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Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R)
injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and
decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and
mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species
(ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality
control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects
on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly
found free radicals scavengers, Sirt1 and CTRP9,may serve as promising pharmacological therapeutic targets. In this review, we will
focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential
mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart
disease (IHD).

1. Introduction

Diabetes mellitus (DM) is a major risk factor for ischemic
heart disease (IHD) [1].The alteration of glucose metabolism
leads to cardiac structural and functional perturbations,
including left ventricular (LV) dysfunction, cardiac hypertro-
phy, andmyocardial interstitial fibrosis. A number of diabetic
subjects suffer from the impairments of diastolic dysfunction
in an early stage without overt cardiovascular symptoms
[2–4]. Cardiac hypertrophy is originally a compensatory
response to pathological overload stress. However, the per-
sistent DM-induced hypertrophy ultimately becomes mal-
adaptive since it evolves into cardiac dysfunction, and finally
develops into heart failure [5–7]. Hyperglycemia directly
increases cardiac fibroblast and vascular smooth muscle cell
proliferation and is associated with endothelial dysfunction,
resulting in microvascular injury and hemodynamic alter-
ation, which contribute to the vulnerability of tissue ischemia
injury [8, 9]. Myocardial salvage after reperfusion may be
limited by deleterious changes in the microcirculation of

ischemic tissue [10]. All these pathophysiologic changes in the
diabetic heart lead to a susceptibility to ischemia/reperfusion
(I/R) injury [9, 11]. Consequences of increased cellular apop-
tosis and inflammation are present in the diabetic heart
subjected to I/R injury [12–14]. It is truly different from
the normotensivemechanisms sincemetabolic abnormalities
and alteration of oxidative stress and autophagy. Among all
these factors, oxidative stress and the mammalian target of
rapamycin (mTOR) signaling are two critical ones [15, 16].

Oxidative stress is defined as an imbalance between free
radicals production and destruction, which leads to multiple
negative effects on cellular metabolism. mTOR kinase is
also necessary for normal regulation of cardiac structure
and cardiometabolic homeostasis. It promotesmitochondrial
function in response to insulin resistance and affects cardiac
energy deprivation and ischemia [17, 18]. Both of them
participate in the pathogenesis and progression ofmyocardial
ischemia/reperfusion (MI/R) injury under diabetes, acting
as key regulators of cardiometabolism and cardiac func-
tion. However, the relationship between oxidative stress
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and mTOR signaling is complicated, since mTOR not only
modulates oxidative stress but is also affected by reactive
oxygen species (ROS) activation. In this review, we will
focus on the role of oxidative stress and mTOR signaling in
the pathophysiology of I/R injury in the diabetic heart and
highlight their current interactions in an effort to provide
some evidence for the potential cardiometabolic targeted
therapies for IHD.

2. The Vulnerability of Diabetic Heart
Subjected to MI/R Injury

DM severely damages cardiac energy homeostasis, leading
to the cardiac dysfunction. It is well recognized that popu-
lations associated with DM were more likely to develop IHD
and their long-term outcome is worsened [19]. Importantly,
physical or pharmacologic ischemic preconditioning (IPC)
and ischemic postconditioning (I-post) actions are ineffective
under diabetic conditions [20–22], suggesting that the dia-
betic heart may be resistant to common cardioprotections.

2.1. Impaired Activation of Prosurvival Pathways. In the dia-
betic heart, the alteration of reperfusion injury salvage kin-
ase (RISK) signaling significantly suppressed the cardiopro-
tective effects of IPC [23, 24]. Studies demonstrated that
glycogen synthase kinase-3𝛽 (GSK-3𝛽) was activated by
insulin resistance, thus inhibiting the prosurvival pathway
of the phosphoinositide-3 kinase- (PI3k-) Akt signaling and
the Janus-activated kinase- (JAK-) transcription 3 (STAT3)
signaling, finally blunting the cardioprotective effects of I-
post [25, 26]. Moreover, our previous study proved that
adiponectin (APN) resistance existed in the diabetic car-
diomyocytes and impaired APN’s cardioprotection against
MI/R injury [27]. APN resistance led to the dysfunc-
tional APN-AMP-activated protein kinase (AMPK) axis and
blocked the AMPK-independent antiperoxide/antinitration
pathway, increasing the vulnerability of diabetic cardiomy-
ocytes to I/R injury [27, 28].

