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Abstract
Background: Popular methods to reconstruct molecular phylogenies are based on multiple
sequence alignments, in which addition or removal of data may change the resulting tree topology.
We have sought a representation of homologous proteins that would conserve the information of
pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods
applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable
phylogenetic reconstruction.

Results: We have built up a spatial representation of protein sequences using concepts from
particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise
alignment score properties in information theory. The obtained configuration space of homologous
proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an
expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a
phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with
multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a
solution for some previously reported incongruent results, such as the apicomplexan enolase
phylogeny.

Conclusion: The CSHP is a unified model that conserves mutual information between proteins in
the way physical models conserve energy. Applications include the reconstruction of evolutionary
consistent and robust trees, the topology of which is based on a spatial representation that is not
reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic
topology, provide a powerful and easily updated representation for massive pair-wise genome
comparisons based on Z-score computations.

Background
Past events that gave birth to biological entities can be ten-

tatively reconstructed based on collections of descriptors
traced in ancient or present-day creatures. Using genomic
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sequences, an estimate of the relative time separating
branching events, previously supported by geological
records, could be formalized using mathematical models.
The use of proteins for evolutionary reconstructions was
vastly explored as soon as the first amino acid sequences
were made available [1-9]. The rich biological informa-
tion contained in protein sequences stems from their
being, on the one hand, translation of genes that reflect
the history of genetic events to which the species has been
subjected, and on the other hand, effectors of the func-
tions constituting a living creature [10] Since protein
sequences are encoded in a 20-amino acid alphabet, they
are also considered to embody more information-per-site
than DNA or RNA [11]; they also exhibit smaller compo-
sitional trends [12,13]. When compared, sequences that
share substantial features are considered as possible
homologues [14], based on the fundamental postulate
that can be simply stated as "the closer in the evolution,
the more alike and conversely, the more alike, probably the
closer in the evolution".

As summarized by Otu and Sayood [15], the techniques of
molecular phylogenetic analyses can be divided into two
groups. In the first case, a matrix representing the distance
between each pair of sequences is calculated and then
transformed into a tree. In the second case, a tree is found
that can best explain the observed sequences under evolu-
tionary assumptions, after evaluation of the fitness of dif-
ferent topologies. Some of the approaches in the first
category utilize distance measures [16-19] with different
models of nucleotide substitution or amino acid replace-
ment. The second category can further be divided into two
groups based on the optimality criterion used in tree eval-
uation: parsimony [20,21] and maximum likelihood
methods [22,23]. For a detailed comparison of these
methods see [24].

In phylogeny inference based on distance methods, fea-
tures separating related proteins are used to estimate an
observed distance, also called the p-distance, the simplest
measure of which is just the number of different sites
between proteins. Divergence time (t), also called genetic
distance or evolutionary time, is calculated from the p-dis-
tance, depending on assumptions derived from evolu-
tionary models [11,24]. For example, the assumption that
mutational events happen with equal probability at each
site of any sequence leads to the molecular clock model
[2]. Although widely used, it is well-known to be unreal-
istic and numerous corrections have been proposed to
refine it [19,25,26]. By definition, the distance matrix is
given as T = (tab) where a and b represent the homologous
sequences from the analyzed dataset. Tree reconstruction
algorithms are then applied to these matrices [11,24].
Eventually, phylogenetic trees corresponding to the classi-
fied sequences are statistically evaluated with bootstrap

methods and, when available, calibrated using dated fos-
sils [25,26].

Doolittle et al. [27] have proposed methods for convert-
ing amino acid alignment scores into measures of evolu-
tionary time. Similarity between amino acids [28-30]
provides a way to weight and score alignments [31]. In
practice the optimal alignment of two sequences (a and b)
is determined from the optimal score s(a,b) [25,27], com-
puted with a dynamic programming procedure [32,33]. In
aligned sequences, conservation is measured at identical
sites, whereas variation is scaled at substituted sites. To
estimate the variation/conservation balance, the p-distance
can be given as a function of fid, the fraction of identical
residues: p-distance = 1 - fid. To take into account that mul-
tiple mutations can happen at the same site, an expression
of fid was proposed by Doolittle et al. [27] using s(a*,b*),
the score obtained from randomized a and b sequences
[34] and sid, the average score of the sequences compared
with themselves [19,25,27]:

To connect pair-wise alignments and phylogeny, diver-
gence time has been approximated:

t(a,b) = -λ log[fid (a,b)]  (2)

introducing a Poisson correction [2] as a reasonable sto-
chastic law relating amino acid changes and elapsed time.
As mentioned earlier, adjustments and corrections of
equation (2) were proposed to fit more realistically the
complexity of evolution [11,25,35]. This attempt of unifi-
cation helped reconstructing phylogeny of major lineages
[27]. However, detailed phylogenic trees obtained from
evolutionary close sequences are not satisfactory. In prac-
tice, phylogenies are reconstructed based on multiple
alignments. Multiple alignment based (MAB) trees are re-
calculated when incremented with additional sequences;
although MAB methods are usually considered accurate,
numerous cases of inconsistencies (incongruence)
between observed data and deduced MAB trees are
recorded (see [15,36]).

Here, we re-examine the estimate of the p-distance between
two homologous sequences, based on fid, as a source for
geometric positioning, divergence time calculations and
evolutionary reconstruction. We based our model on
mathematical properties that alignment scores should
respect; i) information theory [37,38] applied to sequence
similarity, ii) algorithmic theory applied to alignment
optimization [28] and iii) alignment probability, particu-
larly in conformity with the TULIP theorem [39]. We used
these properties as a framework of constraints to build a
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geometric representation of a space of probably homolo-
gous proteins and define a theoretically explicit measure
of protein proximity. This unified model conserves infor-
mation in the way physical models conserve matter or
energy. The obtained representation of protein sequences
is unaltered by adding or removing sequences. Applica-
tions include therefore the reconstruction of evolutionary
consistent and robust trees, the topology of which is based
on a spatial representation that is not reordered after addi-
tion or removal of sequences.

