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Study Objectives: Automated sleep stage scoring is not yet vigorously used in practice 
because of the black-box nature and the risk of wrong predictions. The objective of this study 
was to introduce a confidence-based framework to detect the possibly wrong predictions that 
would inform clinicians about which epochs would require a manual review and investigate 
the potential to improve accuracy for automated sleep stage scoring.
Methods: We used 702 polysomnography studies from a local clinical dataset (SNUBH dataset) 
and 2804 from an open dataset (SHHS dataset) for experiments. We adapted the state-of-the-art 
TinySleepNet architecture to train the classifier and modified the ConfidNet architecture to train an 
auxiliary confidence model. For the confidence model, we developed a novel method, Dropout 
Correct Rate (DCR), and the performance of it was compared with other existing methods.
Results: Confidence estimates (0.754) reflected accuracy (0.758) well in general. The best 
performance for differentiating correct and wrong predictions was shown when using the 
DCR method (AUROC: 0.812) compared to the existing approaches which largely failed to 
detect wrong predictions. By reviewing only 20% of epochs that received the lowest 
confidence values, the overall accuracy of sleep stage scoring was improved from 76% to 
87%. For patients with reduced accuracy (ie, individuals with obesity or severe sleep apnea), 
the possible improvement range after applying confidence estimation was even greater.
Conclusion: To the best of our knowledge, this is the first study applying confidence 
estimation on automated sleep stage scoring. Reliable confidence estimates by the DCR 
method help screen out most of the wrong predictions, which would increase the reliability 
and interpretability of automated sleep stage scoring.
Keywords: confidence estimation, deep learning, electroencephalography, polysomnography, 
sleep stages, accuracy improvement

Plain Language Summary
Deploying automated sleep stage scoring in practice requires models to be both accurate and 
reliable. While existing works have focused on improving the accuracy, the problem of their black- 
box nature has hardly been solved. As the first study to introduce confidence estimation in 
automated sleep stage scoring, we focused on how to increase the reliability and utility of 
automated sleep stage scoring. Confidence estimation can serve a surveillance role for the classifier 
and screen out challenging epochs by showing low confidence. Therefore, only epochs with 
possibly wrong predictions will need manual review while accuracy is kept high. By adopting 
a confidence model, automated sleep stage scoring can be used in practice in a manipulable and 
reliable manner.

Introduction
Polysomnography (PSG) is the gold-standard procedure for analyzing and diagnos-
ing sleep health. A PSG recording provides overnight sleep data for a patient’s 
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sleeping at a sleep center. It mainly consists of various 
biosignals, including electroencephalogram (EEG), elec-
trooculogram, electromyogram, electrocardiogram, and 
respiratory signals. Every 30-sec epoch of this sleep data 
is visually inspected by a human sleep expert and manu-
ally classified into one of five sleep stages according to the 
American Academy of Sleep Medicine (AASM) Scoring 
Manual.1 These five sleep stages are: Wake (W), Rapid 
eye movement (REM) sleep (R), Non-REM stage 1 (N1), 
Non-REM stage 2 (N2), and Non-REM stage 3 (N3). 
While information of sleep stages is essential for sleep 
diagnosis, manual annotation for sleep stages is a time- 
consuming and labor-intensive process. With the advance-
ment of artificial intelligence (AI), many automated sleep 
stage scoring models that are trained via deep learning 
(DL) have been proposed to make the process more 
efficient.

DL-based sleep stage scoring models take advantage of 
huge amounts of data and recent advances in technology to 
automate the sleep stage scoring process. One of the ear-
liest automated sleep stage scoring models is 
DeepSleepNet.2 By using convolutional and recurrent 
neural networks, DeepSleepNet learns spatial and tem-
poral patterns of sleep data such that it can accurately 
predict sleep stages given data of raw single EEG channel 
as input. More recently, TinySleepNet has been proposed 
as a lighter version of DeepSleepNet with improved pre-
diction capabilities and generalizability across different 
sleep datasets.3 Many other automated sleep stage scoring 
models have also been reported in the literature,4–10 with 
their own carefully designed model architecture and novel 
DL technique aimed to improve the model’s capability to 
classify 30-sec sleep epochs. The introduction of DL in 
sleep stage scoring has improved the accuracy of those 
automated systems by a huge margin, with reported 
Cohen’s kappa values of up to 0.80,10,11 which surpasses 
the inter-rater reliability among sleep technologists 
(Cohen's kappa: 0.68–0.76).12