2.2. Endoplasmic Reticulum (ER) Stress. Disturbed cardio-
metabolic homeostasis facilitates ER stress.Theunfolded pro-
tein response (UPR) was proved to be involved in the patho-
genesis of DM [29, 30]. Miki et al. demonstrated that DM-
induced ER stress augmentation enhanced themitochondrial
permeability transition pore (mPTP) opening and increased
mitochondrial calcium overload via inhibition of extracellu-
lar regulated MAP kinase (ERK) 1/2- GSK-3𝛽 pathway [31].
In contrast, suppression of ER stress could reducemyocardial
infarction (MI) size in high fat diet- (HFD-) induced type
2 diabetes mellitus (T2DM) [32]. Our recent study found
that preconditioning of C1q/TNF-related protein (CTRP)
9, a newly identified homologous of APN, protected the
diabetic heart against I/R injury by reducing ER stress and
inflammatory response [33].

2.3. Increased Basal Oxidative State and Impaired Antioxidant
Signaling. Hyperglycemia enhances oxidative stress, pro-
motes profibrogenic genes expression, and aggravates MI/R

injury [34, 35]. ROS accumulation not only results from over-
production of free radicals, but also may be a consequence of
decreased free radicals scavenger systems, including superox-
ide dismutase (Cu/Zn-SOD and Mn-SOD), catalase (CAT),
and glutathione peroxidase (GPx) [36]. Cardiac expression
of GPx levels is reduced in the diabetic apolipoprotein E-
deficient mice [37]. Meanwhile, attempts to attenuate I/R
injury using enzymatic and nonenzymatic antioxidants have
not been universally successful in DM [38, 39].

2.4. Autophagy and mTOR Signaling. Autophagy is a cellu-
lar degradation pathway that crucially mediates cardio-
metabolism. It has been demonstrated that autophagy was
required for IPC via mTOR signaling and Parkin-dependent
pathway [40, 41]. However, mitochondrial biogenesis is
impaired in the diabetic heart, following the alteration of
autophagic activity. Hyperglycemia largely inhibited cardiac
autophagosome and autolysosome formation by modulating
mTOR-ULK1 signaling [42]. It deteriorated the cardioprotec-
tion of remote IPC (rIPC) because of the increase in nitrative
stress and inhibition of autophagy via activation of mTOR
signaling [43, 44].

3. The Role of Oxidative Stress in MI/R
Injury under Diabetes

Oxidative stress is regarded as an imbalance between the
generation and elimination of free radicals due to increased
ROS and/or inadequate antioxidant defenses [45]. It develops
directly or indirectly from hyperglycemia, hyperlipidemia,
and insulin resistance underDM [15, 46] and in turn, disturbs
metabolic hemostasis and impairs cardiac function. When
available in appropriate amounts, free radicals act as signal
transduction molecules while in large excess, they lead to
DNA degeneration, lipid oxidation and membrane protein
degeneration. However, in the diabetic heart, insulin resis-
tance increases cardiomyocytes fatty acid oxidation together
with a reduction of prostacyclin synthesis and endothelial
nitric oxide (eNOS) synthase activity [47].These changes lead
to generation of ROS and reactive nitrogen species (RNS),
endothelium dysfunction, formation of advanced glaciation
end products, and alteration of the mitochondrial quality
control, all of which contribute to the deleterious MI/R
injury under diabetes [48]. Thus, DM-induced oxidative
stress can be a primary component that initiates the onset and
progression of cardiac dysfunction in MI/R injury (Figure 1).

