consistent with these correlations, using the
first two principal components to connect cycle period
across preparations with the variability of wLP on was suffi-
cient to explain phase maintenance across animals.

Variability and co-regulation
Variability of intrinsic currents in STG neurons may be

compensated by cell-type-specific co-regulation of differ-
ent voltage-gated channels (Khorkova and Golowasch,
2007; Schulz et al., 2007; Temporal et al., 2012; Tran et
al., 2019), but it is not known to which degree synaptic
currents may be co-regulated. Variability of synaptic cur-
rents could be compensated for by variability in intrinsic
currents, as has been suggested for the leech heartbeat
system (Günay et al., 2019), and as is implicit in theoretical
work that shows similar circuit activity with different combi-
nations of intrinsic and synaptic current levels (Prinz et al.,
2004b; Onasch and Gjorgjieva, 2020). Alternatively, com-
pensatory co-regulation of intrinsic currents could lead to
consistent neuronal excitability on its own, and variability
of synaptic trajectory then must be constrained to allow for
consistent phases.
We found no evidence of co-regulation between intrin-

sic and synaptic currents (Fig. 4), which suggests that
phase constancy across preparations is not because of
any obvious linear correlations that matched synaptic in-
puts to intrinsic properties. However, there are caveats to
this analysis. We only performed pairwise linear correla-
tions, and it is possible that we missed higher dimensional
or nonlinear interactions. In addition, the nature of the in-
trinsic and synaptic current attributes we considered are
somewhat mismatched. We described intrinsic voltage-
gated currents with standard biophysical parameters, ob-
taining values for gmax and voltage dependence. These
parameters can be direct targets of cellular regulation, but
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it is not trivial to determine how their variability translates
to variability in current magnitude and trajectory during
ongoing circuit activity. In contrast, we assessed the mag-
nitude and temporal trajectory of synaptic currents during
ongoing pyloric activity, which are determined by presyn-
aptic and postsynaptic properties as well as the voltage
trajectories of the presynaptic neurons (Goaillard et al.,
2009). Our synaptic current attributes therefore describe
well the dynamics of synaptic interactions during circuit
activity but can only serve as an indirect assessment of bi-
ophysical parameters that would be the targets of cellular
regulation. In STG neurons, maximal synaptic currents or
conductances and the dependence on presynaptic volt-
age have been assessed for their sensitivity to different
neuromodulators (Zhao et al., 2011; Garcia et al., 2015; Li
et al., 2018), but cannot be measured during ongoing cir-
cuit activity and their interindividual variability has not
been directly addressed.

Correlation versus causation
Correlational analyses from spontaneous rhythmic ac-

tivity restricted us to the limited variability of circuit output
and did not afford us control of the variability of synaptic
attributes. We therefore used the dynamic clamp, a tech-
nique that allows precise manipulation of synaptic inputs
to individual neurons, which can be used to explore the
role of a synapse in circuit activity (Bartos et al., 1999;
Wright and Calabrese, 2011a,b; Martinez et al., 2019b).
These experiments clearly showed that the LP burst onset
is quite sensitive to the shape of the synaptic input wave-
form in a manner that was consistent across preparations.
To our surprise, changing the waveform along PC1 or
PC2, the two major directions of variability in the parame-
ter space obtained from spontaneous activity, did not
produce the largest influence on the LP burst onset.
Instead, changing the waveform along PC5 and PC3, di-
rections that did not show significant change with either
cycle period or the LP burst onset across preparations,
had the largest effect on the LP burst onset. In fact, when
the waveform shape was kept constant along PC3,
changing it along any other PC did not influence the LP
burst onset at all (Fig. 9D). Conversely, changing the
waveform along PC3, while keeping any other PC con-
stant, produced the strongest effects on the LP burst
onset.
As with all methods of dimensionality reduction, PCA

does not yield readily intuitive results. Consequently, de-
scribing the effect of parameter changes along principal
components does not necessarily produce conclusions
that are easily described in terms of the original synaptic
parameters. In the case of PC3, however, we found that
the major effect of this principal component was to simul-
taneously change the duty cycles of the pacemaker (PD)
and PY synaptic inputs to the LP neuron. When we made
the further approximation that this was a proportional
change, this meant that PC3 was mainly influencing the
proportion (DC) of each cycle where the LP neuron re-
ceives synaptic input (see DCPY 1 DCPD in Fig. 3B2).
Furthermore, changing the synaptic waveform in the di-
rection of DC, as opposed to other parameter directions,

