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Abstract

Theories of rhythmic perception propose that perceptual sampling operates in a

periodic way, with alternating moments of high and low responsiveness to sen-

sory inputs. This rhythmic sampling is linked to neural oscillations and thought

to produce fluctuations in behavioural outcomes. Previous studies have revealed

theta- and alpha-band behavioural oscillations in low-level visual tasks and

object categorization. However, less is known about fluctuations in face percep-

tion, for which the human brain has developed a highly specialized network.

To investigate this, we ran an online study (N = 179) incorporating the dense

sampling technique with a dual-target rapid serial visual presentation (RSVP)

paradigm. In each trial, a stream of object images was presented at 30 Hz and

participants were tasked with detecting whether or not there was a face image

in the sequence. On some trials, one or two (identical) face images (the target)

were embedded in each stream. On dual-target trials, the targets were separated

by an interstimulus interval (ISI) that varied between 0 to 633 ms. The task was

to indicate the presence of the target and its gender if present. Performance var-

ied as a function of ISI, with a significant behavioural oscillation in the face

detection task at 7.5 Hz, driven mainly by the male target faces. This finding is

consistent with a high theta-band-based fluctuation in visual processing. Such

fluctuations might reflect rhythmic attentional sampling or, alternatively, feed-

back loops involved in updating top-down predictions.
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1 | INTRODUCTION

The brain is confronted with a constant influx of sensory
input and yet is able to form a stable ongoing visual

experience. Despite the seemingly continuous operation,
evidence has shown that sensory sampling works in a
periodic way, with moments of high and low responsive-
ness to external stimulations interleaving with each
other. This temporal structure of visual processing is
reflected in ongoing neural oscillations, where the phase
and power of prestimulus theta- (3–7 Hz) and alpha-band
(8–12 Hz) activity have been shown to predict perceptual

Abbreviations: FFA, (face fusiform area); FFT, (Fast Fourier
Transform); HR, (hit rate); ISI, (interstimulus interval); RSVP, (rapid
serial visual presentation); TIW, (temporal integration window).
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outcomes in a variety of visual tasks, including near-
threshold target detection (Busch et al., 2009; Dugué
et al., 2011b; Hanslmayr et al., 2007; Mathewson
et al., 2009; Romei et al., 2010; van Dijk et al., 2008),
visual search (Dugué et al., 2015; Merholz et al., 2019),
and rapid segregation of two visual stimuli into separate
percepts (Ronconi et al., 2017; Wutz et al., 2014).

Recently, the dense sampling technique has allowed
researchers to further examine the temporal dynamics of
the perception and behaviour with high temporal resolu-
tion. This line of research typically involves a visual event
(e.g., a flash, cue, or prime) to reset the perceptual
rhythm, followed by a target whose onset is densely dis-
tributed across time (Fiebelkorn et al., 2011). By analys-
ing the rhythmic fluctuations in performance
(i.e., behavioural oscillations), researchers have found
that visual attention, even when participants are explic-
itly asked to attend one location, alternates between mul-
tiple spatial locations at about 8 Hz, reflecting an alpha-
band rhythmic perceptual sampling and a theta-band
attentional modulation (Dugué et al., 2016; Fiebelkorn
et al., 2013; Gaillard & Hamed, 2020; Landau &
Fries, 2012; Michel et al., 2020). Similarly, a 4-Hz beha-
vioural oscillation in the priming effect was found when
participants were asked to discriminate the pointing
direction of a probe arrow (Huang et al., 2015). Using a
dual-task paradigm, Balestrieri et al. (2021) directly tested
the hypothesis that these behavioural oscillations can
also occur for the alternation of attentional allocation
between external visual stimulation and internal repre-
sentations in a working memory task. They found that
near-threshold target detection performance fluctuated
over time during the memory maintenance period, at a
slower rhythm when visual working memory load was
high (5 Hz) and a faster rate (7.5 Hz) when there was lit-
tle demand for internal information maintenance. These
results suggest the existence of a common theta-band-
based oscillatory modulation from a central attention net-
work to early visual cortex.

Another intriguing implication of rhythmic sampling
theories is that perception of sequences of stimuli may
differ depending on whether those stimuli fall within the
same perceptual sample. In the simple case of two visual
flashes, for example, the probability of perceiving only
one flash is higher when the interstimulus interval is
brief. This is thought to reflect a “temporal integration
window” (TIW) during which sensory input is combined
into a single coherent percept. A number of studies have
reported both behavioural (Freschl et al., 2019; Sharp
et al., 2019; Wutz, Drewes, & Melcher, 2016) and neural
(Wutz, Muschter, et al., 2016; Ronconi et al., 2017;
Samaha & Postle, 2015) evidence for such temporal
integration windows in processing simple visual stimuli

such as flashes, linked to specific sampling rhythms
(Battaglini et al., 2020; Ronconi et al., 2017; Wutz &
Melcher, 2014).

Here, we ask if the same oscillatory temporal organi-
zation found in near-threshold target detection and tem-
poral integration/segregation generalizes to high-level
visual perception. Is the theta- and/or alpha-band
oscillation merely a characteristic of the functioning of
the early visual cortex, or a general mechanism through
which the brain organizes all types of incoming visual
inputs? Congruent with the latter hypothesis, subdural
recordings have linked behavioural oscillations in
different visual tasks to periodic fluctuations in cortical
excitability across the whole frontoparietal network
(Helfrich et al., 2018).