3.1. ROS and RNS Production. ROS are a group of short-
lived, low-molecular-weight compounds derived from vari-
ety of reactions oxygen undergoes, including superoxide
(∙O
2

−), hydroxyl (∙OH), hydrogen peroxide (H
2
O
2
), and

hypochlorous acid (HOCl). The generation of ROS in the
heart is few under physiologic conditions. ∙O

2

− leakages from
mitochondrial electron transport chains (ETC) and soon be
catalyzed into less cytotoxic H

2
O
2
by SOD catalyzes, then

finally be converted into water and molecular oxygen by
either CAT or GPx system [45]. However, the homeostasis
of cardiac oxidative state would be broken under DM since
the generation of ∙O

2

− increased markedly. The accumulated
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Figure 1: DM-induced higher basal oxidative state plays a master
role in the progression of cardiometabolic disorders and negatively
affects the MI/R injury. In this state, ROS and RNS accumulate
dramatically. They initiate the reaction of ∙OH in parallel with
the ONOO−/ONOOH generation, which becomes strong cytotoxic
oxidant and causes oxidative damage and nitration. These then
lead to endothelium dysfunction, formation of advanced glycation
end products, and alteration of the mitochondrial quality control,
all contributing to the deleterious MI/R injury in diabetic hearts.
Free fatty acid (FFA); protein kinase C-𝜃 (PKC-𝜃); nuclear factor of
kappa light polypeptide gene (NF-𝜅B); superoxide (∙O

2

−); hydrogen
peroxide (H

2
O
2
); glutathione peroxidase (GPx); catalase (CAT);

hydroxyl (∙OH); tetrahydrobiopterin (BH4); nitric oxide synthase
(NOS); inducible NOS (iNOS); nitric oxide (∙NO); peroxynitrite
(ONOO−); peroxynitrous acid (ONOOH); nitrogen dioxide (NO

2
);

mitochondrial permeability transition pore (mPTP).

∙O
2

− is highly diffusible and damages cardiomyocytes [49].
H
2
O
2
is more likely converted to ∙OH other than scavenged

by CAT or GPx [50]. Moreover, hyperglycemia increases
cardiac free fatty acid (FFA) levels, which extensively leads
to a great rise of ROS formation and a reduction of GPx by
activating nuclear factor of kappa light polypeptide gene (NF-
𝜅B) [51, 52] and its upstream mediator protein kinase C-𝜃
(PKC-𝜃) [53]. ROS enhances mPTP opening, contributing
to myocardial contractile dysfunction and tissue damage in
ischemia-reperfused rat hearts [54].

Diabetic myocardial RNS production is also greatly
increased, including radicals nitric oxide (∙NO) and nitrogen
dioxide (∙NO

2

−). The rapid reaction of superoxide with
nitric oxide (NO) forms a highly reactive intermediate,
peroxynitrite (ONOO−), under MI/R injury. With increased
intracellular acidification, ONOO− becomes more proto-
nated to form peroxynitrous acid (ONOOH), which then
rapidly turns into nitrogen dioxide (NO

2
) and ∙OH. The

ONOO−/ONOOH becomes strong cytotoxic oxidant and
causes oxidative damage and nitration, which contributes in
parallel with the reaction of ∙OH generation during MI/R
[45].

3.2. Uncoupled NOS. Diabetic mice exhibited increased risk
of aggravated MI/R injury primarily because of impaired

NO bioavailability. ONOO− may uncouple eNOS via oxi-
dation of tetrahydrobiopterin (BH4), thus leads to further
superoxide generation and an enhanced NO depletion [55].
However, reduced availability of BH4 was identified in dia-
betic rat vessels and endothelial cells. DM-induce NADPH
increase further predisposes the heart to NOS uncoupling
and ONOO− generation [56]. Maalouf et al. demonstrated
that S-glutathionylation uncoupled eNOS and subsequently
impaired endothelium-dependent vasodilation under oxida-
tive stress [57]. Moreover, inducible NOS (iNOS) is acti-
vated in DM by inflammatory mediators, which makes
iNOS uncoupling a predominant contributor for oxida-
tive/nitrosative stress in diabetic myocardium [58].

