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We developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor
cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We

designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual
binary-segmentation problems for each subcomponent. We implemented a 3-fold cross-validation to general-
ize the network’s performance. The mean cross-validation Dice-scores for whole tumor (WT), tumor core (TC),
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and enhancing tumor (ET) segmentations were 0.92, 0.84, and 0.80, respectively. We then retrained the
individual binary-segmentation networks using 265 of the 285 cases, with 20 cases held-out for testing. We
also tested the network on 46 cases from the BraTS2017 validation data set, 66 cases from the BraTS2018
validation data set, and 52 cases from an independent clinical data set. The average Dice-scores for WT,
TC, and ET were 0.90, 0.84, and 0.80, respectively, on the 20 held-out testing cases. The average Dice-

scores for WT, TC, and ET on the BraTS2017 validation data set, the BraTS2018 validation data set, and
the clinical data set were as follows: 0.90, 0.80, and 0.78; 0.90, 0.82, and 0.80; and 0.85, 0.80, and
0.77, respectively. A fully automated deep learning method was developed to segment brain tumors into
their subcomponents, which achieved high prediction accuracy on the BraTS data set and on the independ-
ent clinical data set. This method is promising for implementation into a clinical workflow.

INTRODUCTION

Gliomas are the most common primary brain malignancy and
represent a heterogeneous set of tumors. Gliomas are classically
divided between high- and low-grade tumors based on their histo-
pathology, immunohistochemistry, and genetic profiles. Glioma
segmentation based on magnetic resonance imaging (MRI) can be
useful in predicting aggressiveness and response to therapy.
Currently, MRI segmentation of gliomas is largely based on imag-
ing correlates of histopathological findings. Gliomas are generally
segmented into active tumor, necrotic tissue, and surrounding
edema (ED) based on conventional MRI sequences. Accurate
image-based segmentation depends on the ability to differentiate
the MRI signal of these subcomponents. Multiple MRI sequences
that generate variable tissue contrast are simultaneously used for
glioma segmentation (1). Manual tumor segmentation is a tedious,

time-intensive task that requires a human expert to delineate com-
ponents. Therefore, manual tumor segmentation is often fraught
with intra-rater and inter-rater variability, resulting in imprecise
boundary demarcation (2, 3). An intra-rater variability of 20% and
an inter-rater variability of 28% has been reported for manual seg-
mentation of brain tumors (4, 5).

To address these shortcomings, automated machine learning
algorithms have been developed to segment gliomas. Machine
learning algorithms have been shown to improve glioma seg-
mentation by decreasing variability and the time required for
manual segmentation (2, 3, 6). Glioma segmentation is essen-
tially a voxel-level classification task. Algorithms for voxel-level
classification can be broadly divided into classic machine learn-
ing techniques, such as support vector machines, and deep learn-
ing methods, such as convolutional neural networks (CNNs).
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CNN-based methods have been shown to outperform classic
machine learning methods (3, 7-12).

The Multimodal Brain Tumor Image Segmentation
Benchmark (BraTS) challenge was established in 2012 to gauge
and facilitate the progress of automated glioma segmentation (4,
13). The BraTS data set represents a valuable, publicly available
data set for developing and evaluating tumor segmentation algo-
rithms. The BraTS data set consists of multiparametric magnetic
resonance (MR) scans of patients with low- and high-grade gli-
oma that have been manually segmented by expert raters. The
BraTS data are provided with the following 3 ground truth labels
including (1) enhancing tumor (ET), (2) nonenhancing tumor
including necrosis (NEN), and (3) ED. Various algorithms in the
BraTS challenge are evaluated based on label outputs of whole
tumor (WT), tumor core (TC), and ET. WT consists of enhancing
components, nonenhancing components including necrosis, and
edema (ET + NEN + ED). TC consists of enhancing components
and nonenhancing components including necrosis (ET + NEN).
Enhancing tumor consists of just the enhancing component. To
evaluate an algorithm’s performance, data can be uploaded to
the BraTS validation server that reports DICE coefficients for TC,
WT, and ET (14).