Results and discussion
Pair-wise sequence alignment scores in information theory
Criteria to measure the variation/conservation balance
between proteins should embody as much as possible the
structural and functional potentiality within sequences of
amino acids. In the absence of explicit physical criteria,
amino acid similarity was solved empirically by measur-
ing amino acid substitution frequencies in alignments of
homologous sequences [30,40]. Given two amino acids i
and j, the similarity function s(i,j) was set as:

where ϖij is the observed frequency of substitution of i by
j or j by i, and πi and πj are the frequencies of i and j in the
two aligned sequences. The ϖij frequency is the estimate of
the probability of substitution of i by j in real alignments;
whereas πiπj is the estimate of the probability of substitu-
tion under the independency hypothesis. The similarity
function gives a 20 × 20 similarity matrix usable to score
protein sequence alignments, that can be interpreted in
the information theory [37,38] according to the following
proposition.

Proposition 1
Amino acid substitution matrix values are estimates of the
mutual information between amino acids in the sense of
Hartley [37,38]. Consequently, the optimal alignment
score computed between two biological sequences is an
estimate of the optimal mutual information between
these sequences.

Proof
Given a probability law P that characterizes a random var-
iable, the Hartley self-information h is defined as the
amount of information one gains when an event i
occurred, or equivalently the amount of uncertainty one
loses after learning that i happened:

h(i) = -log(P(i))  (4)

The less likely an event i, the more we learn about the sys-
tem when i happens. The mutual information I between

two events, is the reduction of the uncertainty of one event
i due to the knowledge of the other j:

Ij→i = h(i) - h(i/j)  (5)

Mutual information is symmetrical, i.e. Ij→i = Ii→j, and in
the following will be expressed by I(i;j). The self and
mutual information of two events i and j are related:

h(i ∩ j) = h(i) + h(j) - I(i;j)  (6)

If the occurrence of one of the two events makes the sec-
ond impossible, then the mutual information is equal to
- ∞. If the two events are fully independent, mutual infor-
mation is null. The empirical measure of the similarity
between two amino acids described in equation (3) can
therefore be expressed in probabilistic terms:

where Pϖ is the joint probability to have i and j aligned in
a given alignment and Pπ the measure of probability that
amino acids occur in a given sequence. From equations
(4) and (6), equation (7) becomes:

s(i, j) = h(i) + h(j) - h(i ∩ j)  (8)

that is

s(i, j) = I(i; j)  (9)

As a consequence, the similarity function (or score) is the
mutual information between two amino acids. Addition-
ally, the score between sequences (the sum of elementary
scores between amino acids, [32,33,41,42]) is, according
to the hypothesis of independence of amino acid posi-
tions, the estimated mutual information between the two
given biological sequences.

Once two sequences are aligned, we pose the question
whether the alignment score is sufficient to assess that the
proteins are conceivably alike and thus evolutionarily
related? The theorem of the upper limit of a sequence
alignment score probability (TULIP theorem, [39]), sets
the upper bound of an alignment score probability, under
a hypothesis less restrictive than the Karlin-Altschul
model [43]. Given two real sequences a and b (a =
a1a2...am and b = b1b2...bn), where s = s(a,b) the maximal
score of a pair-wise alignment obtained with any align-
ment method, b* the variable corresponding to the shuf-
fled sequences from b, and given P{S(a,b*)≥s} the
probability that an alignment by chance between a and b*
has a higher score than s, then whatever the distribution
of the random variable S(a,b*) the TULIP theorem states:
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with k > 1, µ the mean of  and σ its standard devi-
ation. The unique restriction on S(a,b*) is that it has a
finite mean and a finite variance. A first corollary of the
TULIP theorem is that the Z-score is a statistical test for the
probability of a sequence alignment score. We addition-
ally state the following new corollary.

TULIP corollary 2
Given the TULIP theorem conditions, let

 be the Z-score [44]. Then, z(a,b*) is

the greatest possible value for k (k∈ ]1,+∞[), which holds
relation (10) true. In consequence, with k = z(a,b*), then

The best upper bound value for P{S(a,b*)≥s} is termed

. From the TULIP theorem and corol-

laries, the comparison of a protein to a given reference a,
weighed by an alignment score, is characterized by a
bounded probability that the alignment is fortuitous.

Question of the proximity between protein sequences in 
the light of information theory
Since the optimized alignment score of two protein
sequences allows an access to both the mutual informa-
tion between proteins and an upper bound that the align-
ment is not fortuitous, one would expect that it is an
accurate way to spatially organize proteins sets. A simple
relation would be "the higher the mutual information, the
nearest". There are three ways to assess the proximity
between two objects a and b in a given space E [41]. The
first is dissimilarity, a function f(a,b): E × E → + such
that f(a,b) = 0 ⇔ a = b and f(a,b) = f(b,a); the second is the
distance per se, that is a dissimilarity such that the triangle
inequality is respected: ∀  a,b,c ∈  E, f(a,c) ≤ f(a,b) + f(b,c);
and the third is the similarity defined as a function f(a,b):

E × E →  such that  and f(a,b) =

f(b,a). Representing objects in a space is convenient using
the notion of distance. When the optimal alignment is
global, i.e. requiring that it extends from the beginning to
the end of each sequence [32], it is theoretically possible
to define a distance per se, that is to spatially organize the
compared sequences [41]. However, from a biological
point of view, global alignment algorithms are not relia-
ble to assess homology of protein domains. Local align-

ments are better suited, using scoring matrices to find the
optimum local alignment and maximizing the sum of the
scores of aligned residues [28,31]. In contrast with global
alignments, local alignments do not allow any trivial def-
inition of distances [41].

Although amino acid similarity is a function f(i, j): E × E
→ , owing to the local alignment optimization algo-
rithms, the computed score is a function f(a,b): E × E →

+, requiring the existence of at least one positive score in
the similarity matrices. Thus, when constructing an align-
ment with the Smith and Waterman [33] method, the
constraint that s(a,b)>0 (i.e. I(a;b) > 0) is imposed. This
condition is consistent with proposition 1: if two
sequences are homologous, knowledge about the first has
to bring information about the second, that is to say, the
mutual information between the two sequences cannot
decrease below zero: I(a;b) > 0 (i.e. s(a,b) > 0). As a conse-
quence, in the following geometric construction we
sought a refined expression for the proximity of proteins.