3.3. Disturbing theMitochondrialQuality Control. Mitochon-
dria are the major sites of ROS production (0.2% to 2% of
total oxygen taken by cells). These ROS can be scavenged by
mitochondrial quality control to keep themitochondria func-
tional [59]. However, in the diabetic heart, mitochondrial
quality control is damaged together with impairedmitochon-
drial respiratory capacity, leading to a dramatic accumulation
of ROS [15]. Importantly, increased mitochondrial H

2
O
2

emission then damages DNA, proteins, and lipid in mem-
brane components and finally results in mitochondrial dys-
function [60]. The myocardium of db/db mice exhibited inc-
reased mitochondrial H

2
O
2
generation, and overproduction

of mitochondrial ROS occurring in conjunction with aug-
mented electron delivery from increased fatty acid oxidation
[51]. Taken together, these studies suggest that mitochondrial
quality control regulates cellular oxidative stress, while, if
damaged, oxidative stress in turn might affect mitochondrial
dysfunction under DM.

4. The Dual Role of mTOR Signaling in MI/R
Injury under Diabetes

mTOR is a 289 kDa serine/threonine kinase that crucially
mediates energy metabolism [61]. It has two distinct multi-
protein complexes, mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2) [62–64]. mTORC1 regulates cellu-
lar homeostasis, stress responses, energy metabolism and
autophagy by relying on the regulatory associated protein
of mTOR (Raptor). In contrast, mTORC2 treats rapamycin-
insensitive companion of mTOR (Rictor) as the compo-
nent rather than Raptor and controls cell growth, survival,
migration, and cell cycle progression [65]. mTOR kinase
is necessary for normal regulation of cardiac structure and
cardiometabolism. It also takes part in the maintenance
of normal microvascular barrier function and endothelial
permeability. However, the role of mTOR signaling in MI/R
injury is still controversial. Researchers have found both
cardioprotective and cardiotoxic effects of mTOR signaling
when using its inhibitor-rapamycin or transgenic animals
[66]. Besides, there is a complicated interplay betweenmTOR
signaling and oxidative stress (Table 1).

4.1. Cardiotoxic Effects of mTOR Signaling. Chronic increase
of mTORC1 activity in T2DM causes insulin resistance,
which contributes to hyperinsulinemia and hyperglycemia
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[79–81]. Evidences showed that mTORC1 was activated in
the hearts of obese and diabetic animals during reperfu-
sion, increasing the vulnerability of MI/R injury. In HFD-
induced obesity mice, cardiac autophagosome formation was
decreased, accompanied by cardiac dysfunction, which could
be reversed by rapamycin (2mg/kg, intraperitoneal injection,
i.p.) and worsened by genetic APN disruption [82]. mTOR
phosphorylates the mammalian homologue of autophagy
related gene 13 (Atg13) and the mammalian Atg1 homologues
UNC-51-like kinase 1 (ULK1) and ULK2 to prevent the pro-
gression of autophagy. Sciarretta et al. confirmed that rapa-
mycin administration (1mg/kg, i.p.) or partial mTOR dele-
tion significantly reduced infarct size after ischemia through
the restoration of autophagy [83]. Our previous studies also
found that hypertension-induced mTOR activation altered
cardiac morphology, function, and autophagy, which could
be rescued by cardiac-specific overexpression of metalloth-
ionein [84, 85].

Importantly, activation of mTORC1 other than mTOR2
signaling affects cardiac metabolism and the susceptibility to
ischemia injury [67]. A patient-level meta-analysis of ran-
domized trials showed that selective activation of mTORC2
with concurrent inhibition of mTORC1 decreased cardiomy-
ocytes apoptosis and tissue damage after MI [86]. It seems
that different complex of mTOR performs different car-
diac functions. Another cardiotoxic mTOR effect is altering
STAT3 signaling pathway in the diabetic heart. Das et al.
found that inhibition of mTOR by rapamycin (0.25mg/kg,
i.p.) before ischemia reduced I/R-induced MI in CD-1 mice
via activating the JAK2-STAT3 signaling [87]. This was
further proved in cardiac-specific STAT3-deficient mice [88].