had almost the same effect as changing it in the direction
of PC3, as opposed to the other PCs. The fact that the du-
ration of synaptic input has a significant influence on the
LP burst phase onset is at first view not too surprising.
But the pyloric rhythm is driven by the pacemakers, in-
cluding the PD neuron, resulting in an LP neuron rebound
burst followed by a burst of the PY neurons. The PY to LP
synapse is therefore thought to control the end of the LP
burst, not its onset (Fig. 1A). The fact that DC is kept
under strict control in each preparation implies that the
PY to LP synapse also influences the subsequent LP
burst, although one would assume that the much stronger
pacemaker to LP synapse overwhelms this influence.
These findings indicated that, across preparations, the
synaptic waveform is tuned by the circuit to remain un-
changed along this direction of maximum sensitivity.
Thus, in this subcircuit, phase constancy across prepara-
tions is achieved partly by a precise control of the synap-
tic parameters that have the largest influence on phase.
It is tempting to interpret the correlation of underlying

properties with attributes of circuit output as an indication
that these attributes are controlled by these properties.
However, properties may simply change with circuit out-
put and not determine it. Similarly, one may interpret the
lack of correlation as a sign of absence of influence.
However, functional influence may be masked by the ne-
cessity to simply constrain parameters with large influence
on output to a range that keeps output stable. The correla-
tional relationships between the synaptic parameters and
cycle period or wLP on that we described from spontaneous
circuit output could statistically explain phase maintenance
across animals. However, this explanation does not hold
the test of causation. The same parameters that statisti-
cally predict wLP on, or vary systematically with cycle pe-
riod, have little influence on the burst onset when varied
experimentally. Conversely, we only found the synaptic
waveform attributes that are important for the control of
phase by systematically varying them experimentally.
Thus, our correlational explanation (Fig. 7E) is in fact a
consistency argument: if some synaptic parameters
change with cycle period, then the same parameter
must also change with wLP on in a manner that predicts
phase constancy.
Many neural processes are found to co-vary across ani-

mals and correlations are often argued to be essential for
the function of neural circuits (Golowasch, 2019; Santin
and Schulz, 2019). It is important to remember that, de-
spite the levels of degeneracy observed in the parameter
space defining circuit output (Goldman et al., 2001;
Bucher et al., 2005; Swensen and Bean, 2005), correla-
tions may simply be coincidental to the fact that the vary-
ing parameters do not have a meaningful influence on the
function of interest (Hudson and Prinz, 2010; O’Leary et
al., 2013).
Considering the numerous parameters that can in-

fluence the output of a neural circuit, interindividual
variability is neither surprising nor avoidable. Yet a consist-
ent output pattern requires some essential combination of
circuit parameters to be tightly constrained. Those that are
not show variability across individuals and, because of the
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constraints of the output pattern, are forced to co-vary with
output quantities that may also be relatively unconstrained,
such as cycle frequency. Thus, parameters correlated with
circuit output may contribute little to the output pattern, but
rather become correlated because of constraints on this
pattern.

Differential control of activity phases
We addressed here how activity phases can stay con-

sistent under control conditions, i.e., in the same circuit
state. However, synaptic function and activity phases can
be different between different circuit states, for example
through the influence of neuromodulators (Harris-Warrick,
2011; Marder, 2012; Bucher and Marder, 2013; Marder et
al., 2014b; Nadim and Bucher, 2014; Daur et al., 2016;
Brzosko et al., 2019). In motor systems, the functional im-
pact of such adjustments can be particularly transparent,
as circuit reconfiguration through neuromodulation is for
example a core mechanism for adjusting locomotion gait
and speed (Harris-Warrick, 2011; Miles and Sillar, 2011;
Bucher et al., 2015; Kiehn, 2016; Grillner and El Manira,
2020). Neuromodulators can affect neurotransmitter re-
lease, receptor properties, and postsynaptic intrinsic re-
sponse properties (Nadim and Bucher, 2014). In addition,
synaptic function can change because the activity profile
of the presynaptic neuron is modified, as has been shown
for STG neurons (Johnson et al., 2005, 2011; Zhao et al.,
2011). All these actions of neuromodulators can alter the
temporal trajectory of synaptic responses. Therefore, our
results provide a useful framework for understanding which
aspects of the temporal dynamics of synaptic inputs can be
altered by neuromodulators to change phase, and which
changes produce robustness for phase relationships.
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