Geometric construction of a configuration space of 
homologous proteins (CSHP) conserving mutual 
information
In a set of homologous proteins, any sequence a can be
selected as a reference, noted aref, in respect to which the
others are compared. A geometric representation of
objects relatively to a fixed frame is known as a configura-
tion space (CS). In physics, a CS is a convenient way to
represent systems of particles, defined by their positional
vectors in some reference frame. Here, given n similar
sequences, it is therefore possible to consider n references
of the CSHP. In a given (CSHP, aref), each amino acid
position aligned with a position in the aref sequence, cor-
responds to a comparison dimension (CS dimension).
Proteins are simply positioned by a vector, the coordi-
nates of which are given by the scores of aligned amino
acids. Gaps are additional dimensions of the CS. When
considering that local algorithms identify the space of bio-
logical interest, i.e. a CSHP, the gap penalty is a parameter
that maximizes the shared informative dimensions. Thus,
given the amino acids mutual information, alignment
optimization methods define the relative positions of
proteins.

At this point in our construction, a first important prop-
erty of the CSHP can be deduced. Since mutual informa-
tion with aref is sufficient for the full positioning, then
positioning of proteins in a given (CSHP, aref) is unambig-
uous, unique, and is not altered when proteins are added
or removed. In other words, a (CSHP, aref) is a univocal
space.

Given two sequences a and b, if b occurs in (CSHP, aref),
then a also occurs in (CSHP, bref). The pair-wise alignment
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of a and b having no order (symmetry of the mutual infor-
mation), the positions of b in (CSHP, aref) is dependent of
the position of a in (CSHP, bref). Thus, once a (CSHP, aref)
has been built, ∀ b ∈  (CSHP, aref), part of the geometry of
(CSHP, bref) is learnt. Thus, in a CSHP, information
needed for the position of n sequences is totally contained
in the geometry of the n (CSHP, aref). This geometric sta-
bility is not observed with multiple alignments, which can
be deeply modified by addition or removal of sequences.
In the CSHP, protein position is unaltered by additions or
removals of other proteins. In practice, the construction of
CSHP is therefore completely deduced from any all-by-all
protein sequence comparison [45,46] and can be easily
updated.

The q-dissimilarity, a proximity notion for a geometric 
representation of the CSHP
In the CSHP, the definition of a distance per se based on
mutual information is reduced ad absurdum (For demon-
stration, see methods). To define a proximity function i)
sharing properties of distance, i.e. increasing when objects
are further apart, ii) deriving from similarity and iii) rely-
ing on mutual information, particularly the property
"f(a,a) ≠ f(b,b) is possible", we introduce a fourth notion
of proximity. Such proximity was called q-dissimilarity (for
quasi-dissimilarity), a function f(a,b): E × E → + is
defined such that

∀  a ∈  E, ∀  b ∈  E, f(a,b) = f(b,a)  (13)

Let s be a similarity, then q = e-s is a q-dissimilarity, named
the 'canonical q-dissimilarity' associated to s. Accordingly,
the TULIP theorem allows a statistical characterization of
q(a,b) the canonical q-dissimilarity between two
sequences a and b.

TULIP corollary 3
From the TULIP corollary 2, relation (14) is simply
deduced:

with Q(a,b*) being the random q-dissimilarity variable
associated with S(a,b*). Given a (CSHP, aref), each
sequence b aligned with a is characterized by a q-dissimi-
larity q(a,b). In geometric terms, b can be represented as a
point contained in a hyper-sphere B of radius q(a,b).

The representation of a (CSHP, aref) shown in Figure 1 is
therefore in conformity with all constraints listed earlier
and can also serve as a Venn diagram for the setting of
events realized following a continuous random variable

Q(a,b*). When a is compared to itself, it is set on a hyper-
sphere A of radius q(a,a), which is not reduced to one
point. In the context of information theory, it is therefore
possible to express that the proximity respects the prop-
erty "q(a,a) ≠ q(b,b) is possible". Considering Figure 1,

 is the probability for a

random sequence b* to be in the hyper-sphere B. In con-
clusion, the q-dissimilarity is therefore a proximity notion
that allows a rigorous geometric description of the config-
uration space of homologous proteins, real or simulated,
(CSHP, aref, q).

Unification of pair-wise alignments theory, information 
theory, p-distance and q-dissimilarity in the CSHP model
A geometric space is a topological space when endowed
with characterized paths that link its elements. Here, paths
can be defined as the underlying evolutionary history sep-
arating sequences [11]. Given u the common unknown
ancestor, then the divergence time t(a,b) is theoretically
the summed elapsed times separating u to a and to b.
Without any empirical knowledge of u, the simplest
approximation for t(a,b) was sought as a function of the
fraction of identical residues fid, thus of the p-distance.
With the hypothesis of the molecular clock, this function
can be given as equation (2), where the transmutation of
a and b is a consequence of a Poisson process. By using
relation (9) on the equivalence between score similarity
and mutual information, then the fundamental postulate
"the closer in the evolution, the more alike and con-
versely, the more alike, probably the closer in the evolu-
tion" can be reformulated:

Fundamental postulate
Given two homologous proteins a and b, the closer in the
evolution, the greater the mutual information between a
and b (i.e. the optimal computed score s(a,b)) and con-
versely, the greater the mutual information between a and
b, probably the closer in the evolution.

Whereas the first part of the postulate is a consequence of
the conservational pressure on mutual information, the
second assertion founds the historical reconstruction
underlying a set of biological sequences on statistical con-
cepts. A corollary is that evolution of two homologous
proteins is characterized by a loss of mutual information.

In the CSHP, this formulation of the fundamental postu-
late allows a novel mathematical formalization of the p-
distance in probabilistic terms. Basically, the p-distance is
the divergence observed between two sequences knowing
that they share some features (the observed sequences a
and b) and that they were identical before the speciation
event (sequence u).
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Looking back to equation (1), we can re-formulate fid in
probabilistic terms, considering the fraction of shared fea-
tures (identical sites) knowing the observed data and the
existence of a common ancestor. Given two proteins a and
b, let us consider the random variable Q(a,b*), defined in
TULIP corollary 3. In (CSHP, aref), shown in Figure 1, one
can define the probability law P{Q(a,b*)≤ρ} as the prob-
ability that the q-dissimilarity between b* and aref is lower
than ρ. The hyper-sphere of radius ρ contains therefore
the b* random sequences sharing informative features
with a accordingly. The probability pid/a that b* shares
identity with a, knowing that the q-dissimilarity between
b* and a is lower than that between the real sequences b
and a, is:

pid/a (b*) = P{Q(a,b*) ≤ q(a,a) / Q(a,b*) ≤ q(a,b)}  (15)

which is a probabilistic expression of fid in respect to the
reference aref. According to the Venn diagram in Figure 1:
pid/a (b*) = P(A/B)