4.2. Cardioprotections of mTOR Signaling. There are four
major mTOR-related cardioprotective pathways: (1) insulin-
mediated PI3K/Akt/mTOR signaling pathway; (2) GSK-3𝛽
inhibition signaling pathway; (3) mTOR-dependent angio-
genesis signaling pathway; (4) mTORC2 activation signaling
pathway. Cardiac PI3K/Akt causes insulin-stimulated glucose
uptake and induces acute mTOR activation, thus improving
cardiomyocytes survival and function [73]. Studies found that
the PI3K/Akt/mTOR signaling pathway provided efficient
cardioprotection against I/R injury induced by insulin [74].
Aoyagi et al. further observed that cardiac-specific transgenic
mice overexpressing mTOR suppressed I/R-induced inflam-
mation and necrosis, inhibited cardiac fibrosis in adverse
LV remodeling in diet-induced obesity mice [89]. They
demonstrated that Akt phosphorylation was higher inmTOR
overexpressed mice than WT mice under HFD conditions
and it was unlikely that mTOR’s cardioprotective effects were
mediated through autophagic activity. Zhang et al. also demo-
nstrated that Lin28a overexpression protected against MI/R
injury in diabetic mice through the insulin-PI3K-mTOR
pathway [90].

mTOR’s cardioprotection required the inhibition of GSK-
3𝛽 to reduce the reperfusion injury through mTORC1 hyper-
activation [85]. During periods of I-post, mTOR prevents
cardiomyocytes apoptosis via mTOR-dependent GSK-3𝛽
inhibition mechanisms. mTORC1 regulates mPTP opening
and promotes mitochondrial biogenesis, which may favor

cardiac recovery after MI/R and promote the upregulation of
antioxidant genes via the activation of proliferator-activated
receptor 𝛾 coactivator-1𝛼 (PGC-1𝛼) [85, 91, 92].

The altered lipid metabolism induced by insulin resis-
tance results in a propensity for microvascular barrier dys-
function, accelerated atherosclerosis, increased vessel wall re-
activity, and plaque complications. Angiogenesis is an impor-
tant component of cardioprotection against I/R injury, which
has been proved to be mechanically via mTOR-dependent
pathway. Inhibition of mTOR signaling by rapamycin (2𝜇M)
for 1 h leads to subsequent impaired angiogenesis in aortic
endothelial cells [75]. Loss of mTOR activity by rapamycin
(5–10 ng/mL) also blocks endothelial proliferation and angio-
genesis [93] aswell as the proliferation of endothelial progeni-
tor cells ex vivo [94]. Hypoxia activates themTOR pathway to
promote angiogenesis and cell proliferation [93, 95]. mTOR
activation enhances the activity of HIF1𝛼 by inhibiting pro-
teolytic degradation, resulting in elevated VEGF expression.
This effect is reversible by rapamycin (25 nM for human
umbilical vein endothelial cells and 50 nM for HEK293 cells)
[68, 69].

Study found that the cardioprotective effects mediated by
mTOR overexpression were partly dependent on mTORC2
activation, which was beneficial to cardiomyocytes survival
against I/R injury as well as chronic ischemic remodeling
[96]. Considering that mTORC2 is rapamycin-insensitive,
it is reasonable that using rapamycin to inhibit mTORC1
activity also presents cardioprotective actions against MI/R
injury [97]. However, there was still little understanding
of the complexity of mTORC2’s regulation and its roles in
cardiac functions.