Despite their remarkable performances for classifica-
tion, DL-based sleep stage scoring models are not yet 
widely used in clinical environments. The lack of trans-
parency of these models is considered as their major 
drawback.13 The black-box nature of DL models raises 
concerns regarding their reliability in practice since ratio-
nales for their predictions are not accessible. In addition, 
current DL-based sleep stage scoring models do not allow 
human experts to intervene or supervise AI-derived 
results. Thus, the only way to confirm their predictions is 

to manually review the entire PSGs. If there is a way to 
differentiate between reliable predictions and possibly 
wrong predictions, which are often mixed together within 
each PSG recording, clinicians would not need to review 
the whole PSGs. DL-based sleep stage scoring models 
would be more usable in clinical practice if additional 
information is provided with their predictions, which can 
specify epochs that require a manual review.

One way of doing so is by adding confidence estima-
tion to the automated sleep stage scoring, by which values 
indicating how confident the model is about its predictions 
are given. This would allow sleep technologists and clin-
icians to selectively inspect those epochs screened out by 
the system and re-score them manually when needed. This 
approach may speed up the manual sleep stage scoring 
process while ensuring its accuracy and reliability. One of 
the well-known confidence estimation methods is tempera-
ture scaling14 which adopts calibrated output of neural 
networks as confidence to match prediction accuracy. 
However, the calibration does not affect the ranking of 
confidence estimates. In other words, wrong predictions 
may have the highest confidence estimate even with the 
calibration; thus, it is not applicable to failure 
prediction.15,16 A new confidence estimation model 
which is able to distinguish correct and wrong predictions 
is needed.

The objective of the study was to evaluate the utility 
and efficacy of confidence estimation in automatic sleep 
stage scoring. We proposed a novel confidence estimation 
model which is specified for automated sleep stage scoring 
to detect the wrong classification. We evaluated the per-
formance of confidence estimation itself, compared the 
performance of our novel confidence model with other 
existing methods, and experimented with scenarios such 
as rejecting a fixed percentage of predictions with the 
lowest confidence estimates.

Methods
Datasets
Local Dataset
The dataset consisted of 3510 PSGs recorded from 1st 
January 2013 to 31st December 2020 at the sleep center 
in Seoul National University Bundang Hospital (SNUBH). 
For most (91.8%) subjects, the sleep study was prescribed 
for the purpose of clinical diagnosis, while the rest (8.2%) 
were for clinical trials. Exclusion criteria for the data were: 
(1) from patients aged <19 years or >80 years, and (2) 
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recorded sleep time less than 240 minutes. Since the 
dataset was retrospectively collected from PSGs conducted 
in the past, additional informed consents were not avail-
able. However, the data were all anonymized. The use of 
this dataset in this study was approved by the Institutional 
Review Board (IRB) of SNUBH (IRB No. B-2011/ 
648-102).

To increase the efficiency and save time to run numerous 
DL experiments, 20% of data from the SNUBH dataset were 
randomly selected and used for the experiments, giving a total 
of 702 PSGs. The mean age of examinees was 52.8±13.9 years 
and there were 237 (33.8%) females. The data consisted of 71 
(10.1%) patients with insomnia, 347 (49.4%) patients with 
moderate-severe degree of sleep apnea (AHI ≥ 15), and 141 
(20.1%) patients diagnosed with REM sleep behavior disor-
der. The mean recording time was 472.5 ± 30.1 minutes per 
night, ranging from 370.8 minutes to 617.6 minutes. Each 
PSG was visually inspected and manually annotated by sleep 
technologists according to AASM scoring rules and confirmed 
by a sleep expert.

Preprocessing
Preprocessing of the data included filtering, downsampling, 
and normalization. In the current study, only a single EEG 
signal (C3-A2) was used as input data. For filtering, 
a Butterworth bandpass filter with a range of 0.3 Hz to 35 Hz 
was applied to keep alpha (8–13 Hz), theta (4–8 Hz), delta (1–4 
Hz), and sleep spindles (11–16 Hz) known to be important 
waveforms for sleep stage scoring according to the AASM 
manual. To assess the model’s performance in a realistic sce-
nario, artifacts caused by the major body movements or by the 
equipment were not eliminated. Signals were then 

downsampled from 500 Hz to 100 Hz to reduce the computa-
tional complexity of the training of DL models. Downsampled 
data were then cut into 30-sec epochs. Every 11 epochs were 
then grouped into a sequence because when the sequence 
length is 10 or more, the accuracy improvement is saturated 
according to the previous literatures.4,5 Normalization was 
done using the mean and standard deviation calculated with 
the Welford’s algorithm, which was conducted because of the 
huge dataset size (600 GB). Finally, the entire dataset was 
divided into train, validation, and test sets with a ratio of 
70:15:15 at the PSG level.