For the 2017 BraTS challenge, there were 46 cases provided
on the BraTS validation data set. In 2018, the validation set was
expanded to 66 cases, including the previous 46. The training
data set remained the same between 2017 and 2018. As such, the
BraTS 2018 data set allows developers to compare results with
the top performers from 2017 and 2018. The BraTS validation
server calculates DICE scores for WT, TC, and ET, but it does not
provide DICE scores for ED and NEN. Although ED and NEN
DICE scores are not reported by the BraTS server, they can be of
value in comparing algorithmic performance. The BraTS chal-
lenge also evaluates performance on a held-out test data set;
however, these data are available for only a brief time period dur-
ing the challenge.

We developed a 3D Dense UNet CNN for glioma segmentation
that can be easily incorporated into clinical workflow. The algo-
rithm’s performance was evaluated using the BraTS validation
server for WT, TC, and ET. The algorithm was also tested on an in-
dependent clinical data set from Oslo University Hospital, Oslo,
Norway, and the DICE scores for WT, TC, and ET are reported using
expert segmentation as the ground truth. In addition, we also
report DICE scores for ED and NEN for both data sets.

MATERIALS AND METHODS

BraTS Data Set

Multiparametric MRI data (T2w, T2w-FLAIR, T1, and T1 postcon-
trast) were obtained from the BraTS2018 data set. The BraTS2018
data set consisted of a total of 285 subjects: 210 subjects with
high-grade glioma (HGG) and 75 subjects with low-grade glioma
(LGG) (4, 5). The data set included 3 ground truth labels for (1)
ET, (2) NEN, and (3) ED. The BraTS data were already reoriented
to LPS (left posterior-superior) coordinate system, coregistered to
T1C, registered to the SR124 template and resampled to 1-mm,
and skull stripped. The images were N4bias corrected (13, 15) to
remove the RF inhomogeneities and intensities were normalized
to zero mean and unit variance before using the data.
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Oslo Data Set

Multiparametric MRI data (T2w, T2w-FLAIR, T1, and T1c/T1
postcontrast) were obtained from Oslo University Hospital (16,
17). The Oslo data set consisted of 52 preoperative subjects with
LGG and HGG (age > 18 years) scanned from 2003 to 2012. Most
images were acquired with anisotropic voxels, typically used in
routine clinical 2D images, characterized by high in-plane reso-
lution (0.7-0.9mm) and low through-plane resolution (slice
thickness varying between 5 and 6 mm).

The original DICOM images were converted to NifTI format
for ease of processing. The Oslo data set was manually segmented
by an in-house neuroradiologist for the same 3 labels used in the
BraTS data set (ED, NEN, and ET). Images from the Oslo data set
were preprocessed following the same steps used in the BraTS
data set. The preprocessing pipeline was developed using ANTS
(18), and included coregistration to the T1 postcontrast, register-
ing to the SR124 template (13, 15), resampling to 1 mm° isotropic
resolution, skull stripping, N4BiasCorrection (19), and intensity
normalization to zero-mean and unit variance.

Network Architecture

The histologic complexity of gliomas poses a challenge to auto-
mated tumor segmentation methods. To simplify the segmenta-
tion problem, a triple network architecture was designed (Figure
1). Each model was trained separately to predict WT (WT-net), TC
(TC-net), and ET (EN-net) as a binary task. The networks used a
3D patch-based approach. Multiparametric images were passed
through the Dense UNet (Figure 2A). The initial convolution gen-
erated 64 feature maps that were subsequently used to create
dense blocks. Each dense block consisted of 5 layers (Figure 2B).
Each layer included the following 4 sequentially connected sub-
layers: (1) batch normalization, (2) rectified linear unit (ReLu),
(3) 3D convolution, and (4) 3D spatial dropout. The first layer in
dense block 1 had 32 features maps as its input. At each layer, the
input was used to generate k feature maps, which were then con-
catenated to the next layer input; this was then applied to create
another k feature map. To generate the final dense block output,
inputs from each layer were concatenated with the output of the
last layer. At the end of each dense block, the input to the dense
block was also concatenated to the output of that dense block. The
output of each dense block followed a skip connection to the adja-
cent decoder part. In addition, each dense block output went
through a transition down block until the bottle neck block (Figure
2C). With this connecting pattern, all feature maps were reused
such that every layer in the architecture received a direct supervi-
sion signal (20). On the decoder side, a transition-up block pre-
ceded each dense block until the final convolution layer, which
was followed by a sigmoid activation layer.