Using the Bayes theorem, equation (15) can be expressed
as:

In consequence:

which can be expressed as

Geometric and probabilistic representation of the configuration space of homologous proteins (CSHP)Figure 1
Geometric and probabilistic representation of the configuration space of homologous proteins (CSHP). For any sequence a 
taken as a reference (aref), one can build a configuration space (CSHP, aref) where all sequences that are homologous to a can 
be set. When two sequences a and b are aligned with a score s(a,b), then b is positioned in (CSHP, aref) and a in (CSHP, bref). 
The sequence alignment length determines the number of configuration dimensions; pair-wise amino acid scores determine the 
unique solution for its positioning. The q-dissimilarity (q = e-s) defines a proximity between sequences allowing a geometric 
representation (CSHP, q). Remarkable properties are i) the conservation of mutual information, [I(a;b) = I(b;a) ⇒ q(a,b) = 
q(b,a)], between (CSHP, aref) and (CSHP, bref), ii) a probabilistic representation of homologies based on q-dissimilarities by Venn 
diagrams (A and B) and iii) the assignment of a topology relying on protein evolution assumptions. Evolutionary paths for a and 
b lineages, sharing an unknown ancestor u, have a probabilistic expression, bounded above (see text), supporting a phylogenetic 
topology (TULIP trees).
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Assuming that substitution rates are independent of line-
ages [35], then random sequence models a* and b* are
equivalent, that is to say Q(a,a*) ≈ Q(a,b*) and

Thus pid/a, and symmetrically pid/b, provide a probabilistic
expression of fid knowing the data, i.e. the observed mutual
information between a and b expressed as Q(a,b).

Given two homologous sequences a and b, when their
optimal score is s(a,b) ≥ µ + ψ with ψ being a critical
threshold value depending on the score distribution law
(See Methods for the demonstration for the critical thresh-
old), owing to the TULIP corollary 2, we can state that pid/

a is bounded above:

This expression can also be developed as:

where µ1, σ1, µ2 and σ2 are the mean and the standard
deviation of S(a,b*) and S(a,a*) respectively. The right
term in relation (21) exhibits analogies with fid given by
equation (1), showing that the pragmatic approach by
Feng and Doolittle [19] could be supported and general-
ized in a theoretical elaboration.

Using the Poisson correction, an expression of t(a,b) is
given as the linear combination of the two corrections of
the p-distance deduced from pid/a and pid/b :

t(a,b) = -[log(pid/a (b*)) +log(pid/b (a*))]  (22)

with a* and b* the random variables corresponding to the
shuffled sequences of a and b respectively. The sum of the
logarithms corresponds to the product of the two proba-
bilities, an expression of the hypothesis of independence
of lineage. Interestingly, equation (22) provides an
expression of the symmetric effect of time on the varia-
tions that independently affected a and b.

From relation (20), t(a,b) appears as a function of Z-score
ratios. For any set of homologous proteins, it is therefore
possible to measure a table of pair-wise divergence times
and build phylogenetic trees using distance methods.

Reconstruction of protein phylogeny: first example, case 
study of the glucose-6-phosphate isomerase phylogeny
We compared the trees we obtained, called TULIP trees, to
phylogenetic trees built using classical methods, for
instance the popular PHYLIP [47] or PUZZLE-based [48]
methods, termed here MAB trees (for multiple alignment-
based trees). Firstly, because MAB trees are constructed
from multiple alignments, removals or additions of pro-
teins modify the multiple alignments. Inclusion of
sequences is considered as a way to improve the quality of
multiple alignments and to increase the sensitivity of the
comparison of distant sequences [49,50]. By contrast, the
protein space used to build TULIP trees is not reordered
when data sets are incremented or decremented (drawing
of the TULIP tree may apparently change due to the tree
graphic representation methods; nevertheless the abso-
lute tree topology is not reordered). This remarkable prop-
erty is due to both the geometrical construction by pair-
wise comparison and the convergence of the distance
matrix elements estimated by equation (21). Indeed, the
estimate of the right-hand term of equation (21) relies on
a Monte Carlo method, after randomization of the biolog-
ical sequences [39,44,51] and is therefore dependent on
the sequence randomization model [52] and convergent
in respect to the weak law of large numbers [53]. Conver-

gence is proportional to , where numbrand is

the number of randomizations. In the case studies pre-
sented here, we set numrand = 2000 (see Methods). By con-
trast, stability of MAB trees is sought by bootstrapping
approaches and consensus tree reconstruction. MAB trees
appear as the result of a complex learning process includ-
ing possible re-adjustment of the multiple alignments
after eye inspection pragmatically applied to assist the
reconstruction. Alternatively, Bayesian analyses have been
recently proposed for phylogenetic inference [54], esti-
mating posterior probability of each clades to assess most
likely trees. Still, in a recent comparative study, Suzuki et
al. [55] and Simmons et al. [56] provided evidence sup-
porting the use of relatively conservative bootstrap and
jacknife approaches rather than the more extreme overes-
timates provided by the Markov Chain Monte Carlo-
based Bayesian methods. In the absence of any decisive
methods to assess the validity of the trees obtained after
such different approaches, no absolute comparison with
the TULIP classification trees can be rigorously provided.

Whenever a TULIP classification was achieved on a dataset
that led to a consensual MAB tree, both were always con-
sistent. For example, Figure 2 shows the phylogenetic
PHYLIP [47] and TULIP trees obtained for glucose-6-
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phosphate isomerases (G6PI). Phylogeny of the G6PI
enzyme has been studied by Huang et al. [57] in order to
demonstrate the horizontal transfer of this enzyme in the
apicomplexan phylum due to a past endosymbiosis [57].
Owing to the neighbor-joining analysis used by Huang et
al. [57] (see methods) Figure 2A shows that apicomplexan
G6PI is "plant-like". The TULIP tree shown in Figure 2B is
consistent with this conclusion. Interestingly, differences
between the two trees are found only when the bootstrap
values on the MAB tree are not strong enough to unambig-
uously assess branching topology.