Categorical perception, such as recognition of objects
or faces, is a particularly interesting topic to investigate.
Is such high-level processing also subject to neural and
behavioural oscillations? Some evidence for this idea
comes from neuroimaging studies (fMRI) showing a tem-
poral processing capacity of around four to six items per
second in category-selective areas such as the fusiform
face area (FFA) (Gentile & Rossion, 2014; McKeeff
et al., 2007; Stigliani et al., 2015). Specifically, the
processing of each individual face seemed to be optimal
when the faces were presented at a rate consistent with a
theta-band rhythm. The temporal limitations of the
cortical areas at this relatively high level of the visual
processing hierarchy open up the possibility that
high-level visual recognition may also be susceptible to
periodic modulation. Indeed, by asking participants to
categorize animal/vehicle targets embedded in a rapid
serial visual presentation (RSVP) stream, Drewes et al.
(2015) found a behavioural oscillation of 5 Hz in accuracy
as a function of the duration between a flash event and
the target. It is interesting to note that the behavioural
oscillation was driven by the “animal” trials. Because ani-
mal and vehicle recognitions are supported by different
brain regions as evident in category selectivity literatures
(Huth et al., 2012; Peelen & Downing, 2017), this finding
raises the question whether the exact oscillation fre-
quency depends on task demands and stimulus
properties.

The goal of the current study is to explore the tempo-
ral dynamics of rapid face perception. The face is a spe-
cial stimulus, because it carries important social
information critical to survival, and humans have
evolved an extensive network to process faces efficiently
and differently from other non-face objects (Farah
et al., 1998; Kanwisher & Yovel, 2006). A number of stud-
ies using rapid serial presentation of faces provide evi-
dence for optimal face processing when the stimuli are
presented at a rate within the theta-band (Gentile &
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Rossion, 2014; McKeeff et al., 2007; Stigliani et al., 2015).
If faces are presented faster than about 6 Hz, the mea-
sured neural activity seems to blend together, suggesting
that the sampling rhythm is slower than 4–6 Hz. How-
ever, those studies looked at a neural index of the “satu-
ration” (subadditive activity) of face processing areas,
rather than face perception itself. Using a classification
image technique, Blais et al. (2013) found an alpha-band
(10 Hz) oscillation in information use when participants
performed a face identification task for face images
embedded in a dynamic noise mask. The difference in
oscillatory frequency in Blais et al. (2013) and the neuro-
imaging studies (Gentile & Rossion, 2014; McKeeff
et al., 2007; Stigliani et al., 2015) might due to the nature
of the different tasks that they used. In Blais et al. (2013),
the task was identification (not detection) and face
images remained visible to participants throughout the
trial. Their results are consistent with prior studies show-
ing a 10-Hz fluctuation in detectability to simple visual
stimuli, like phosphenes (Dugué et al., 2011b; Romei
et al., 2008), dots (Mathewson et al., 2009; Romei
et al., 2010), and letters (Hanslmayr et al., 2007), and thus
might not be specific to faces per se.

To measure comparable behavioural oscillations at
the perceptual level, we adopted a dual-target RSVP para-
digm as in Drewes et al. (2015). On the key trials of inter-
est, the face target was repeated twice in each RSVP
stream (33 ms/30 Hz) of non-face object images. We
manipulated the interstimulus interval (ISI) between the
two identical targets with the dense sampling technique.
Participants were asked to detect a face and, if present, to
discriminate its gender. Interestingly, Drewes et al.
(2015) also found evidence for a temporal integration
window, in that performance was higher when both stim-
uli fell within a window of around 150 ms. That pattern
of results would also be predicted by a high theta-band
sampling window of around 6–8 Hz.

In the current study, our first hypothesis was to see
oscillatory fluctuations in hit rate (HR) in both face
detection and gender discrimination tasks. Because
gender discrimination inherently involves additional
processing than simple detection, and thus could occur
more slowly, we predicted that the frequency of oscilla-
tion might be faster for the easier (detection) task. We
also examined the effect of stimulus properties and partic-
ipant gender on behavioural oscillations by comparing
performance when the target was a female versus
male face.

Second, we used the pattern of performance as a func-
tion of ISI to test whether there was a temporal integra-
tion window (TIW) of around 120–170 ms, as might be
expected if face processing (as indexed by face categorical
responses, such as the N170/M170: see Rossion &

Jacques, 2011, for example) integrates information within
a single sample. To test this, we estimated the conver-
gence level (i.e., the stabilized HR during the last 204-ms
ISI interval) at which the largest effect of ISI largely pla-
teaued. The corresponding estimated time of convergence
was used as an indicator of TIW, because targets pre-
sented within which would tend to be perceived as an
integrated percept. We predicted that the TIW would cor-
respond to one cycle of the behavioural oscillation, as
have been found in neural oscillation studies (Ronconi
et al., 2017; Samaha & Postle, 2015).

At the same time, our method also took into
account the alternative hypothesis that fluctuations in
detection would be more closely aligned with alpha oscil-
lations (8–12 Hz). A number of studies have provided
behavioural (Ronconi & Melcher, 2017) and neural
(Dugué et al., 2011b; Mathewson et al., 2009) measures of
visual detection linked to the alpha rhythm, including
the Blais et al. (2013) study of face identification men-
tioned above. If so, then perhaps detection of faces,
although they are higher-level stimuli than typically used
in previous studies, might also be characterized by a
fluctuation at around 10 Hz, the typical peak alpha fre-
quency in young adults (Benwell et al., 2019; Grandy
et al., 2013).