Public Dataset
To validate our framework, the Sleep Heart Health Study 
(SHHS) dataset from the National Heart, Lung, and Blood 
Institute,17,18 one of well-known open datasets, was used. We 
used the 125 Hz single EEG channel data from SHHS-1, and 
merged stages 3 and 4 according to R&K scoring rules into N3 
as other existing literature.19,20 We randomly selected 50% of 
the data from SHHS-1, which had a total of 5793 PSG record-
ings, for the experiments. These data were also divided into 
train, valid, and test sets with a ratio of 70:15:15 at the PSG 
level.

Framework Architecture
Our framework was composed of a class prediction 
model and a confidence model (Figure 1). The classifier 
and the parallel confidence model both took EEG time 
series data as input and output sleep stages and confi-
dence estimates, respectively. Therefore, each epoch 
receives a prediction of sleep stage (ŷ) with a degree of 
certainty which is presented as a confidence value (κ̂). 

Figure 1 Confidence-based re-scoring framework for automated sleep stage scoring via deep learning. The confidence threshold δ is hypothetically set at 0.5.
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Through this confidence output, sleep physicians can 
decide which predictions of epochs are reliable and 
which epochs would need a manual review. If an empiri-
cal threshold for an acceptable confidence can be set, it 
would be even easier to screen out epochs requiring 
manual review by simply accepting predictions with 
confidence equal to or above the threshold while reject-
ing predictions with confidence under the threshold. 
Sleep physicians will only need to manually review and 
re-annotate epochs with low confidence which are 
assumed to be a small portion of full PSGs.

Selective Classifier
In our problem, given the dataset (X ; Y ) of PSG recordings (X) 
and sleep stage labels (Y ), we defined the classifier f such that 
for a given time series EEG signal xi 2 X , the classifier could 
output a corresponding sleep stage label yi 2 Y among five 
classes (W, N1, N2, N3, and R). The architecture of the 
classifier is based on TinySleepNet3 and adapted to the 
SNUBH dataset. As a “selective” classifier, in addition to 
general classification, it can selectively “accept” or “reject” 
the output, which is determined based on confidence in the 
present study. In other words, given the input xi, the selective 
classifier’s prediction ŷi is accepted only when the confidence 
κf xið Þ is equal to or larger than a threshold δ. Otherwise, the 
selective classifier rejects (ie, NONE) the prediction and asks 
for a manual review.

f xið Þ ¼
yi if κf xið Þ � δ
None if κf xið Þ < δ

�

The confidence rate function κf : X ! 0; 1½ � indicates 
how confident the classifier f is about its prediction on 
a given data xi. A user-defined parameter δ is a threshold 

to decide the level of confidence required to accept 
a prediction.

SeqConfidNet with DCR
The key component of our framework is defining the 
confidence rate function κf so that the confidence model 
can accurately estimate the accuracy of the classifier. 
A common way to estimate the confidence is to utilize 
softmax values from the last layer of the classifier. The last 
layer of the classifier outputs five values which are prob-
abilities for a given epoch to be classified to each of five 
sleep stages. The classifier outputs the class yielding the 
highest probability as the final prediction, while the high-
est probability itself (ie, the maximum class probability) 
can be considered as the corresponding confidence. The 
Maximum Class Probability (MCP)21 can be easily 
obtained without an additional cost. However, it tends to 
be overconfident by nature. Since it is the maximum 
probability among the five classes, the confidence value 
remains high even when the prediction is incorrect.

Because of the overconfidence of MCP, another 
method called True Class Probability (TCP) was 
introduced.15,16 TCP takes the probability of the true 
class as confidence (Figure 2). It is ideal in that confidence 
would be low for wrong predictions. However, since the 
information for a true class is not available in a real 
clinical setting where PSGs are pending for annotation, 
an additional neural network is required to be trained when 
estimating confidence that uses that information. For 
example, ConfidNet is a confidence model proposed to 
output confidence values using TCP as the confidence 
rate function.15 Although TCP is regarded as a better con-
fidence estimation method than MCP, both could not 

Proposing DCR method

Dropout-applied 

REM

N2

REM

N1

Classifier 

0.1

0.5

0.1

0.1

0.2

Wake

N1

N2

N3

REM

class probability

True Label REMPrediction N1

class probability-based methods

N1

class BA

Figure 2 Overview on how to calculate (A) class probability-based confidences and (B) dropout correct rate (DCR) confidence. For a given 30-s epoch x, method (A) 
assigns the maximum class probability (MCP) or the true class probability (TCP) outputted at the last layer of the classifier f as the confidence estimate for the predicted 
class ŷ. On the other hand, method (B) predicts the class of epoch x multiple times with dropout layers activated and takes the accuracy of those predictions as confidence.
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reflect the actual accuracy of the classifier. Thus, using 
them as reference in deciding when to accept or reject 
predictions has limitations.