Reconstruction of protein phylogeny: second example, 
case study of the enolase phylogenic incongruence
TULIP classification tree further helps in solving apparent
conflicting results obtained with MAB methods. In a com-
prehensive study from Keeling and Palmer [36] the PUZ-
ZLE-based reconstruction of the enolase phylogeny led to
incongruent conclusions. Enolase proteins from a wide
spectrum of organisms were examined to understand the
evolutionary scenario that might explain that enolases
from land plants and alveolates shared two short inser-
tions. Alveolates comprise apicomplexan parasites,
known to contain typical plant features as mentioned
above, particularly a plastid relic. In this context, the
shared insertion in apicomplexan and plant enolases (Fig-
ure 3) has been interpreted as a possible signature for

Glucose-6-phosphate isomerase phylogenyFigure 2
Glucose-6-phosphate isomerase phylogeny. (A) Multiple alignment based (MAB) tree. (B) TULIP tree. Both trees were con-
structed using the BLOSUM 62 similarity matrix. For MAB tree construction, bootstrap support was estimated using 1000 rep-
licates. To build TULIP trees, Z-scores were estimated with 2000 sequence shuffling. Topology supported by high bootstrap 
results in the MAB tree (figures in black), are consistently recovered in the corresponding pair-wise alignement based TULIP 
tree.
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some evolutionary relationship between apicomplexans
and plants [58,59] and a likely sign of a lateral transfer.
From the distribution of this insertion in enolases from
several key eukaryotic groups, Keeling and Palmer [36]
postulated that lateral transfer had been an important
force in the evolution of eukaryotic enolases, being
responsible for their origin in cryptomonads, Chlorar-
achnion and Arabidopsis. However, they could not con-
clude about alveolates, finding a conflict between the
distribution of the insertion and the MAB phylogenetic
position (Figure 4A). The authors had to admit that lateral
gene transfers failed to explain apicomplexa enolases, and
were compelled to suppose that the lack of congruence

between insertion and phylogeny could be because of a
parallel loss of insertions in lineages, or to more complex
transfers of gene portions.

Based on our theoretical model, we constructed the corre-
sponding TULIP tree. TULIP trees given with BLOSUM 62
or PAM 250 matrices, Fitch-Margoliash or neighbor-join-
ing methods led indistinctly to a unique tree topology
(Figure 4B). Separation of great phyla (Archaebacteria,
Eubacteria, Diplomonads, Trypanasomes, Animals, Fungi
and Amoeba) is recovered. A plant-like cluster is addition-
ally reconstructed, in which a distinct separation occurred
between {Rhodophytes ; Cryptomonads} and {Land

Enolase phylogenic incongruenceFigure 3
Enolase phylogenic incongruence. When aligned, the enolase region corresponding to amino acids 73–118 of the Oryza sativa 
gene, exhibit two insertions (red boxes) that are only present in land plants, charophytes and alveolates. In alveolates, these 
insertions are consistent with a horizontal gene transfer. However, to date, evolutionary reconstructions based on enolase 
sequences did not allow any phylogenetic branch gathering for these clades [36].