To preserve a high number of convolution layers and fit the
complex model into GPU memory, 3 additional steps were used.
(1) If a layer generated feature maps exceeding the initial number
of convolution feature maps, then it was reduced to one-fourth
of the total number of feature maps generated by that layer. (2)
The total number of feature maps generated at the end of every
dense block was reduced by a compression factor of 0.75. (3) A
bottle neck block (dense block 4 in Figure 2A) was used to con-
nect the encoder part of the network to the decoder part of the
network. This bottle neck block reduced the feature maps
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generated by the encoder part of the network by the same com-
pression factor of 0.75. Owing to the large number of high-reso-
lution feature-maps, a patch-based 3D Dense UNet approach was
implemented. However, the higher resolution information was
passed through the standard skip connections.

Cross-Validation

To generalize the network’s performance and evaluate its reli-
ability, a 3-fold cross validation was performed on the
BraTS2018 data set (210 HGG and 75 LGG subjects). The data
were randomly shuffled and equally split into 3 groups as train-
ing, in-training validation, and held-out testing (70 HGG and 25
LGG cases in each group). The in-training validation data set is
used by the algorithm to test performance after each round of
training, and update model parameters. Each fold of the cross-
validation procedure represents a new training phase on a unique
combination of the 3 groups. Network performance is only
reported on the held-out testing group for each fold.

Training

The 3-fold cross-validation procedure uses a relatively small
sample of cases from the BraTS2018 data set for training each
fold (95 cases). Before evaluation of the independent data set, the
networks were retrained on a larger sample of the BraTS2018
data set using ~70% of the cases for training (200 cases includ-
ing 150 HGG and 50 LGG), ~20% for in-training validation (65
cases including 48 HGG and 17 LGG) and ~10% (20 cases
including 12 HGG and 8 LGG) held out for testing. Further, 75%
overlapping patches were extracted from multiparametric brain
MR images that had at least 1 nonzero pixel on the correspond-
ing ground truth patch. Subsequently, 20% of patches were used
for in-training validation. Data augmentation steps included hor-
izontal flipping, vertical flipping, random rotation, and transla-
tional rotation. Downsampled data (128 x 128 x 128) was also
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provided in the training as an additional data augmentation step.
To eliminate the data leakage problem, no patch from the same
subject was mixed in training, validation, or testing (21, 22).
Labels of ED, ET, and NEN were fused to create a WT mask to
train WT-net. A TC mask was created by fusing the labels of ET
and NEN to train TC-net. ET labels were used separately to train
EN-net. The networks were trained using Tensorflow (23), the
Keras (24) python package, and Pycharm IDEs with adaptive
moment estimation (Adam) (25) as the optimizer. The initial
learning rate was set to 10~ with a batch size of 4 and maximal
iteration of 100. Training was implemented on Tesla P100, P40
or K80 NVIDIA-GPUs.

Testing

The final network was tested on the 20 held-out cases. Patches of
32 x 32 x 32 were extracted and provided to the network for
testing. All of the prediction patches were then reconstructed to
obtain a full segmentation volume. After obtaining the 3 separate
segmentation output volumes from the 3 networks, they were
fused in 2 steps. First, a 3D-connected components algorithm
was applied to the WT-net output to generate a WT mask. Next
the outputs from TC-net and EN-net were multiplied by the out-
put from WT-net. This procedure, referred to as multivolume
fusion (MVF), was designed to improve the prediction accuracy
by removing false positives. The final network was also tested on
46 cases from BraTS2017 validation data set, 66 cases from
BRATS 2018 validation data set, and 52 cases from the Oslo data
set without any fine-tuning.