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited 10 participants (one female) for the pilot
study (see procedure) and 179 participants (87 females)
for the experiment from the online experiment
platform Prolific (www.prolific.co). The demographics of
the participants (50% female, around 25% each self-
identified as “Asian,” “Black,” “Latino,” or “White” on
the Prolific platform) matched that of the face stimuli
(see below). These ethnic categories were self-defined
by participants as part of signing up for Prolific studies.
We recruited from a diverse group of participants in
terms of self-identified ethnicity and used a diverse set of
face images.

All participants gave informed consent by checking
the relevant boxes on a consent form webpage and
received 4.00 GBP as compensation. The experiments
were approved by the New York University Abu Dhabi
Human Research Protection Program Internal Review
Board (IRB).

In the pilot study, two participants were excluded
because they failed to see any faces on 75% of the trials.
For the main experiment, we excluded 31 participants
who did not run the experiment on a computer with a
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60-Hz refresh rate (see Section 2.4.1). We excluded a fur-
ther two participants (1.35% of all included participants)
for not being able to complete the task as instructed. An
additional six participants (two females; 4.05%) were
classified as “atypical” participants based on their perfor-
mance (see Data analysis) and were excluded from the
frequency analysis. The remaining 140 participants used
in the main data analyses were an average age of 26.31
(�6.80) years old. We had relatively equal distributions
of gender (75 females) and self-identified ethnicity
groups (39 Asian, 39 Black, 22 Latino, and 40 White).
The exact proportions varied from expected due to a
discrepancy between the initial self-identification regis-
tered by the participants on Prolific and their response
to the demographic questionnaire during the actual
experiment, in which they indicated their age, gender,
and self-identified ethnicity. According to the self-
registered demographic information in Prolific, the par-
ticipants were from at least 37 different countries of
birth and at least 23 countries of current residence (five
unknown).

2.2 | Materials

Images of non-face objects (baseline) and faces (target)
were presented in a RSVP paradigm. Baseline images
were selected from the database used by Konkle et al.
(2010). Images that contained animals or face-like objects
(e.g., eyeglasses) were excluded, leaving a set of 3910
images of inanimate objects. A separate set of 504 face
images were selected from the Academic Dataset by Gen-
erated Photos (https://generated.photos/datasets) (Karras
et al., 2019). The faces in this database, which was
designed to support machine learning, were generated
using professional photographers, lighting and make-up,
and features a diverse set of faces in terms of demo-
graphics, facial expressions and poses. The images used
in this study were actually synthetic faces generated out
of tens of thousands of face images. To ensure diversity,
an equal number of female and male face images from
that database were selected from four ethnicity groups
(defined by the Dataset as: Asian, Black, Latino, and
White). The age, expression, view, and size of the face
varied across images. All images were converted to grey-
scale and resized to 256 pixels in width and height with
Adobe Photoshop graphics software. The hair part of the
face images was cropped out, such that only face contour
was left. All the stimuli were histogram-matched for
luminance through the SHINE toolbox (Willenbockel
et al., 2010). In addition, we added 20% salt-and-pepper
noise background to all the stimuli in the main experi-
ment (see below for details).

2.3 | Procedure

2.3.1 | Pilot study

A pilot study was conducted to determine the stimulus
type and presentation rate. We randomly selected 1376
objects images and 80 face images and superimposed
them onto four different background conditions (i.e., the
plain background, white noise background, and 10% and
20% salt-and-pepper noise backgrounds) (Figure 1a). In
the second condition, all stimuli were superimposed onto
a white noise background. In the last two conditions, we
added 10% and 20% salt-and-pepper noise on the stimuli
from the second condition using MATLAB imnoise
function.

The RSVP paradigm was employed in the pilot study.
In each trial, participants were presented with an RSVP
sequence of 20 images, among which a single target
image would appear randomly at any positions except
the first and last one. Participants were asked to indicate
the presence of a face image by pressing a key (face detec-
tion task). If they reported face present, they would indi-
cate its gender by pressing another key (gender
discrimination task). The presentation rate of the
sequence was 60 Hz in the plain, white noise, and 10%
salt-and-pepper background conditions, and was 30 Hz
in the 20% salt-and-pepper background condition. There
were 30 trials for each stimulus type condition and
24 catch trials. Each block contained one background
condition and 6 catch trials. Participants performed
below chance level in the face detection task at all 60-Hz
conditions, but were able to reliably report the presence
of a face in the 30-Hz condition. In light of this pattern,
we used the 20% salt-and-pepper background and a pre-
sentation rate of 30 Hz in the formal experiment.

2.3.2 | Main experiment

The experiment was coded using the jsPsych library
(de Leeuw, 2015), embedded in an HTML environment.
Stimuli were presented on participants’ desktop or laptop
computer on a browser of their choice. Most participants
used Chrome, with the exception of a few participants
who used Firefox (eight participants) or Opera (8).
Refresh rate was double checked after the experiment
(see Data screening), with most participants (84.85%)
running the study on a computer of 60-Hz refresh rate.
Only these participants were included in data analysis.