Z. mays LGKGVLKAVSNVNNIIGPAIVGK--DPTEQVEIDNFMVQQLDGTSNEWGWCKQKLGANAIL

O. sativa LGKGVSKAVDNVNSVIAPALIGK--DPTSQAELDNFMVQQLDGTKNEWGWCKQKLGANAIL

R. communis LGKGVSKAVENVNSIIGPALIGK--DPTEQTALDNFMVQELDGTVNEWGWCKQKLGANAIL

A. thaliana LGKGVSKAVGNVNNIIGPALIGK--DPTQQTAIDNFMVHELDGTQNEWGWCKQKLGANAIL

C. corallina MGKGVLKAVSNVNDIIAPALIGK--DVTEQTAIDKFMVEDLDGTQNEWGWCKQRLGANAIL

N. opaca MGKGVLKAVSNVNDVIAPALIGK--DPTEQTALDNFMVEELDGTQNEWGWCKQRLGANAIL

N. obtusa MGKGVLKAVSNVNDIIAPAVIGM--DPADQTKIDELMVQQLDGTQYEWGWCKQKLGANAIL

Chlorarachnion MGKGVSKAVSNVNEVIGPALIGM--DPTDQQKIDDKMVKELDGSKNEWGWSKSDLGANAIL

P. multimicron. LGKGVSKAVANVNEVIRPALVGK--NVTEQTKLDKSIVEQLDGSKNKYGWCKSKLGANAIL

P. tetraurelia LGKGVAKAVANVNEVIRPALVGK--NVTEQTKLDKSIVEQLDGSKNKYGWSKSKLGANAIL

P. Falciparum LGKGVQKAIKNINEIIAPKLIGM--NCTEQKKIDNLMVEELDGSKNEWGWSKSKLGANAIL

T. Thermophila LGKGVLKAVNNVNTIIKPHLIGK--NVTEQEQLDKLMVEQLDGTKNEWGWCKSKLGANAIL

T. bergeri LGKGVLKAVNNVNTVIRTALLGK--DVTHQEEIDKLMVEQLDGTKNQWGWCKSKLGANAIL

C. aqueous LGKGVLKAVNNVNTVIKPALVGL--SVVNQTEIDNLMVQQLDGTKNEWGWCKSKLGANAIL

T. gondii LGKGVLNAVEIVRQEIKPALLGK--DPCDQKGIDMLMVEQLDGTKNEWGYSKSKLGANAIL

P. provasolii 2  MGKGCSKAVANLNDIIAPALVGK--DPTQQKAIDDLMNKELDGTEN-----KGKLGANAIL

P. minor MGKSVEKAVDNINKLISPALVGM--NPVNQREIDNAMM-KLDGTDN-----KGKLGANAIL

M. papillatus LGKGVDKAVANVKDKISEAIMGM--DASDQGAVDAKMI-ELDGTEGGF---KKNLGANAIL

P. lanceolata LGKGVDKAVANVKDKIAPAISGM--DAADQAAVDKKMI-ELDGTEGGF---KKNLGANAIL

R. salina   LGKGVLKAVENVKSVIAPALAGM--NPVEQDAVDNKMIQELDGTPN-----KTKLGANAIL

G. theta LGKGVSKAVKNVEEKIAPAIKGM--DPTDQEGIDKKMI-EVDGTPN-----KTNLGANAIL

T. cruzi LGKGCLNAVKNVNDVLAPALVGK--DELQQSTLDKLMR-DLDGTPN-----KSKLGANAIL

T. brucei VGKGCLQAVKNVNEVIGPALIGR--DELKQEELDTLML-RLDGTPN-----KGKLGANAIL

H. inflata FGKGVQKALDNIKNIIAPALIGM--DMCNQRAIDEKMQ-ALDGTENRT---FKKLGANAVL

S. vortens AGKGVEKALNNIRTIIAPALIGM--DVTNQVAIDKKLE-EIDGTENKT---FKKIGANAAL  

E. histolica GGKGVLKAVENVNTIIGPALLGK--NVLNQAELDEMMI-KLDGTNN-----KGKLGANAIL

M. balmamuthi LGKGVLKAVENVNKILAPKLIGL--DVTKQGEIDRLML-QIDGTEN-----KTHLGANAIL

A. oryzae GGKGVLKAVENVNKTIAPAVIEENLDVKDQSKVDEFLK-KLDGSAN-----KSNLGANAIL

S. cerevisiae MGKGVLHAVKNVNDVIAPAFVKANIDVKDQKAVDDFLI-SLDGTAN-----KSKLGANAIL

D. melanogaster HGKSVLKAVGHVNDTLGPELIKANLDVVDQASIDNFMI-KLDGTEN-----KSKFGANAIL

P. monodon HGKSVFKAVNNVNSIIAPEIIKSGLKVTQQKECDDFMC-KLDGTEN-----KSRLGANAIL

C. elegans LGKGVLKAVSNINEKIAPALIAKGFDVTAQKDIDDFMM-ALDGSEN-----KGNLGANAIL

R. norvegicus MGKGVSKAVEHINKTIAPALVSKKLNVVEQEKIDQLMI-EMDGTEN-----KSKFGANAIL

H. sapiens A     MGKGVSKAVEHINKTIAPALVSKKLNVTEQEKIDKLMI-EMDGTEN-----KSKFGANAIL

G. gallus A      LGKGVSKAVEHVNKTIAPALISKNVNVVEQEKIDKLML-EMDGTEN-----KSKFGANAIL
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Plants ; Charophytes ; Chlorarachnion ; Alveolates} main
clusters. It is remarkable that this latter cluster is that char-
acterized by the enolase insertion.

This topology corresponds to the observed distribution of
the enolase short insertions and provides therefore a solu-
tion to the apparent enolase phylogeny incongruence: the
phylogenetic position of alveolates is not in conflict with
the distribution of enolase insertion and the apicomplexa
enolase is possibly a consequence of a lateral transfer, like
in cryptomonads.

Large scale phylogeny based on a CSHP built from massive 
genomic pair-wise comparisons
A CSHP containing large sets of protein sequences can be
built after any all-by-all massive comparison providing Z-
score statistics. Because the space elaboration is explicit,
then quality of the mutual information conservation
depends on the choice of the scoring matrix, the geomet-
ric positioning depends on the local alignment method,
the homology assessment depends on the alignment score
and probabilistic cutoffs and the phylogenetic topology
on the choice of the stochastic law correction. Eventually,

Solution of the enolase phylogenic incongruenceFigure 4
Solution of the enolase phylogenic incongruence. (A) Multiple alignment based (MAB) tree. (B) TULIP tree. Both trees were 
constructed using the BLOSUM 62 similarity matrix. For MAB tree construction, bootstrap support was estimated using 1000 
replicates. To build TULIP trees, Z-scores were estimated with 2000 sequence shuffling. Clades that contain a unique inser-
tional signature (Land plants, green box; Charophytes and Chlorarachnion, blue box; Alveolates; yellow box) are not gathered 
in the MAB tree, as previously reported [36]. By contrast, in the TULIP tree, the phylogeny of enolase proteins is reconciled 
with the insertional signature detection in Land plants, Charophytes, Chlorarachnion and Alveolates.
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genome-scale pair-wise comparisons [39,36] find in the
present CSHP a robust, evolutionary consistent and easily
updatable representation.

Methods
Glucose-6-Phosphate Isomerase sequences
The 41 Glucose-6-phosphate isomerase (EC 5.3.1.9)
sequences studied in the paper are taken from several rep-
resentative groups, as provided from the Swiss-prot data-
base. Group I: Archae ([Swiss-prot:G6PI_HALN1],
Halobacterium sp.; [Swiss-prot:G6PI_METJA], Methanococ-
cus jannaschii). Group II: Bacteria Actinobacteria ([Swiss-
prot:G6P1_STRCO], Streptomyces coelicolor; [Swiss-
prot:G6PI_COREF, Corynebacterium efficiens; [Swiss-
prot:G6PI_MYCTU], Mycobacterium tuberculosis). Group
III: Bacteria Cyanobacteria ([Swiss-prot:G6PI_ANASP],
Anabaena sp.; [Swiss-prot:G6PI_SYNEL], Synechococcus
elongates). Group III: Bacteria Bacillus ([Swiss-
prot:G6PI_LACFE], Lactobacillus fermentum; [Swiss-
prot:G6PI_BACHD], Bacillus halodurans; [Swiss-
prot:G6PI_BACSU], Bacillus subtilis; [Swiss-
prot:G6PI_CLOPE], Clostridium perfringens). Group IV:
Bacteria Proteobacteria ([Swiss-prot:G6PI_BIFLO], Bifido-
bacterium longum; [Swiss-prot:G6PI_ECOLI], Escherichia
coli). Group V: Bacteria Chlamydiae ([Swiss-
prot:G6PI_CHLTR], Chlamydia trachomatis; [Swiss-
prot:G6PI_CHLCV], Chlamydophila caviae; [Swiss-
prot:G6PI_CHLMU], Chlamydia muridarum). Group VI:
Others Bacteria ([Swiss-prot:G6PI_CHLTE], Chlorobium
tepidum; [Swiss-prot:G6PI_DEIRA], Deinococcus radio-
durans; [Swiss-prot:G6PI_BORBU], Borrelia burgdorferi;
[Swiss-prot:G6PI_THEMA], Thermotoga maritime). Group
VII: Fungi ([Swiss-prot:G6PI_SCHPO], Schizosaccharomy-
ces pombe; [Swiss-prot:G6PI_YEAST], Saccharomyces cerevi-
siae; [Swiss-prot:G6PI_NEUCR], Neurospora crassa; [Swiss-
prot:G6PI_ASPOR], Aspergillus oryzae). Group VII: Eukary-
ota Viridiplantae ([Swiss-prot:G6PI_ARATH], Arabidopsis
thaliana; [Swiss-prot:G6PI_MAIZE], Zea mays; [Swiss-
prot:G6PI_SPIOL, Spinacia oleracea; [Swiss-
prot:G6PA_ORYSA], Oryza sativa). Group VIII: Eukaryota
Alveolata Apicomplexa ([Swiss-prot:G6PI_PLAFA], Plas-
modium falciparum; [Swiss-prot:Q9XY88], Toxoplasma Gon-
dii; [Swiss-prot:269_185], Cryptosporidium parvum). Group
IX: Animals ([Swiss-prot:G6PI_DROME, Drosophila mela-
nogaster; [Swiss-prot:G6PI_MOUSE], Mus musculus;
[Swiss-prot:G6PI_HUMAN], Homo sapiens; [Swiss-
prot:G6PI_PIG], Sus scrofa; [Swiss-prot:G6PI_RABIT],
Oryctolagus cuniculus; [Swiss-prot:G6PI_TRYBB], Trypano-
soma brucei brucei). Group X: Other Eukaryota ([Swiss-
prot:AY581147], Entamoeba histolytica; [Swiss-
prot:G6PI_LEIME], Leishmania mexicana; [Swiss-
prot:AY581146], Dictyostelium discoideum; [Swiss-
prot:Q968V7], Giardia intestinalis).