Statistical Methods

The performance of each network was evaluated using the Dice
coefficient (15), which determines the amount of spatial overlap
between the ground truth segmentation (X) and the network seg-
mentation (Y), as follows:
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Figure 2. Schematic of the Dense UNet Architecture. Each network consisted of 7 dense blocks, 3 transition down
blocks, and 3 transition up blocks (A). Each dense block was made of 5 layers connected to each other, with every layer

having 4 sublayers connected sequentially (B). The transition-down block consisted of 5 layers connected sequentially
(C). The transition-up block was a sequential connection of 4 layers (D).
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These output labels are defined as follows:
WT = edema + enhancing Tumor + nonenhancing tumor +
necrosis
TC = enhancing tumor + nonenhancing tumor + necrosis
ET = enhancing tumor
Dice coefficients were also computed for:
Edema = WT — TC
Nonenhancing tumor and necrosis = TC — ET

Dice =

RESULTS

Cross-Validation
Average Dice-scores for the 3-fold cross validation using 75%
overlapping patches were 0.90, 0.82, and 0.79 for WT, TC, and
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ET, respectively. Average Dice-scores for the 3-fold cross-valida-
tion using 85% overlapping patches were 0.92, 0.84, and 0.80 for
WT, TC, and ET, respectively. Detailed Dice-scores are provided
in the online supplemental data.

Testing on 20 Held-Out Cases from BraT$2018

The network achieved Dice scores of 0.90, 0.84 and 0.80 with
Hausdorff distance of 3.9 mm, 5.9 mm and 3.5 mm for WT, TC, and
ET, respectively, on the 20 held-out cases (Figure 3). Sensitivities
were 0.91, 0.85, and 0.81 for WT, TC, and ET, respectively, with
100% specificity for all subcomponents. Dice-scores of 0.85 and 0.80
were obtained for ED and NEN, respectively. The MVF procedure
increased accuracies across all assessments by 1%-2% (Table 1).

BraT$2017 Validation Data Set
The network achieved Dice scores of 0.90, 0.80, and 0.78 with
Hausdorff distance of 6.5 mm, 8.7 mm, and 5.5 mm for WT, TC,
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and ET, respectively, on the BraTS2017 validation data set (Table
2). Sensitivities were 0.90, 0.80, and 0.78 for WT, TC, and ET,
respectively, with 100% specificity for all subcomponents.

The network achieved Dice scores of 0.90, 0.82, and 0.80, with
Hausdorff distance of 6.0 mm, 7.5 mm, and 4.4 mm for WT, TC,
and ET, respectively, on the BraTS2018 validation data set (Table
2). Sensitivities were 0.91, 0.81, and 0.81 for WT, TC, and ET,
respectively, with 100% specificity for all subcomponents.

The network achieved Dice scores of 0.85, 0.80, and 0.77 with
Hausdorff distance of 5.74 mm, 5.94 mm, and 4.06 mm for WT,
TC, and ET, respectively, on the Oslo clinical data set (Table 3).
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(b) Ground truth (c) Without MVF

<%

(b) Ground truth (c) Without MVF (d) With MVF

Sensitivities were 0.86, 0.79, and 0.77 for WT, TC, and ET, respec-
tively, with 100% specificity for all subcomponents.

DISCUSSION AND CONCLUSION
Gliomas are the most common primary brain tumor. Currently,
the vast majority of clinical and research efforts to evaluate
response to therapy rely on gross geometric measurements.
Manual tumor segmentation is a tedious, time-intensive task that
requires a human expert. Quantitative evaluations of manual tu-
mor segmentations have revealed considerable disagreement
reflected in Dice scores in the range 74%-85% (13). To address
these shortcomings, automated machine learning algorithms
have been developed to segment gliomas (2, 3, 6).

MRI-based glioma segmentation algorithms represent a
method to reduce subjectivity and provide quantitative analysis.
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Fold1 Fold2 Fold3 Average
Cross-Validation Results
Whole Tumor 093 094 090 0.92
Tumor Core 0.89 0.84 0.80 0.84
Enhancing tumor 0.84 0.80 0.77 0.80
Nonenhancing and 0.80 0.81 0.80 0.80
Necrosis
Edema 0.85 0.86 0.85 0.85
Before MVF After MVF
Results on 20 Subjects’ Held-Out Data Set
Whole Tumor 0.89 0.90
Tumor Core 0.82 0.84
Enhancing Tumor 0.78 0.80
Nonenhancing and 0.79 0.80
Necrosis
Edema 0.83 0.85

Accurate, reproducible, and efficient tumor segmentation has the
potential to improve glioma management by being able to differ-
entiate active tumor from necrotic tissue and ED. Therefore, sig-
nificant efforts have been made to facilitate the progress of
automated glioma segmentation.