We adopted a dual-target RSVP paradigm, in which a
target face image was typically repeated twice in each
image stream. As shown in Figure 1b, each trial began
with a central fixation cross for 500 ms, followed by an
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RSVP sequence of 30 images presented at 30 Hz. We
coded our own RSVP plugin in the jsPsych library using
the Window.requestAnimationFrame() function such that
each image was presented for 2 refresh frames. The first
target image appeared randomly in the stream at the 8th,
9th, or 10th position. In 80% trials (i.e., the dual-target tri-
als), a second target image appeared after a randomly
selected ISI from 0 to 633 ms in steps of 33 ms. Each ISI
condition was repeated 24 times. We also included
24 one-target trials (4% of all trials), which included only
the first target image and served as a baseline measure,
and 96 catch trials (16% of all trials), where no target was
presented. The image stream ended with a 500-ms fixa-
tion frame. Participants were then prompted to complete
the face detection task and a gender discrimination task,
as in the pilot study. There were a total of 600 trials,
divided in 20 blocks. Before the experiment, participants
completed seven practice trials to familiarize themselves
with the task. The practice was the same as the experi-
ment, except that the first and second target images were
fixed in the image stream at the 10th and 13th position
and colourful object images and cartoon face images were
used as stimuli.

2.4 | Data analysis

Behavioural performance was analysed with MATLAB
R2019b (The MathWorks, Inc). We first calculated each

participant’s mean HR in the one-target trials and in each
ISI condition of the dual-target trials. Participants who
had a mean HR lower than 50% in the 0-ms ISI
condition in the face detection task were excluded
from further analyses. In this condition, the second target
was presented immediately following the first target,
making the target twice as long as the other stimuli in
the image stream. Detection in this case should be the
easiest condition. If participants could not reliably report
the presence of the target in this condition, then we rea-
soned that they were not able to complete the task as
instructed.

After screening the data, we focused the analysis
on the dual-target trials. There was a decreasing trend
in the raw percent correct data as the ISI increased,
because when two targets were presented within the
same TIW the task would be easier (Figure 2a). We
computed the convergence level by averaging the HR
across the last 204-ms interval (i.e., from 433- to
633-ms ISI conditions) when the performance was rela-
tively stable. The time of convergence, as an indicator
of the TIW, was defined as the ISI at which the hit
rate decreased to 10% (or 5%) above the convergence
level (Drewes et al., 2015). The convergence level was
analysed using a 2 * 4 * 2 * 4 (Target Gender * Target
Race * Participant Gender * Participant Race) analysis
of variance (ANOVA) with target gender (female,
male) and target ethnicity (Asian, Black, Latino,
White) as within-subjects variables and participant

F I GURE 1 (a) Sample stimuli used in the

pilot. The background conditions from left to

right columns are the plain, white noise, 10%

and 20% salt-and-pepper noise backgrounds.

(b) Illustration of a dual-target trial in the main

experiment. Each trial started with a 500-ms

central fixation, followed by an RSVP sequence

of 30 image (30 Hz/33 ms) and another 500-ms

fixation. The task was to indicate the presence/

absence of face target(s) and to report the gender

if present. There were also trials where only the

first target was presented (the one-target trials)

and trials without any targets (the catch trials).
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gender (female, male) and participant self-reported eth-
nicity (Asian, Black, Latino, White) as between-subjects
variables.

The typical, strong effect of temporal integration on
the time course of HR was observed as an exponential
decay function of the ISI (Drewes et al., 2015). In order to
disclose the underlying oscillatory structure of the data,
we detrended the HR series by first fitting, to each series,
an exponential decay function in the form:

f xð Þ¼ a0e
�x
τ þ c

where x is the ISI, a0 the starting point, τ the time
constant (that is, the variable describing the steepness of
the decay), and c the right-hand asymptote, or the base-
line performance. The fitted trends were then subtracted
from the original HR series. Figure 2 shows the average
across participants of HR series before (a) and after
(b) detrend.

We then performed a fast Fourier transform (FFT) on
the detrended HR time course for each participant to
convert the results from time domain to frequency
domain (Figure 3). We assessed the presence of oscilla-
tory components across participants by computing the
phase-locked sum (Balestrieri et al., 2021). This method
takes into account both the amplitude and phase of the
oscillations composing the original time series by sum-
ming together the vectors originating from the FFT in the
complex domain, as follows:

PLSf ¼ 1
n

� �Xn

k
A f ,kð Þei2πθ f ,kð Þ

where PLSf is the phase-locked sum for frequency f , n is
the number of participants, and A and θ are, respectively,
the amplitude and the phase angle of the complex vector,

for each frequency f and participant k. This computation
is a proxy for the presence of oscillations in a time series
because it tests the degree to which non-zero oscillations
are consistently in phase across participants, a phenome-
non often observed in dense sampling studies (Landau &
Fries, 2012; Michel et al., 2021). In order to assess the sig-
nificance of the peaks observed in the spectra, we per-
formed a permutation test by shuffling without
replacement the ISI labels of the individual detrended
data for 10,000 permutations, and for each surrogate
dataset obtained in this way, we applied the aforemen-
tioned computation of phase-locked sum. Statistical
threshold for selecting peaks of interest was defined as
the 95 percentile of the phase-locked sum computed on
the surrogate datasets. Bonferroni correction for the
whole spectra was applied in order to account for multi-
ple comparisons. A recent article (Brookshire, 2022) cast
some doubts on this randomization procedure for
statistical testing, suggesting an alternative based on
autoregressive models. Given those concerns, we also
tested for statistical significance based on this new pipe-
line in order to confirm the main results (see Supporting
Information). To verify the phase concentration at the
peak frequency, we ran a Rayleigh test of non-uniformity
for circular data with the MATLAB CircStat toolbox
(Berens, 2009).