4.3. Interactions between Oxidative Stress and mTOR Signal-
ing. Cardiac mTOR is considered as an important regulator
of oxidative stress by promoting mitochondrial biogenesis
and oxidativemetabolism through Ying-Yang 1- (YY1-) PGC-
1𝛼 pathway [92]. Meanwhile, mTOR modulates autophagy,
increases mitochondrial clearance and protects cardiomy-
ocytes fromoxidative stress-induced toxicity [72, 98] through
the activation of protein kinase B (PKB) [99]. In contrast,
other studies found that in cardiac mTOR disrupted mice,
fatty acid oxidation is significantly decreased, whereas glu-
cose oxidation is increased [100]. mTOR regulates oxida-
tive stress-induced endothelium dysfunction. Inhibition of
mTORC1 either with rapamycin or by S6K1 silencing recou-
ples eNOS function, improves NO production, and inhibits
O
2

− generation in the rat aortas [71]. mTOR also modulates
cardiac fibrosis in the models of post-MI remodeling and
cardiac hypertrophy [70, 101, 102] while treatment with
rapamycin reduced ROS production in the myofibroblasts.

On the other hand, oxidative stress regulates mTORC1
ordinarily. ROS production contributes to the inhibition
of GSK-3𝛽 and mTOR signaling [85]. Alternative origins
of ROS, such as NADPH oxidase, may as well provoke
mTOR activation and subsequent impair autophagy [76]. An
intriguing link between peroxisomes, oxidative stress and
autophagy has been recently described. Peroxisomal ROS has
been shown to suppress mTORC1 activity, in models of the
tuberous sclerosis complex signaling node TSC1 and TSC2
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proteins [77, 103]. In contrast, Vigneron et al. found that,
in the isolated-perfused mouse heart, IPC protected against
I/R injury via inhibition of GSK-3𝛽 and a constant opening
of mitoKATP with ROS generation to activate the mTOR
pathway and induce cardioprotection [104].

5. Potential Cardiometabolic Target
against Diabetic MI/R Injury

Although animal studies have found potential regulator aim-
ing at oxidative stress ormTOR signaling under experimental
diabetic conditions, clinical studies are still disappointing.
Thus, new therapeutic targets as well as efficient cardioprotec-
tions against DM-induced MI/R injury are urgently needed.

5.1. Metformin. It is well recognized that metformin could
reduce cardiovascular end points of T2DM independently
from its glucose-lowering effects. Administration of met-
formin significantly attenuates I/R injury via relieving ER
stress [105] and activating of AMPK-eNOS prosurvival path-
way in both nondiabetic and diabetic mice [105, 106]. How-
ever, further research demonstrated that metformin effec-
tively attenuated LV hypertrophy and dysfunction by acti-
vating mTOR, p70S6K (Thr389), and S6 phosphorylation
in both wild-type and AMPK𝛼2 KO mice, suggesting that
metformin attenuated myocardial mTOR signaling indepen-
dently of AMPK𝛼2 activation [107]. Metformin reduces ROS
generation and ameliorates oxidative stress-induced apop-
tosis and inflammation in cardiomyocytes [108] and endothe-
lial cells [109]. It also protects against I/R-inducedmyocardial
fibrosis by inhibiting fibrotic factors, includingTGF-𝛽1, TNF-
𝛼 and basic fibroblast growth factor (bFGF) in the circulation
and the myocardium [110, 111]. As a routine oral agent for
T2DM, metformin might be a potential pharmacological
therapeutic target to protect against MI/R injury under
diabetes on the regulation of cardiac oxidative stress and
mTOR signaling.

5.2. Sirtuin 1 (Sirt1). Sirt1 is a member of Sirtuins family [77].
It controls cellular processes and maintains metabolic home-
ostasis by reducing apoptosis, attenuating inflammation, and
modulating oxidative stress [112, 113]. It is a critical regu-
lator in DM-induced MI/R injury. Sirt1-mediated PGC-1𝛼
activation could directly respond to H