Enolase sequences
Enolase sequences used for the case-study presented in
this paper were taken from eight major groups previously
studied by [36]. Group I: Land Plant, Charophytes, Chlo-
rophytes, Rhodophytes and Cryptomonads ([Swiss-
prot:CAA39454], Zea mays; [Swiss-prot:Q42971], Oryza
sativa; [Swiss-prot:Q43130], Mesembryanthemum crystalli-
num; [Swiss-prot:P42896], Ricinus communis; [Swiss-
prot:Q43321], Alnus glutinosa; [Swiss-prot:Q9LEJ0], Hevea
brasiliensis 1; [Swiss-prot:P25696], Arabidopsis thaliana;
[Swiss-prot:P26300], Lycopersicon esculentum; [Swiss-
prot:AF348914], Chara corallina; [Swiss-prot:AF348915],
Nitella opaca; [Swiss-prot:AF348916], Nitellopsis obtusa;
[Swiss-prot:AF348918], Pycnococcus provasolii 2; [Swiss-
prot:AF348919], Bigelowiella natans – Chlorarachnion -;
[Swiss-prot:AF348920], Mastocarpus papillatus 1; [Swiss-
prot:AF348923], Prionitis lanceolata 1; [Swiss-
prot:AF348931], Rhodomonas salina 1; [Swiss-
prot:AF348933], Guillardia theta; [Swiss-prot:AF348935],
Pedinomonas minor). Group II : Animals and Fungi ([Swiss-
prot:P04764], Rattus norvegicus; [Swiss-prot:P51913], Gal-
lus gallus A; [Swiss-prot:P07322], Gallus gallus B; [Swiss-
prot:Q9PVK2], Alligator mississippiensis; [Swiss-
prot:P06733], Homo sapiens A; [Swiss-prot:P13929, Homo
sapiens B; [Swiss-prot:P15007], Drosophila melanogaster;
[Swiss-prot:AF025805], Drosophila pseudoobscura; [Swiss-
prot:O02654], Loligo pealeii; [Swiss-prot:AF100985],
Penaeus monodon; [Swiss-prot:Q27527], Caenorhabditis ele-
gans; [Swiss-prot:Q27877], Schistosoma mansoni; [Swiss-
prot:P33676], Schistosoma japonicum; [Swiss-
prot:Q27655], Fasciola hepatica; [Swiss-prot:P00924], Sac-
charomyces cerevisiae 1; [Swiss-prot:Q12560], Aspergillus
oryzae; [Swiss-prot:P42040], Cladosporium herbarum;
[Swiss-prot:P40370], Schizosaccharomyces pombe 1; [Swiss-
prot:AF063247], Pneumocystis carinii f.). Group III: Amoe-
bae ([Swiss-prot:P51555], Entamoeba histolytica; [Swiss-
prot:Q9U615], Mastigamoeba balamuthi). Group IV: Alve-
olates ([Swiss-prot:AF348926], Paramecium multimicronu-
cleatum; [Swiss-prot:AF348927], Paramecium tetraurelia;
[Swiss-prot:AF348928], Colpidium aqueous; [Swiss-
prot:AF348929], Tetrahymena thermophila I; [Swiss-
prot:AF348930], Tetrahymena bergeri; [Swiss-
prot:Q27727], Plasmodium falciparum; [Swiss-
prot:AF051910], Toxoplasma gondii). Group V: Trypano-
somatidae ([Swiss-prot:AF159530], Trypanosoma cruzi
eno1 partial; [Swiss-prot:AF152348], Trypanosoma brucei
complete). Group VI: Hexamitidae ([Swiss-
prot:AF159519], Hexamita inflata eno1 partial; [Swiss-
prot:AF159517], Spironucleus vortens partial). Group VII:
Archaebacteria ([Swiss-prot:Q9UXZ0], Pyrococcus abyssi;
[Swiss-prot:O59605], Pyrococcus horikoshii; [Swiss-
prot:Q60173], Methanococcus jannaschii; [Swiss-
prot:Q9Y927], Aeropyrum pernix). Group VII: Eubacteria
([Swiss-prot:O66778], Aquifex aeolicus; [Swiss-
prot:P37869],Bacillus subtilis; [Swiss-prot:Q9K717], Bacil-
Page 11 of 15
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lus halodurans; [Swiss-prot:P77972], Synechocystis sp.;
[Swiss-prot:P33675], Zymomonas mobilis; [Swiss-
prot:P08324], Escherichia coli; [Swiss-prot:P47647], Myco-
plasma genitalium; [Swiss-prot:Q8EW32, Mycoplasma
penetrans; [Swiss-prot:P74934], Treponema pallidum).

Demonstration that distance of a protein to itself cannot 
be defined in the CSHP
In the simplest case, building a distance between amino
acids (that would lead to distance between sequences) on
the basis of computed similarity values would have to
respect the condition:

∀ i ∈  E, ∀ j ∈  E,d(i,j) = 0 ⇒ i = j  (a)

for i and j, two given amino acids and d the distance func-
tion. Using this condition in the proposition, any organi-
zation of the CSHP with a geometric distance is reduced
ad absurdum.