In order to seek confirmation of sinusoidal patterns
in the grand average data, we fitted a sinusoidal model in
the form:

f xð Þ¼Asin 2πxf þθð Þ

where A is the amplitude of the underlying oscillation,
f is its frequency, and θ is the phase angle. The model
was fitted using MATLAB via non-linear least squares,
and adjusted R2 was computed in order to evaluate the
goodness of fit by taking the number of coefficients into

F I GURE 2 (a) Raw HR as a function of ISI. Dots represent group average HR at each ISI condition. Shaded areas represent SEM. Solid

lines show the exponential functions fit to the raw data. Coloured dashed lines show the average HR in the one-target trials. Black dashed

line shows performance at chance level. (b) Detrended results after the exponential function is removed from the raw data. Solid lines

represent detrended HR. Shaded area represent SEM.
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account. Significance of the goodness of fit was evaluated
non-parametrically by a permutation test: for 10,000 sur-
rogate datasets, obtained as described above, the
sinusoidal model was fitted and a corresponding
adjusted R2 was extracted. The fit was defined as signifi-
cant if the original adjusted R2 exceeded the 95% of per-
mutation values (Balestrieri et al., 2021; Ronconi &
Melcher, 2017).

2.4.1 | Data screening

As described above, we screened the participants by the
refresh rate of the computer they used to run the experi-
ment. The refresh rate was first collected by self-reporting
through a separate online survey after the experiment.
Actual refresh rate was then computed using the timing

information (time_elapsed) recorded automatically by
jsPsych during the experiment. Most participants’ actual
refresh rate matched the self-report one with five excep-
tions. Of all 179 participants, 148 participants had a
refresh rate of 60 Hz. We included only these participants
in the main data analysis.

Participants who had a mean HR lower than 50% in
the 0-ms ISI condition for the detection task were
excluded prior to any further analyses. Among the eight
participants flagged by the screening procedure, two
showed low hit rates across all ISI conditions and thus
were excluded from any further analysis. Another six par-
ticipants showed an unexpected behavioural pattern in
which their hit rate in the face detection task increased
as the ISI increased. This pattern is unexpected in that it
is opposite to the behavioural pattern found in the previ-
ous study adopting a similar dual-target RSVP paradigm

F I GURE 3 (a) Phase-locked amplitude of group spectra in the face (blue) and gender (gender) tasks. The dashed lines represent 95%

percentile of permutations used to define significance of the peaks before multiple correction. (b) Polar histogram of the phase angle

distribution for the highest peak of the face and gender tasks. (c) Distributions of variation (i.e., the distance between the means of positive

and negative individual detrended hit rates across ISIs) in face and gender task. (d) Dashed colour lines represent the detrended hit rate of

representative participants (S49 and S64). Solid lines represent the best sinusoidal fit at 7.5 Hz to the individual detrended data. The distance

between the dashed black lines represent the variation.
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(Drewes et al., 2015) and in the other 140 typical partici-
pants. In the final data analysis, only the 140 typical par-
ticipants were included.

3 | RESULTS

3.1 | A general oscillatory effect was
found in the face detection task

As described in the data analysis section, an FFT analysis
was performed on the detrended data to determine the
oscillatory effects in both tasks. There was a significant
peak at 7.5 Hz in the face task (p(corrected) = 0.017)
(Figure 3a), which accounted for around 6.4% variation
in the detrended data (S2). The pattern is consistent with
the high theta oscillations found in other types of visual
perception tasks (Balestrieri et al., 2021; Huang
et al., 2015). The result of Rayleigh test for non-
uniformity shows a significant phase coherence across
participants at the same frequency (z = 4.90, p = 0.007),
meaning that the participants were uniformly good or
bad at the face detection task at a given ISI (Figure 3b).
To check the effect size of the behavioural oscillation, we
computed the distance between the means of positive
and negative individual detrended hit rates across the
ISIs (i.e., variation; Figure 3c). The average variation in
the face task was 13.29% � 3.43%. Figure 3d shows the
detrended data of two representative participants. The
variation was represented by the distance between the
two dashed black lines. The result was confirmed by
the sinusoidal fitting analysis on the group data showing
that the best-fitting frequency was 7.52 Hz, although this

fit was not statistically significant in our permutation test
(adj R2 = 0.28, p = 0.27) (Figure 4).

In terms of the gender task, the nature of our task led
to a large number of missing trials because if the partici-
pants did not report seeing any face, there would not be a
gender task in that trial. To compensate for different pro-
portions of missing trials in different ISI conditions, we
replaced them with a guessing parameter (i.e., 50%). How-
ever, we still did not find any significant rhythms in the
gender task. The null result could be explained by a signifi-
cantly smaller variation in the gender task (10.96% �
2.63%) than the face task, t(139) = 6.02, p < 0.001, as
shown in Figure 3c,d. The lack of phase coherence
(Figure 3b) at 7.5 Hz also likely contributed to the null
result. It is possible that participants only reported face
present when they were confident about its gender, and
thus any oscillatory effect in the gender task was masked.
In future work, it might be interesting to test gender dis-
crimination on every trial in order to uncover whether face
perception is all-or-nothing (perceiving a face also results
in gender perception), but that remains an open question.