2
O
2
-induced oxidative

stress on the regulation of glutathione GPx1, CAT, and Mn-
SOD [114]. Overexpression of Sirt1 inhibited oxidative stress
and reduced MI/R injury via modulating eNOS activity
under diabetic condition [113]. There is a crosstalk between
AMPK, Sirt1 and mTOR signaling in the regulation of
oxidative stress and cardiomyocytes autophagy [115–117].
Sirt1 deacetylates FoxO3a while mTORC1 can inhibit FoxO-
mediated transcription of antioxidant gene targets, including
the antioxidants Mn-SOD and catalase [116]. Meanwhile,
Sirt1 positively regulates transcription of Rictor, activating the
mTORC2 signaling by triggering a cascade of Akt and FoxO
phosphorylation. Sirt1 deficiency mice performed increased
ROS production and impaired mTORC2 signaling, leading
to insulin resistance that could be largely reversed with
antioxidant treatment [78]. Considering its specific functions

in modulating oxidative stress, mTOR signaling, and mito-
chondrial dysfunction perturbed in the diabetic heart, Sirt1
may be a promising novel therapeutic target for MI/R injury
under DM.

5.3. CTRP9. CTRP9 is a newly found APN paralog. It pro-
tects against obesity and T2DM through anti-inflammation
and antiapoptotic actions. Increasing the circulating CTRP9
level is a beneficial action against HFD-induced obesity and
glucose intolerance [118], whereas CTRP9-deficiency mice
performed exacerbated insulin resistance [119]. Importantly,
CTRP9 performs cardioprotective effects via inhibition of
oxidative stress. Kambara et al. demonstrated that admin-
istration of exogenous CTRP9 inhibited oxidative stress,
attenuated cardiomyocytes apoptosis, and suppressed inflam-
matory reactions in the ischemic heart [120, 121]. Su et al.
observed the same results in the HFD-induced T2DM mice,
implicating that differing fromAPN, there is no CTRP9 resis-
tance in DM [122]. Our recent finding proved that CTRP9
protected the diabetic heart against I/R injury by reducing
ER stress and inflammatory response [33]. Interestingly, com-
pared to general pharmacologic antioxidants, the amount of
cardiac endogenous CTRP9 is abundant, much higher than
its expression in adipocytes and circulation, suggesting that
CTRP9 may be a novel cardiokine. These findings indicate
that CTRP9 may also be a potential therapeutic target for
diabetic cardiac complications.

6. Conclusions

It is well established that DM aggravates MI/R injury and
diabetic IHD patients experience worse clinical outcomes.
Oxidative stress and mTOR signaling are master mediators
of cardiometabolism and MI/R injury. ROS and RNS accu-
mulation induces cardiomyocytes damage by direct oxidation
of proteins, reactive lipid peroxidation products, and interac-
tion with DNA. Uncoupling NOS tigers oxidation/nitration
reaction and disturbing the mitochondrial quality control
causes mitochondrial dysfunction. These may be mecha-
nisms of oxidative stress impairing the diabetic heart.

When turning to mTOR signaling, it is still controversial
to clearly understand the role of mTOR signaling in MI/R
injury under DM since both cardioprotective and cardiotoxic
effects were observed in vivo and in vitro. The conflicted
outcomes could be explained by the following. (1) There
is different duration of rapamycin treatment [123]. Study
demonstrated that inhibition of mTORC1 before ischemia
reduced the size of MI while rapamycin was not cardio-
protective if administered before the reperfusion phase [87].
Moreover, different duration of rapamycin treatment con-
tributes to the alteration of metabolic homeostasis. Houde
et al. found that administration of rapamycin for two
weeks could enhance the insulin level, leading to a glucose
intolerance and insulin resistance in mice. However, more
than six weeks treatment could improve insulin sensitivity
[124]. (2) There is different phosphorylation site of mTORC1.
mTORC1 predominately phosphorylated the specific site
encompassing 4E-BP1 (T37) and (T46) that are rapamycin
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Figure 2: The diabetic heart is susceptible to MI/R injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress,
increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts to be more vulnerable to MI/R
injury and be resistant to ischemic preconditioning (IPC) or ischemic postconditioning (I-post). Oxidative stress and mTOR signaling
crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Reperfusion injury salvage kinase (RISK); phosphoinositide-3
kinase (PI3k); glycogen synthase kinase-3𝛽 (GSK-3𝛽); signal transducer and activator of transcription (STAT); autophagy related gene 13
(Atg13); mammalian Atg1 homologues UNC-51-like kinase (ULK); Janus kinase 2 (JAK2); extracellular regulated MAP kinase (ERK).