To overcome the limitation of these class probability- 
based methods, we propose a new confidence estimation 
method that uses the dropout technique to allow direct 
estimation of the accuracy of the sleep stage classifier. 
Dropout is one of the most popular DL techniques for 
regularization. When the dropout method is applied for 
a given classifier f , some neurons are randomly ignored 
when making the prediction. As shown in Figure 2B, we 
can apply the dropout method to the classifier to generate 
multiple copies of the neural network which uses different 
sets of neurons for prediction. For a given sample, each of 
dropout-applied f s can perform class prediction indepen-
dently. The total number of correct predictions is then 
counted. Dropout Correct Rate (DCR) is calculated as 
the number of correct predictions divided by the number 
of dropout trials. For example, if 60 predictions are correct 
out of 100 dropout-applied f ’s predictions, the DCR is 0.6.

In this work, we adapted the ConfidNet of Corbiere 
et al15,16 and designed a sequence-to-sequence confidence 
model (SeqConfidNet) to give a sequence of confidence 
values corresponding to the sequence of sleep stages pre-
dicted by the classifier. Since DCR approximates the accu-
racy of the prediction, the estimated confidence from 
SeqConfidNet with DCR is likely to reflect the actual 
accuracy of the class prediction. We would test not only 
SeqConfidNet with DCR, but also other existing confi-
dence rate functions [MCP, temperature-scaled MCP 
(t-MCP), and TCP] to evaluate if SeqConfidNet with 
DCR could have better performance than other methods 
for estimating clinically meaningful confidence.

Model Architecture and Training
The model architectures of the classifier f and 
SeqConfidNet are both made up of four convolutional 
layers, one recurrent layer, and one fully connected layer. 
For the classifier f , the fully connected layer outputs five 
values, each showing the probability of the 30-s epoch 
belonging to one of five sleep stages. For SeqConfidNet, 
the fully connected layer only outputs one value per epoch 
which quantifies the confidence of classifier f in its pre-
diction. The detailed hyperparameters of the classifier such 
as filter stride, filter size, and the number of hidden layers 
were used with the same values as those in the original 
paper.3

For model training, the classifier f is first trained to 
minimize the mean squared error between the true class 
and the predicted class using an Adam optimizer, 
a learning rate of 0.0001, and a batch size of 64. Right 
after the classifier training, the training of the confidence 
model begins, with initial weights of convolutional layers 
set as trained weights of the classifier’s convolutional 
layers. To prevent the confidence model from diverging 
too much from the classifier, the training of SeqConfidNet 
freezes convolutional layers and starts with the training of 
recurrent and fully connected layers. After those layers are 
well trained, the next step is fine-tuning of SeqConfidNet 
where convolutional layers are trained together with recur-
rent and fully connected layers. Using an Adam optimizer 
and a batch size of 64, SeqConfidNet is trained to mini-
mize the mean squared error between output values esti-
mated by the confidence model and those given by the 
confidence rate function κf . During the training of 
SeqConfidNet, the learning rate was initially set at 
0.0001 but reduced to 0.00003 during fine-tuning to stabi-
lize the learning. To avoid overfitting of models, early 
stopping was done for training both the classifier and the 
SeqConfidNet.

Evaluation Metrics
The classifier performance was evaluated by mean accu-
racy, Cohen’s kappa, weighted macro-F1 score, and con-
fusion matrix. Regarding the performance of confidence 
estimation, five types of metrics were used as in previous 
works: (1) area under the receiver operating characteristic 
curve (AUROC),21 (2) area under the precision-recall 
curve (AUPR),21 (3) false positive rate (FPR) when the 
true positive rate (TPR) was 95% (FPR@95%TPR),15,16 