3.2 | The observed oscillation was driven
by male target faces

We then tested how the oscillation in the face task dif-
fered between female and male target faces. Trials were
grouped based on the gender of the targets. The same
analyses were implemented for each data subset as for
the pooled data. Figure 5a shows the detrended HR and
the amplitude of phase locked sum in female and male
face detection tasks. There was a significant peak at
7.5 Hz in male face detection tasks only (p(corrected)
= 0.042), suggesting that the previous finding was mainly
driven by the male faces (Figure 5b). Rayleigh test of non-
uniformity confirmed the phase concentration (z = 5.30,
p = 0.005) (Figure 5b). The sinusoidal fitting analysis also
showed a best-fit frequency at 7.57 Hz but failed to reach
statistical significance with this smaller number of trials
(adj R2 = 0.17, p = 0.52). A separate FFT analysis on tri-
als where the target was a female face showed two non-
significant peaks at 3 and 10.5 Hz (Figure 5b).

We also tested whether female and male participants
contributed to the 7.5 Hz oscillation in the male face
detection task differently. It is possible, for example, that
people perceive same-/different-gender faces in a differ-
ent way. We divided the dataset into female and male
participant groups. The FFT results showed a peak at
7.5 Hz in both male (p = 0.046) and female (p = 0.057)
participant groups (Figure 6), although neither reached
significance after multiple corrections. The reduced sam-
ple size might explain the non-significant results.

F I GURE 4 Detrended HR as a function of ISI, with related to

sinusoidal fitting. Left: Dots represent detrended HR at each ISI

condition. Shaded area represents SEM. Solid line represents the

sinusoidal function fitted to the data at 7.52 Hz. Right: Histogram

of adj R2 computed from each permutation (n = 10,000). Dashed

vertical line represents 95% percentile of permutation distribution

as threshold for significance. Blue solid line represents the observed

adj R2.
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3.3 | Convergence level varied across
conditions

Consistent with our hypothesis, detection performance
was best when both stimuli were presented near to each
other in time. As expected, peak performance was found

when the two faces were presented sequentially with no
intervening distractor, because this effectively doubled
the duration of the stimulus. However, this benefit was
not limited to the zero ISI condition but was also found
when there were one or more intervening stimuli, reduc-
ing as a function of ISI up to a limit (thus it was not just
probability summation; see Drewes et al., 2015). In gen-
eral, as the ISI increased, participants showed a large
decline in their HRs and eventually converged at the
level of 58.60% in the face detection task. There was a sig-
nificant difference between the convergence level and the
baseline performance (42.86% � 21.30%) in the one-
target trials (paired t test, p < 0.001). We found a time of
convergence of between 129.5 ms (10% above conver-
gence level) and 181.1 ms (5% above convergence level).
Interestingly, the time of convergence found here is con-
sistent with previous estimates of a temporal integration
window of around 100–150 ms (Wutz & Melcher, 2014).

An ANOVA was performed to check the convergence
levels in different experimental conditions. There was a
main effect of target gender, F(1, 132) = 8.37, p = 0.004,
ηp

2 = 0.060, with higher convergence level in the male
face detection task (59.31% � 22.09%) than the female
face detection task (57.88% � 21.98%). In other words,
participants were slightly better at detecting male faces.
The participant gender did not show a significant main
effect, nor did it interact with the target gender main
effect.

A main effect of target ethnicity, F(3, 396) = 6.25,
p < 0.001, ηp

2 = 0.05, and a main effect of participant
ethnicity, F(3, 132) = 2.83, p = 0.041, ηp

2 = 0.06, were
found. The Latino face stimuli were the easiest to detect
(60.43% � 22.20%), followed by Black faces (59.32% �
23.25%), White faces (57.35% � 22.31%), and Asian faces
(57.30% � 22.91%). Thus, there was a small (around 3%)
difference in performance for the different face stimulus
ethnicity groups. At the between-subject level, partici-
pants who identified as Latino showed the highest perfor-
mance level (65.21% � 19.34%), followed by those who
identified in the Black group (64.15% � 20.85%), the
Asian group (55.17% � 24.26%), and the White group
(52.89% � 19.98%). In other words, the participants that
self-identified as Latino were about 12% better at detect-
ing the RSVP face targets than the group self-identified as
White. No other main effects or interaction effects were
found.

4 | DISCUSSION

The current study aimed to test (1) whether the theta-
band oscillatory temporal organization, repeatedly
reported in low-level vision tasks, generalizes to more

F I GURE 6 Phase-locked amplitude when female (purple) and

male (blue) participants viewing male target faces. The horizontal

dashed lines represent 95% percentile of permutations used to

define significance of the peaks before multiple correction. The

data from both female and male participants showed a peak at

7.5 Hz.

F I GURE 5 (a) Detrended HR as a function of ISI in female

face detection task (light blue) and male face detection task (dark

blue). Solid lines represent detrended HR. shaded areas represent

SEM. (b) Left: Phaselocked amplitude of group spectra. The dashed

lines represent 95% percentile of permutations used to define

significance of the peaks before multiple correction. Right: Polar

histogram of the phase angle distribution for the highest peaks.
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complex high-level visual perception, and (2) whether
the exact frequency of oscillation differs based on task
demands and stimulus properties. We adopted the dual-
target RSVP paradigm and manipulated the ISI between
two identical face target images with the dense sampling
technique. The main finding was that face detection per-
formance fluctuated strongly as a function of ISI, with a
variability of around 13% in hit rate. This variability
reflected a strongly phase-locked 7.5-Hz behavioural
oscillation in the dual-target trials in the face detection
task as a function of ISI. Behavioural oscillations have
been demonstrated in a variety of visual tasks, including
low-level visual feature perception (Dugué et al., 2016;
Fiebelkorn et al., 2013; Landau & Fries, 2012), predictive
coding (Huang et al., 2015; Wang & Luo, 2017), and rapid
object categorization (Drewes et al., 2015). Our finding
adds to the existing literature and suggests a general
theta-band oscillatory temporal organization underlying
visual perception.