resistant. However, mTORC1 could phosphorylated S6K1
(T389), which is rapamycin sensitive under conditions. (3)
There are degrees of mTOR activation in the regulation of
autophagy. Yu et al. demonstrated that mTOR signaling was
inhibited during autophagy initially, but reactivatedwith pro-
longed autophagy. The progress was autophagy-dependent
and required the degradation of autolysosomal products.The
enhancedmTOR activity in verse attenuated autophagy [125].
(4) There are different cardiac functions of mTORC1 and
mTORC2. mTORC1 presents both beneficial and detrimental
effects on MI/R injury while mTORC2 show mostly cardio-
protective actions as its cellular survival functions [96, 97].
(5) There are inescapable defects of loss-of-function animal
models. Conventional ablation of mTOR in mice results
in embryonic death [126–128] while cardiac-specific mTOR

knockout mouse also shows fatal, dilated cardiomyopa-
thy [64]. Other deletions of mTOR downstream molecules
including Raptor and S6K1 may partially inhibit mTOR sig-
naling and also be detrimental since not only themaladaptive
but also the physiological functions of the kinase are ablated.

The interplay between oxidative stress and mTOR signal-
ing is complicated, sincemTOR not onlymodulates oxidative
stress but also is affected by oxidative stress activation [129].
However, it is unlikely that these fully explain what occurs in
the diabetic heart, considering its complicated pathophysio-
logical conditions. Further studies using appropriate in vivo
models of DM are needed (Figure 2).

No therapeutic strategy has yet been demonstrated clin-
ically effective against cardiac injury in diabetic population.
Antihyperglycemic agent metformin and newly found free
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radicals scavengers, Sirt1 and CTRP9, may serve as promising
pharmacological cardiometabolic targeted therapeutic genes.
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[124] V. P. Houde, S. Brûlé, W. T. Festuccia et al., “Chronic rapamycin
treatment causes glucose intolerance and hyperlipidemia by
upregulating hepatic gluconeogenesis and impairing lipid
deposition in adipose tissue,” Diabetes, vol. 59, no. 6, pp. 1338–
1348, 2010.

[125] L. Yu, C. K. McPhee, L. Zheng et al., “Termination of autophagy
and reformation of lysosomes regulated by mTOR,”Nature, vol.
465, no. 7300, pp. 942–946, 2010.

[126] Y.-G. Gangloff, M. Mueller, S. G. Dann et al., “Disruption of
the mouse mTOR gene leads to early postimplantation lethality
and prohibits embryonic stem cell development,”Molecular and
Cellular Biology, vol. 24, no. 21, pp. 9508–9516, 2004.

[127] M. Murakami, T. Ichisaka, M. Maeda et al., “mTOR is essential
for growth and proliferation in early mouse embryos and
embryonic stem cells,” Molecular and Cellular Biology, vol. 24,
no. 15, pp. 6710–6718, 2004.

[128] D. A. Guertin, D. M. Stevens, C. C. Thoreen et al., “Ablation
in mice of the mTORC components raptor, rictor, or mLST8
reveals that mTORC2 is required for signaling to Akt-FOXO
and PKC𝛼, but not S6K1,” Developmental Cell, vol. 11, no. 6, pp.
859–871, 2006.

[129] Y. Rong, C. K. McPhee, S. Deng et al., “Spinster is required
for autophagic lysosome reformation and mTOR reactivation
following starvation,” Proceedings of the National Academy of
Sciences of theUnited States of America, vol. 108, no. 19, pp. 7826–
7831, 2011.