(4) area under the risk-coverage curve (AURC),22,23 and 
(5) Excess-AURC (E-AURC).24 The AUROC is the most 
commonly used metric to evaluate a method’s ability of 
distinguishing between classes. To note, we defined 
a “positive class” as wrong predictions by the sleep stage 
classifier and the “negative class” as correct predictions 
because the wrong predictions were our targets to be 
detected here. Thus, successful rejection of wrong predic-
tions would be a “true positive (TP)” and successful pass 
(non-rejection) for correct predictions would be a “true 
negative”. In addition to TP, false positive (FP), true 
negative (TN), and false negative (FN) were used to cal-
culate precision (TP/(TP+FP)), recall=TPR (TP/(TP+FN)), 
FPR (FP/(FP+TN), risk (FN/(TN+FN)), and coverage (TN 
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+FN/(TN+FN+TP+FP)), respectively. The AUPR is better 
in the case of two classes with greatly different base rates 
because it adjusts for base rates. AUROC and AUPR 
denote areas under the TPR-FPR curve (ROC) and the 
precision-recall curve while varying the confidence thresh-
old δ, with higher value indicating better performance. The 
FPR@95%TPR was the FPR at a certain threshold that 
gave a TPR of 95%, with a lower FPR at TPR 95% 
indicating a better performance. Regarding AURC, it is 
better to reduce the risk (missing wrong predictions) while 
keeping the coverage (1-rejection rate) as high as possible. 
E-AURC was a normalized variant of AURC by subtract-
ing the inevitable risk. Lower values for AURC and 
E-AURC indicated better performances. The primary out-
comes were AUROC and AUPR while FPR@95%TPR, 
AURC, and E-AURC were considered secondary out-
comes to help evaluate the performance of confidence 
estimation in various aspects.

Results
Sleep Staging Performance
Classification Metrics
Figure 3 shows the confusion matrix for sleep stage clas-
sification based on local SNUBH and public SHHS sleep 
datasets. With the SNUBH dataset, the classifier was able 
to predict 85% of Wake, 59% of N1, 74% of N2, 77% of 
N3, and 83% of REM correctly, resulting in an average 
classification accuracy of 76%. The Cohen’s kappa value 
was 0.67 and the overall weighted F1 score was 0.76. The 

evaluation via the SHHS dataset showed similar results 
(accuracy: 82%, Cohen’s kappa: 0.75, F1 score: 0.82) 
(Figure 3B), confirming the efficiency and robustness of 
the classifier.

Accuracy per Data Category
When categorizing the data based on specific features as 
displayed in Table 1, the classifier exhibited classifica-
tion accuracy for certain groups. The accuracy seemed 
generally robust across age spans and genders except 
that it had a slightly lower value for the old group. 
However, the accuracy was reduced greatly for people 
with high BMI or AHI. The accuracy reduced to 68.6% 
for the obese group and 68.4% for people with AHI of 
30 or more. When features were grouped on the level of 
epoch, the accuracy reduced to 64.8% for epochs with 
sleep apnea/hypopnea and 62.5% for epochs with 
respiratory arousal.

Confidence Estimation Performance
Confidence Estimation Metrics
Results of the primary and secondary metrics for confi-
dence estimation methods are shown in Table 2. Regarding 
the primary metrics, the DCR method showed the best 
AUROC (0.812) and the second best AUPR (0.533) fol-
lowing the TCP (0.538). The values of FPR@95%TPR 
(0.591), AURC (0.088), and E-AURC (0.057) were the 
best using the DCR method, followed by the values 
with TCP.

Tr
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l

Predicted label

Tr
ue

 la
be

l

Predicted label

A B

Figure 3 Confusion matrices for sleep stage classification, comparing manual scoring vs automated scoring by the classifier using (A) the SNUBH dataset or (B) the SHHS 
dataset.
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Rejection of the Least Confident Predictions
In Figure 4, the TPR is shown at each rejection rate 
applied. For each rejection rate, a certain percentage of 
predictions with the lowest confidence were rejected. 
A higher TPR could be interpreted as a higher rate of 
wrong predictions to be included in the rejection (ie, 
a higher detection rate for wrong predictions). By applying 
20% as the rejection rate, a TPR as high as 50% was 
achieved using the confidence estimation by DCR. That 
is, almost half of the classifier’s wrong predictions could 
be detected, which was considered quite successful 

compared to the TPR of 20% at random rejection. 
Furthermore, if epochs with rejected predictions could be 
hypothesized to be manually re-scored, the classifier’s 
overall weighted F1 score and Cohen’s kappa value 
improved greatly by a maximum of 0.203 and 0.276, 
respectively. When the rejection rate was increased to 
50%, the detection rate of wrong predictions was increased 
to as high as 85% and the overall accuracy of sleep staging 
was highly improved.