One interesting difference with previous studies is
that most have used a flash event to reset the attentional
rhythm (Drewes et al., 2015; Landau & Fries, 2012). In
the present study, we did not include any additional
events yet still found a robust phase consistency across
participants. Given the great importance of faces to
humans, the first face target might have been so salient
among the baseline object images that it induced a strong
attention capture, leading to a strong reset on ongoing
brain oscillations.

It is interesting to note that our high theta-band
(7.5 Hz) behavioural oscillation differs somewhat from
the alpha-band (10 Hz) oscillation found in Blais et al.
(2013). There are multiple possible reasons for this dis-
crepancy in frequency. Perhaps the most important dif-
ference is that the previous study did not investigate the
presence of a 7.5-Hz oscillation. Blais et al. (2013) probed
the presence of oscillatory patterns in face discrimination
by parametrically varying the faces’ signal-to-noise ratio
(SNR) at different frequencies and phases. This con-
strained the searchlight to the specific set of frequencies a
priori chosen (5, 10, 15, 20 Hz), which does not include
the frequency (7.5 Hz) in which we found significant
phase coherence across participants. Another possibility
is that Blais et al. (2013) may have tested a different sam-
pling rhythm due to the difference in task. In their study,
the face stimulus was visible to participants throughout
the trial, and so their task posed a different challenge to
the face-selective area compared to our study and other
previous neuroimaging studies using RSVP and varying
stimulus types (Gentile & Rossion, 2014; McKeeff
et al., 2007; Stigliani et al., 2015). As a result, the beha-
vioural oscillation in Blais et al. (2013) might reflect a
sensory sampling rate (VanRullen, 2016), which is

presumably driven by the occipital alpha activities and is
relatively stable for different kinds of stimuli (Gaillard &
Hamed, 2020).

What is the origin of the observed fluctuation in rapid
detection performance as a function of ISI? A possible
mechanism is suggested by a recent investigation of the
neural substrates of behavioural oscillations in the prim-
ing effect (Guo et al., 2020). The authors in that study
presented pairs of congruent or incongruent primes and
probes (faces/houses) separated by densely sampled ISIs
during fMRI recording. They revealed a 5-Hz rhythm in
classification accuracy of multivoxel activity patterns in
the FFA and the parahippocampal place area (PPA).
Those results support a functional link between beha-
vioural oscillations in visual object priming and the
dynamic activation patterns at the category-selective
areas of the brain. In terms of the present study, there
may have been competing interpretations of the stream
of events, both in terms of face versus non-face stimuli
and between male and female faces (which was task rele-
vant). In this case, the first target could have served as a
prime that generated two opposite predictions (face pre-
sent/absent) in high-level areas. The predictions were
then carried to the occipito-temporal visual areas by feed-
back signals in an interchanging way and gave rise to
rhythm in detection accuracy.

On the other hand, it should also be noted that the
frequency of the oscillation in our study (7.5 Hz) differs
from the 5 Hz finding in Guo et al. (2020) and Wang and
Luo (2017), both of which had faces as stimuli (as well as
the Drewes and colleagues 5-Hz rhythm for animal/
vehicle judgment). One possibility is that the face detec-
tion task that we used relies on somewhat different brain
areas, and/or requires fewer communications between
the areas, than the identification or categorization task
used in those other studies using faces. The simpler task
(detection) might require less specialized face processing
that could be resolved, for example, by the occipital face
area (OFA). There is MEG evidence that the OFA is acti-
vated much earlier (around 100–125 ms) than the fusi-
form face neurons (around 160–170 ms) (Halgren
et al., 2000; Yovel, 2016). Thus, face detection related pro-
cessing (and the prediction/interpretation of the stimu-
lus) might occur faster and earlier if it is supported by the
OFA, with its impact on the second target also occurring
earlier.

Another potential issue is the assumption, ubiquitous
in dense sampling studies, that events at each ISI are
instantaneous points in the time domain. This is also true
for our study, where we computed the behavioural oscil-
lation frequency as a function of the ISI and did not
include the two 33-ms face stimuli on either side of the
ISI. If the “unit” of face-ISI-face is considered as a whole,
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rather than just the ISI, the peak frequency would be
around 5 Hz. Thus, it might be reasonable to argue that
our results are consistent with a behavioural oscillation
between 5.0–7.5 Hz, which overlaps with the 4–6 Hz
estimates in previous studies of face perception
(Gentile & Rossion, 2014; McKeeff et al., 2007; Stigliani
et al., 2015).