Our algorithm performed similarly to previously published
high-performing algorithms in segmenting ET and WT (Table 2)
on the BraTS2017 data set and was one of the top 3 performers
in segmenting TC. The algorithm was also one of the top 3 per-
formers in segmenting WT and ET on the BraTS 2018 data set
(Table 2).

To generalize the network’s performance and evaluate its
reliability, we also performed 3-fold cross-validation, which
showed mean accuracies of 0.92, 0.84, and 0.80 for WT, TC, and
ET, respectively. The results of this cross-validation are not com-
parable to the accuracies reported by the BraTS challenge, as our

®

cross-validation used one-third of the data for training, whereas
most developers use all 285 cases to train their algorithm and
cross-validation is not reported.

Our entire pipeline including all the preprocessing steps took
~5 minutes per subject for testing. The Dice scores were slightly
reduced when validated on the clinical data set. This decrease in
performance was expected owing to practical considerations
when using clinical scans. For example, differences in field
strength (1.5 T vs 3 T), clinical imaging sequence parameters, and
variability in postprocessing may account for the decreased per-
formance. Despite these limitations our deep learning network
was able to segment tumors and subcomponents with excellent
results without any fine-tuning, and it shows promise for incor-
poration into clinical workflow.

Variable performance among CNNs can also be owing to
differences in the underlying network architecture. The triple
network architecture described here has several advantages
when compared with multilabel CNNs. Training 3 separate net-
works for individual binary segmentation tasks is less complex
and less computationally challenging than training one network
to perform multiclass segmentations. In addition, as all 3 net-
works are trained separately as binary segmentation problems,
misclassification is also highly reduced, thereby reducing overfit-
ting. The dense architecture also reduces false positives, because
all feature maps are reused such that every layer in the architec-
ture receives a direct supervision signal (20). The vanishing gradi-
ent problem is a challenge when using gradient-based learning
methods to train neural networks. If the gradient is too small, the
neural network weight will not change in value. As more layers
with activation functions are added to the network, the gradient
can approach zero, making it difficult to train the network. Our
algorithm diminished the vanishing gradient problem by using
dense networks, which use feature propagation through the
dense connection to the subsequent layers. To overcome compu-
tational considerations when using a full-size image, our algo-
rithm used a patch-based 3D Dense-Unet (20). An additional
unique feature of our network was the procedure for MVF which
effectively eliminated false positives. MVF improved network
performance across all segmentations. Compared with previously
published work on tumor segmentation, our networks used mini-
mal pre- and postprocessing steps.

Network Type

Comparison with Best Performers on BraTS 2017 Validation Data
EMMA (val)
Wang et.al (val) (Cascaded Network)
Dense UNet (ours) (val)

Comparison with Best Performers on BraTS 2018 Validation Data
NVIDIA (val)
No New-Net (val)
McKinley et. al (val)

Dense Unet (ours) (val)

Whole Tumor Tumor Core Enhancing Tumor
0.901 0.797 0.738
0.905 0.837 0.785
0.907 0.804 0.787
0.910 0.866 0.823
0.908 0.854 0.810
0.900 0.853 0.794
0.900 0.820 0.800
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Tumor Type or Subcomponent Dice Scores

Whole tumor 0.85

Tumor Core 0.80

Enhancing tumor 0.77

Edema 0.80

Necrosis 0.74
LIMITATIONS

A general limitation of deep learning methods is the need for a
large number of subjects to train the network. The BraTS server
validation data set does not provide Dice coefficients for “nonen-
hancing tissue + necrosis,” and edema labels. Even though our
network was able to identify these components, the performance
for these labels could not be evaluated using the BraTS validation
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server data set. Memory and computation power limitations
remain a consideration in deep learning methods. For instance,
when overlapping patches were increased from 75% to 85% for
our algorithm, the 3-fold cross-validation results increased to
0.92, 0.84, and 0.80 for WT, TC, and ET, respectively. However,
owing to memory limitations, the 85% overlapping patches could
not be implemented for training by using all the 265 subjects.
This suggests that the network has room for improvement with
additional memory and computational power advancements.

CONCLUSION

A 3D Dense UNet was developed for MRI-based segmentation of
gliomas. The algorithm can easily be incorporated into a clinical
workflow. Our algorithm outperformed the best performers for
segmenting WT and ET.
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