In addition, we compared the possible improvement of F1 
score and Cohen’s kappa by re-scoring rejected epochs among 

Table 1 Classification Accuracy and Mean Estimated Confidence According to Clinical Features in the SNUBH Dataset

Feature Group Number of 
Epochs

Number of 
Patients

Accuracy Confidence

MCP t-MCP TCP DCR

Average 96,448 104 75.8 77.1 76.5 67.5 75.4*

Age Young: [19, 40) 18,975 21 77.8 75.6* 75.0 65.6 74.4
Middle: [40, 60) 44,033 48 76.7 77.2 76.5* 67.7 75.6

Old: [60, 80) 33,440 35 73.7 78.0 77.4 68.3 75.6*

Gender Male 58,850 64 75.3 75.7 75.1* 65.9 73.9
Female 37,598 40 76.8 79.3 78.7 70.0 77.6*

BMI Underweight: [0, 18.5) 1903 2 83.2 78.6* 78.0 69.5 78.6*

Normal: [18.5, 25) 40,359 44 78.0 79.1 78.5* 69.9 77.3
Overweight: [25, 30) 45,826 49 75.1 76.5 75.9 66.6 74.4*

Obese: [30,∞] 8360 9 68.6 70.6 69.9* 60.3 70.1

AHI Normal: [0, 5) 26,169 28 79.9 79.5* 78.9 70.6 78.4
Mild: [5, 15) 23,749 26 78.3 78.0* 77.4 68.6 76.1

Moderate: [15, 30) 19,327 21 78.1 79.6 79.0 70.4 78.0*

Severe: [30,∞] 27,203 29 68.4 72.4 71.7 61.5 70.0*
Sleep respiratory 

event

No event 72,637 - 79.6 79.7* 79.1 71.0 78.4

Apnea/hypopnea 22,813 - 64.8 69.4 68.7 56.9 66.2*

Respiratory arousal 13,125 - 62.5 67.7 67.0 54.3 63.9*

Notes: All values are percentages. *Mean estimated confidence value closest to the classification accuracy. 
Abbreviations: BMI, body mass index; AHI, apnea-hypopnea index; MCP, Maximum Class Probability; t-MCP, temperature-scaled MCP; TCP, True Class Probability; DCR, 
Dropout Correct Rate; SNUBH, Seoul National University Bundang Hospital.

Table 2 Performances of the Three Confidence Estimation Methods in Differentiating Wrong and Correct Predictions

Dataset Confidence ↑AUROC ↑AUPR ↓FPR@ 95TPR ↓AURC ↓E-AURC

SNUBH MCP/t-MCP 77.1 48.4 68.5 10.34 7.17
TCP 80.6 53.8* 60.4 9.07 5.90

DCR (Ours) 81.2* 53.3 59.1* 8.84* 5.67*

SHHS MCP/t-MCP 82.5 48.4 57.6 5.78* 4.00*

TCP 82.5 49.5 57.4* 5.79 4.00*
DCR (Ours) 82.6* 50.0* 60.2 5.87 4.09

Notes: All values are percentages. *Best metric value. 
Abbreviations: SNUBH, Seoul National University Bundang Hospital; SHHS, Sleep Heart Health Study; MCP, Maximum Class Probability; t-MCP, temperature-scaled MCP; 
TCP, True Class Probability; DCR, Dropout Correct Rate; AUROC, area under the receiver operating characteristic curve; AUPR, area under the precision-recall curve; 
FPR@95TPR, false positive rate at true positive rate set as 95%; AURC, area under the risk-coverage curve; E-AURC, Excess-AURC.
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the three confidence estimation methods (Figure 5). Rejecting 
predictions by using the DCR confidence resulted in the 
largest improvement of the classification accuracy among 
the three methods. When 40% of predictions with the lowest 
confidence values were replaced with original labels, DCR 
improved the classifier’s overall weighted F1 score by 0.015 
and Cohen’s kappa value by 0.02 more than MCP did.

Confidence per Data Category
In most categories, mean estimated DCR confidence 
values were the closest to the classification accuracy 
among the confidence estimation methods (Table 1). In 
particular, MCP showed confidence values close to accu-
racy for the young, the underweight, and the normal-to- 
mild sleep apnea groups. However, for the older group and 

groups with high BMI or AHI, in which the accuracy was 
reduced, DCR performed the best, outputting the closest 
confidence values to accuracy. DCR seemed to reflect the 
classifier performance honestly and be less overconfident 
when the accuracy was reduced in specific groups.

When 20% of predictions with the lowest DCR confidence 
would be replaced by the correct labels, accuracy improved by 
as much as 10–20%. The most improvement of classification 
accuracy occurred for groups with low accuracies (eg, patients 
with old age, obesity, or severe sleep apnea) (Figure 6).