Another difference between this study and the previ-
ous reports is that although the prime face was presented
briefly in their studies, the neural processing of the face
was sustained and uninterrupted by any backward mask
(e.g., Wang & Luo, 2017). In contrast, the neural signals
of the face image in our study were more transient due to
the nature of the RSVP paradigm. Therefore, the
observed oscillation could rise from local recurrent sig-
nals within the ventral visual pathway instead of a slower
long-range feedback processing. In line with this theory,
Mohsenzadeh et al. (2018) incorporated the RSVP para-
digm with a combined MEG-fMRI analysis to track the
processing of a face target among other object images.
They found that in addition to an early activation that
corresponded to an initial feedforward sweep, early visual
cortex (EVC) activated again about 10 ms after the face
target signal reached the inferior temporal cortex.
Although they did not test the behavioural implication of
the reactivation, it could lead to an increased detection if
there were a second face target presented at the same
time. For a 7.5-Hz effect, this would correspond nicely to
a reactivation at 133.3 ms, which fits plausibly into the
reported timing of re-entrance feedback from OFA to
EVC (Eick et al., 2020).

Alternatively, the current finding could be interpreted
in terms of rhythmic attentional sampling, which has
been suggested as involved in behavioural oscillations in
low-level visual tasks. This is supported by a series of
studies applying TMS at the fronto-parietal attention
regions and V1 at multiple delays (Dugué et al., 2011a,
2015, 2019). They suggest that these two regions are peri-
odically involved in visual search tasks. As proposed in
theories of rhythmic attention, the attention network at
the fronto-parietal regions of the brain exerts periodic
top-down control over the EVC through theta-band oscil-
latory neural activities, creating windows that favour
either external or internal processing (Dugué et al., 2019;
Fiebelkorn & Kastner, 2019; Hanslmayr et al., 2011; Jia
et al., 2017).

Importantly, these theories also indicate that the fre-
quency of behavioural oscillations differs depending on
task demands. When the task is more difficult and
requires more attention resources for internal processing,
the attention sampling rhythm will be slower (Balestrieri
et al., 2021; Chen et al., 2017). Because face detection is
easier than face identification or categorization, this

could predict a faster oscillation than that found by Guo
et al. (2020) and Wang and Luo (2017). This could also
account for the difference in oscillatory frequency
between the current study (7.5 Hz) and a previous study
using a similar dual-target RSVP paradigm with animals
and vehicles as targets (5 Hz) (Drewes et al., 2015).
Because humans are great experts at detecting faces, per-
haps more than animals or vehicles, in an ever-changing
world, face detection might demand fewer attention
resources.

Another interesting finding is that the 7.5-Hz beha-
vioural oscillation in the face detection task appeared to
be mainly driven by male faces. This effect (and the
7.5-Hz peak) did not differ across participant genders.
However, the female face detection task only evoked two
non-significant peaks at 3 and 10.5 Hz. This result, while
perhaps difficult to interpret, is not completely novel. In
a recent study, Bell et al. (2020) manipulated the delay at
which a face image (female, male, or androgynous) was
presented after participants pressed a button to start the
trial. In a subsequent gender discrimination task, partici-
pants’ response to the androgynous faces oscillated at dif-
ferent frequencies when the trial was preceded by a
female versus male face trial. They suggest that female
and male face recognition might rely on different facial
features (e.g., eyes, nose, or mouth) as cues, which could
be characterized by different oscillatory frequencies
(Liu & Luo, 2019). In our study, participants were also
prompted to attend to gender information and partici-
pants were significantly better at detecting the male faces.
It might be that the male face stimuli were intrinsically
more salient or easier to detect, or that the participants
chose them as a sort of “default” category in the judg-
ment (similar to the interpretation of Drewes and col-
leagues in terms of the differences in detecting animal
and vehicle stimuli). This interpretation is supported by
the convergence level analysis, which showed a signifi-
cantly higher performance in male versus female face
detection tasks.

Compared with the one-target trials, face detection
accuracy was generally enhanced, as expected by the pre-
sentation of two targets. In the dual-target trials, most
participants exhibited a decreasing trend in HR as the ISI
increased. Performance stabilized at around 130 ms, con-
sistent with a TIW of around 100–150 ms (Wutz &
Melcher, 2014). It is interesting to note that this TIW
would correspond to one cycle of the 7.5-Hz behavioural
oscillation (i.e., around 133 ms). Whereas two targets pre-
sented in separate oscillatory cycles facilitate perfor-
mance by simple probability summation (see Treisman
(1998) for example), those presented within the same
cycle may be temporally integrated together as one
salient target with a higher total accumulated signal.
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It is important to reiterate that this data was collected
as an online study. On the one hand, the online platform
provided an opportunity to collect a more diverse sample
of participants in terms of demographic variables such as
countries of birth and current residence. On the other
hand, the fact that participants all ran the study on their
own computer inevitably introduced larger variability in
the testing environment and less control over some
experiment parameters. Although participants were
instructed to block any environmental interference and
stay an arm’s length away from the screen, it was not
possible to verify compliance with these instructions. In
future, it would be useful to replicate these findings in
laboratory settings.

In summary, the present study shows a 7.5-Hz fluctu-
ation in rapid face detection performance, extending pre-
vious findings of behavioural oscillations in low-level
visual perception to high-level vision tasks. These results
are consistent with suggestions of a general theta-band
oscillatory temporal organization for visual perception.
Alternatively, the fact that our peak frequency was faster
than that found in other studies with faces and other
high-level categories (Drewes et al., 2015; Wang &
Luo, 2017) suggests that the exact frequency of oscillation
may depend either on specific task demands
(e.g., difficult/easy) and/or stimulus properties
(e.g., male/female faces or other categories).
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