Proposition
Building a distance between amino acids derived from the
composed function d(i,j) = (φ ❍  s)(i,j), where s is a simi-
larity function and φ a bijection, is impossible without a
loss of mutual information. Moreover, two proteins from
distinct organisms can have the same configuration, being
like "twins", and d(i,j) = 0 does not imply i = j.

Proof
Condition (a) implies that φ (s(i,i)) = φ (s(j,j)) = 0. This
equality imposes that s(i,i) = s (j,j) and, following equa-
tion (7) of main text, that I(i;i) = I(j;j). Considering for
example tryptophan (W) and glutamic acid (E), if W
occurs in a sequence, the mutual information gained
about the occurrence of W at the aligned position would
be the same as that gained in the case of E about the occur-
rence of E at the aligned position in the homologous pro-
tein. This statement is easily rejected on the basis of
biochemical concerns. On one hand, aspartic acid (D)
shares common biochemical properties with E, particu-
larly a carboxylic acid, and easily substitutes in homolo-
gous sequences. By contrast W, exhibiting a unique
biochemical feature, is less substitutable without altering
the function. Thus the mutual information I(E;E) is nec-
essarily lower than I(W;W). This that can be checked in
scoring matrices such as BLOSUM 62 [30] where I(E;E) =
5, I(D;D) = 6 and I(W;W) = 11. Condition d(i,i) = 0 leads
to an obvious loss of information. The second assertion of
the proposition is obvious.

Determination of the threshold value ψ, for topological 
reconstructions in the CHSP based on pair-wise alignment 
score probabilities
An important basis of the reconstruction of a probabilistic
evolutionary topology in the CSHP is based on the dem-

onstration that, given S the random variable correspond-
ing to the alignment scores of pairs of shuffled sequences
and µ the mean of S, given two homologous sequences a
and b, when their optimal score is s(a,b) ≥ µ + ψ (with ψ a
critical threshold value depending on the score distribu-
tion law), owing to the TULIP corollary 2, we can state
that pid/a is bounded above

To the purpose of this demonstration, we considered the
cumulative distribution function F(s) = P(S ≤ s), its deriv-
ative f(s) known as the probability density function
defined as dF(s) = f(s)ds, and the positive delta function δ
(s) = (s - µ)2(1 - F(s)). Since δ (s) = (s - µ)2(1 - F(s)) is null

for s = µ and , the Rolle's theorem implies

that ∃ s0 ∈ ]µ,+∞[ such as [60]; s0 corresponds

to a maximum of δ (s) and is therefore the solution of the
equation

2(1 - F(s)) - (s - µ) f(s) = 0  (b)

one can express as

The  term corresponds to a continuous func-
tion. Interestingly,  is known as the haz-
ard function [61], that is the probability of s, per score unit
(i.e. mutual information), conditional to the fact that the
pair-wise alignment score is at least equal to s. The hazard
function is also defined by

. A critical hypothesis is
that φ (x) function is strictly increasing and conversely that

 is strictly decreasing. Considering
, equation 2 has only one

solution s0 and this solution is bounded above:

In consequence, δ (s) reaches its maximum for a s0 (s0 ≤ µ
+ ψ) and it is strictly decreasing on ]µ + ψ ,+∞[.

The estimation of s0 is not trivial because it depends on the
knowledge of the cumulative distribution function. Exten-
sive studies provided experimental and theoretical sup-
ports for an extreme value distribution of alignment
scores [31,43,44]. Using the extreme value distribution of
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(A) Gumbel score distribution simulated for enolases used in the present paper (B) graphical determination of ψFigure 5
(A) Gumbel score distribution simulated for enolases used in the present paper (B) graphical determination of ψ
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type I, i.e. the Gumbel distribution [62], the cumulative
distribution is given by

with θ and β (β > 0) the location and scale parameters.
The probability density function g(s) is defined by dG(s) =

g(s)ds. We observe with  that

. Using the Taylor's polynomial formula, i.e.

:

In consequence, for a Gumbel score probability
distribution:

A graphical determination of ψ from a Gumbel distribu-
tion is illustrated in Figure 5.

If a pair-wise alignment score of two sequences a and b is
relatively high, that is s(a,b) ≥ µ + ψ, then the trivial ine-
quality s(a,a) ≥ s(a,b) implies

(s(a,b) - µ)2(1 - F(s(a,b))) ≥ (s(a,a) - µ)2(1 - F(s(a,a)))  (h)

that is to say

From inequality (i), we deduce that pid/a is bounded
above.

Construction of PHYLIP multiple alignment based trees 
and pair-wise alignment based TULIP trees
To build PHYLIP trees, multiple sequence alignments
were created with ClustalW [63]. PHYLIP trees where con-
structed using the protpars and neighbor modules from
the PHYLIP package [47] and the BLOSUM 62 substitu-
tion matrix. Bootstrap support was estimated using 1000
replicates. To build TULIP trees, for each couple of
sequences a and b, alignment was achieved with the
Smith-Waterman method and the BLOSUM 62 scoring
matrices, using the BIOFACET package from Gene-IT,
France [64]. We computed estimated z-scores z(a,b*),
z(a,a*), z(a*,b), z(b*,b*), with 2000 sequence shuffling.
For all computations, an estimation of the Gumbel

parameters θ and β was made using the computed µ and

σ of any S(a,b*) and the formula  and θ = µ -

βΓ'(1), where Γ'(1) ≈ 0.577216 is the Euler constant. In all
computations, both Gumbel parameters were very close
(in the case of enolases, mean(θ) = 35.04, SD(θ) = 0.12,
mean(β) = 3.92, SD(β) = 0.08). As a consequence, the
assumption Q(a,a*) ≈ Q(a,b*) was verified for any pair of
sequences. We used the parameters to estimate µ = θ + βΓ
'(1) (in the case of enolases, µ = 37.33), and µ + ψ ≈ µ +
10.5178 ≈ 47.85. As any pairs of computed scores are
higher than this critical threshold, we used relation [20].
Estimation of evolutionary time was achieved according
to equations [20] and [22]. Trees were constructed using
Fitch-Margoliash and Neighbor-Joining methods [47].

List of abbreviations
CSHP, configuration space of homologous proteins,
TULIP, theorem of the upper limit of a score probability
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