Threshold Determination
The confidence threshold δ can be chosen arbitrarily by 
users. Here, we evaluated three systematic ways of setting 
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the threshold. The first criterion was to set the confidence 
value at when TPR reached a desired value (eg, TPR = 
0.95) as threshold for rejection. As shown in Table 3, this 
criterion resulted in a high threshold at δ ¼ 0:890 and 
rejections for a large portion of epochs (54.3% of correct 
prediction and 95.7% of wrong prediction) that required 
manual review. The second criterion picked the threshold 
as the value that kept the accuracy of remaining epochs at 
a desired value (eg, Accuracy = 0.85). In this case, less 
epochs were subjected to manual review, decreasing both 
FPR (21.7%) and TPR (52.3%). The third criterion was the 
gap maximization which set the threshold as the value that 
maximized the TPR while minimizing the FPR. The gap 
maximization criteria set the threshold at 0.724 where 
29.6% of correct predictions and 82.5% of wrong predic-
tions were rejected.

Utility of Confidence in Sleep Staging
Examples for the utility of confidence are presented in 
Figure 7. The accuracy was high for the PSG of a patient 
with mild sleep apnea (AHI = 7.4), so was the confidence 
estimated by SeqConfidNet with DCR. When the threshold 
was used to achieve accuracy of 85% for the remaining 
predictions (δ ¼ 0:554, the second selection criteria we 
proposed), the rejection rate was 10.4%. However, for 
a patient with severe sleep apnea and frequent sleep 

stage shifting, the accuracy of the classifier reduced to 
69%. The estimated confidence also reduced greatly, 
resulting in 44.1% rejection rate when the same threshold 
was applied. Despite various accuracies for these two 
cases, epochs with wrong predictions were largely over-
lapped with a low confidence. After these rejected predic-
tions were revised with correct sleep stages, the overall 
accuracy could be improved to 94–95% in both cases.

Discussion
To the best of our knowledge, this is the first study to 
introduce confidence estimation and selective classifier 
into DL-based automated sleep stage scoring, where the 
objective was to detect wrong predictions for sleep stages. 
With confidence estimation and a threshold for it, selective 
classifier could reject probably wrong predictions (confi-
dence below the threshold) and only output probably cor-
rect predictions (confidence equal to or above the 
threshold). In addition to previously proposed confidence 
estimation methods (the MCP and the TCP), we proposed 
a novel method, DCR. We evaluated the performance of 
all three confidence estimation methods by their capabil-
ities of detecting wrong predictions. DCR performed the 
best to differentiate correct and wrong predictions based 
on not only the primary metrics of AUROC but also the 
secondary metrics of FPT@95TPR, AURC and E-AURC. 

Table 3 Percentages of Epochs with Correct and Wrong Predictions Chosen for Manual Review According to Each Threshold Setting 
Criterion

Selection Criterion Threshold δ Rejection Rate FPR TPR Accuracy

TPR = 0.95 0.890 61.4 54.3 95.7 95

Accuracy = 0.85 0.554 21.5 21.7 52.3 84

Gap Maximization 0.724 41.3 29.6 82.5 91

Notes: Threshold δ was determined using the validation set. Others were calculated using the test set. 
Abbreviations: FPR, false positive rate; TPR, true positive rate.
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DCR also showed the greatest improvement of overall 
accuracy when a fixed percentage of predictions with the 
lowest confidence were rejected. Lastly, for groups with 
low accuracies, DCR confidence values were reduced con-
cordantly with the level of accuracy, showing that the 
DCR method better reflected accuracy and that it was 
less overconfident.

In designing our classifier for automated sleep stage 
scoring, we adopted the TinySleepNet architecture which 

is light, simple, and highly robust. As expected, the per-
formance of the classifier was robust with the local dataset 
(accuracy 76%) and the public dataset (accuracy 82%), 
which was compatible with other classifiers (accuracy 
75–85%).10,11 The lower accuracy with the SNUBH data-
set compared to the SHHS dataset might be explained by 
the fact that majority of its data were from clinical patients 
with various sleep disorders including sleep apnea. The 
classifier performed fairly well for the data without sleep 
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Figure 7 Hypnograms of two patients with different AHI levels from the SNUBH dataset as the test set. From the top to bottom were visualizations of original labels of 
epochs, the classifier’s predicted sleep stages, SeqConfidNet’s estimated DCR confidence values, and revised predictions after rejected predictions were replaced with 
original labels. The threshold for rejection was set at δ ¼ 0:554 to make an accuracy of 0.85. Red shade indicates wrong predictions. Green shade specifies confidence values 
below the threshold. (A) For a patient with mild sleep apnea (AHI = 7.4), the classifier’s accuracy was high (88%) and only 10.4% of predictions were rejected. (B) For 
a patient with severe sleep apnea (AHI = 30.7), the accuracy was only 69% and the rejection rate was 44.1% with the same threshold applied. After rejected predictions were 
replaced with correct sleep stages, the accuracy was improved to 95% and 94%, respectively.
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respiratory events (accuracy 80%). However, the accuracy 
was reduced particularly for epochs with sleep respiratory 
events and for people with an old age, obesity, and severe 
sleep apnea, which was observed in other classifiers as 
well.6,25,26

The confidence model, the key component in our fra-
mework, provides confidence estimates for predictions of 
the classifier on a level of epoch. Confidence estimates can 
quantify how confident the model is toward its predictions. 
We expect a well-designed confidence function κf to out-
put reliable confidence estimates, where high values (more 
confident) indicate trustworthy predictions and low values 
(less confident) refer to challenging data that require 
a manual review. We used SeqConfidNet with DCR as 
our confidence model, which was trained to output esti-
mates of DCR. Conceptually, DCR is like virtual accuracy 
per prediction because it is the proportion of correctness in 
a number of dropout simulations for each prediction. It is 
worth noting that the DCR method, which outputs con-
fidence estimates very much similar to accuracy by defini-
tion, actually shows the closest mean confidence value to 
accuracy (Table 1). As we intended, the mean DCR con-
fidence value followed and reflected the accuracy well in 
all categories regardless of the classifier’s accuracy, while 
the probability-based estimation (the MCP, t-MCP, and 
TCP) tended to be overconfident for specific groups 
where accuracy reduced greatly (old, high BMI, or severe 
apnea groups).

Regarding the ability of detecting wrong predictions, 
DCR showed AUROC of 0.812, AUPR of 0.930, and 
AURC of 0.088, which were considered as good discrimi-
nation. Metric scores of MCP or TCP were not as good as 
those of DCR. Detecting and re-scoring wrong predictions 
were intended to improve the overall accuracy. We further 
evaluated changes of accuracy by replacing rejected pre-
dictions with correct sleep stages. When rejection was 
determined by the DCR, greater improvements for both 
Cohen's kappa and weighted F1 score were shown com-
pared to the rejection by the MCP or by the TCP. It might 
be explained by the high TPR in DCR-based rejection. 
That is, the DCR method can successfully detect and 
include more wrong predictions into rejection, leading to 
more potential for improvement when rejected epochs are 
manually re-scored.

By using DCR confidence estimates to make correc-
tions for those predictions, the capability of DL-based 
automated sleep stage scoring to be used in clinical 
practice is maximized. PSGs can be annotated by DL- 

based models first and only a small portion of PSGs 
with possibly wrong predictions would require manual 
review and re-annotation. Thereby, the sleep stage scor-
ing assisted by DL-based models can become both 
accurate and reliable. In addition, time complexity of 
DL-based models is a critical factor for practical utility, 
where our AI model only takes 2 seconds per PSG 
recording on average to output sleep stage scoring 
results along with confidence estimates. Therefore, for 
sleep physicians, the time and labor can be saved while 
the accuracy is kept high. Such confidence estimates can 
also make predictions of sleep stages transparent and 
manipulable.

Although our proposed framework can make DL-based 
sleep stage scoring models reliable, it has several limita-
tions. First, calculating DCR confidence estimates has an 
additional computational overhead. Second, while the use 
of our confidence model is not limited for a specific clas-
sifier, the performance of confidence estimation can be 
highly affected by the performance of the classifier 
because they share the model architecture. In addition, 
there were limitations of the study that our experiments 
were conducted with only two specific datasets without 
external validation. Finally, the framework proposed in 
this study was not applied and evaluated in an actual 
clinical setting.

Conclusion
This study showed the potential of a confidence-based 
framework to improve accuracy of automated sleep stage 
scoring. We expect that our work may help promote the 
active use of DL-based automated sleep stage scoring in 
clinical practice and result in a reduction of workload of 
sleep physicians. The practical utility of the framework is 
needed to be validated in future works. Future study of 
comparing accuracy and time efficiency between full man-
ual scoring and confidence-based framework-assisted 
manual scoring is needed to prove the benefit of applying 
our proposed model in a practical setting. Another impor-
tant future research direction is to improve the general-
ization capability of AI models for sleep stage scoring so 
that AI models can perform well universally, regardless of 
sleep centers or recording devices.
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